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ABSTRACT

Although systolic accelerators have become the dominant method
for executing Deep Neural Networks (DNNs), their performance
efficiency (quantified as Energy-Delay Product or EDP) is limited
by the capabilities of silicon Field-Effect Transistors (FETs). FETs
constructed from Carbon Nanotubes (CNTs) have demonstrated
>10× EDP benefits, however, the processing variations inherent in
carbon nanotube FETs (CNFETs) fabrication compromise the EDP
benefits, resulting >40% performance degradation. In this work, we
study the impact of CNT process variations and present Canopy,
a process variation aware systolic DNN accelerator by leveraging
the spatial correlation in CNT variations. Canopy co-optimizes the
architecture and dataflow to allow computing engines in a systolic
array run at their best performance with non-uniform latency, min-
imizing the performance degradation incurred by CNT variations.
Furthermore, we devise Canopy with dynamic reconfigurability
such that the microarchitectural capability and its associated flexi-
bility achieves an extra degree of adaptability with regard to the
DNN topology and processing hyper-parameters (e.g., batch size).
Experimental results show that Canopy improves the performance
by 5.85× (4.66×) and reduces the energy by 34% (90%) when infer-
encing a single (a batch of) input compared to the baseline design
under an iso-area comparison across seven DNN workloads.
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1 INTRODUCTION

The excessive computational intensity of Deep Neural Networks
(DNNs) motivated the wide adoption of DNN accelerators which
provide two to three orders of magnitude performance improve-
ment compared to CPUs/GPUs through intensive data reuse and
specifically designed memory hierarchy. Among previous designs,
the systolic architecture has been extensively explored [13]. Contin-
ued progress in system performance and efficiency of such designs,
however, is prevented by the capability of silicon digital systems [1]
due to the end of Moore’s law and Dennard scaling. Consequently,
multiple potential technology candidates [18, 21] are being explored
for constructing next-generation electronic systems. In particular,
Field-effect transistors (FETs) fabricated with Carbon Nanotubes
(CNTs) has demonstrated 10× improved Energy-Delay Product
(EDP) compared with silicon CMOS [6] based memory [18] and
processors.

Despite the EDP benefits, CNFETs are subject to substantial in-
trinsic defects and process variations (PVs) [3] introduced during
the current synthesis processes used to produce CNTs. Previous
works [12] simulated the latency distribution in ALU (SRAM) and
reported a worst-case delay of 2× (3×) the nominal value, indicating
that PVs have a significant impact on the operational reliability of
CNFET circuits. In this work, we study the impact of CNT process
variations on systolic architectures and present Canopy, a process
variation aware DNN accelerator that enable efficient DNN pro-
cessing while retaining the major EDP benefits of CNFETs. The
following highlights the challenges and outlines our contributions.

(1) Previous approaches sacrificed the EDP benefits of CN-

FETs.We model the CNT process variations and characterize
their impact on systolic DNN accelerators. Experimental results
indicate that current techniques (i.e., worst-case design and CN-

FET upsizing) both sacrificed the EDP benefits of CNFETs by
forcing all processing engines (PEs) to work at the same fre-
quency, resulting >40% performance degradation. Fortunately,
the process variation in CNFETs exhibits a strong direction-
dependant correlation [24]. Therefore, we implement Canopy
with a systolic PE layout that allows PEs to operate at their best
performance with non-uniform latency, thereby minimizing
performance degradation incurred by CNT variation.

(2) Non-uniformPEprocessing is promising to preserve EDP

benefits, but it causes problems in data synchronization.

To address this challenge, we propose a computing dataflow that
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https://doi.org/10.1145/3531437.3539703
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3531437.3539703&domain=pdf&date_stamp=2022-08-01


ISLPED ’22, August 1–3, 2022, Boston, MA, USA Cheng Chu, Dawen Xu, Ying Wang, and Fan Chen

0%
20%
40%
60%
80%
100%

1.E+00

1.E+02

1.E+04

1.E+06

IS WS OS IS WS OS

Layer1 Layer3 FC1 FC2

U
til

iza
tio

n 
ra

te

Pe
rf

or
m

an
ce

 (c
yc

le
)

ISOSWS ISOSWS ISOSWS ISOSWS
CONV1 CONV3 FC1 FC2Pe

rf
or

m
an

ce
 (c

yc
le

s)

1e0

1e2

1e4

1e6 100%
80%
60%
40%
20%
0%

U
tilization (%

)

(b) Exploration results on TPU.

Partial Sum 
Register

Weight 
Register

IFPs 
Register

0%
20%
40%
60%
80%

100%

Power Area

Control

SRAM
MAC

Other logic

100%
80%
60%
40%
20%

0%
Power Area

(b) Power/Area Breakdown in TPU

Gate Source  Drain 

Substrate CNT 

(a) The CNFET 3D view.

CNFET1 CNFET2 

CNFET3 CNFET4 

W

L𝒚𝒚

𝒙𝒙
Identical

In
de

pe
nd

en
t

(b) CNFET perf. Correlation.

Weight FIFO
MACs (256x256)

OFPs Acc. MISC Func.

Host/PCIe/DRAM Interface
Ctrl.

Others 
Unified SRAM Buffer 

(24 MB)

(a) Baseline CNTFET TPU 
(166.4 𝒎𝒎𝒎𝒎𝟐𝟐 @28 𝒏𝒏𝒎𝒎)

(b) Simulated Delay Distribution

0
0.05

0.1
0.15

0.2
0.25

0 1 2 3 4 5 6 7 8 9 10

MACs
SRAM

9876543210 10
Normalized Delay

25%
20%
15%
10%

5%

Pr
ob

ab
ili

ty
 (%

) 

Weight FIFO

Output Buffer

In
pu

t B
uf

fe
r

MAC MAC MAC

MAC MAC MAC

MAC MAC MAC

(a) The TPU architecture.
Figure 1: Google TPU.

breaks the long systolic pipelines in conventional designs and
exploits data parallelism when inputs are processed in batches,
enabling high-throughput parallel execution across heteroge-
neous computing units.

(3) The new dataflow is effective only for batch processing.

For single-input scenarios, the proposed dataflow will fail as
there is no data parallelism opportunity. To this end, we de-
vice Canopy with dynamic reconfigurability, providing adapta-
tion for latency-oriented single-input processing.
While Canopy addresses the negtive impact of CNT process

variations to enable efficient DNN execution in CNFETs, it does not
impose extra overhead, but instead provides improved performance
and efficiency for both single-input and batch DNN processing.
To establish the effectiveness of our design innovations, we evalu-
ate Canopy on various applications across seven DNN workloads.
On average, Canopy delivers 5.85× (4.66×) speedup and 34% (90%)
energy saving over a baseline CNFET design when inferencing a
single input (a batch of inputs) under an iso-area comparison.

2 BACKGROUND

2.1 Systolic Architecture

SystolicDNNaccelerator and its dataflow.TheGoogle TPU [13]
is used as the baseline systolic DNN accelerator architecture in
this work. We show the high-level TPU architecture overview in
Figure 1 (a), which mainly consists of (1) 256×256 8-bit Multiply-
and-Accumulate (MAC) units; (2) local buffers including weight
FIFO, input buffer, output buffer that are used to store weights,
input feature maps (IFPs), and output feature maps (OFPs), respec-
tively; and (3) a 24 MB on-chip SRAM for data storage (not shown
in Figure 1 (a)). Depending on different data mapping strategies,
the computing dataflow can be classified into Input Stationary (IS),
Weight Stationary (WS), and Output Stationary (OS). The dataflow
has direct implications on the performance of the systolic com-
puting system. The microarchitecture of a systolic accelerator is
usually optimized for an immutable dataflow.

Exploration on TPU. For preliminary studies, we implemented
a TPU-like systolic array and simulated it using SCALE-Sim [17].
Detailed experimental setup is described in Section 5. We use con-
volutional (CONV) and fully-connected (FC) layers in AlexNet as
our study cases. The bar chart in Figure 1 (b) compares the per-
formance of different dataflow when inferencing a batch (e.g., a
batch size of 64) of inputs. It shows that the OS dataflow outper-
forms the IS/WS dataflow in most aspects. We also report the the
hardware utilization when inferencing a single input with different
layer topologies. As showing in the blue line in Figure 1 (b), the
hardware utilization ratio can be <5% on an FC layer, indicating
that computing resources need to be flexibly reconfigured to adapt
to different networks or even different layers of a network.
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(a) The TPU architecture.Figure 2: CNFET basics.

2.2 CNFET Technology

CNFET-based circuits and systems. As shown in Figure 2 (a),
a CNFET device utilizes CNTs arrays instead of bulk silicon as
channel material and are implemented in the same structure as
conventional MOSFETs [18]. CNTs are hollow cylinders of carbon
atoms with a 1∼2 nm diameter and its conductivity can be adjusted
by the gate voltage. CNFETs have shown 10× improved EDP [6], low
leakage power [20], scalability down to 3 nm and beyond [8], and
superior intrinsic thermal properties [22]. High-performance and
energy-efficient CNFET-based digital processors [18] and analog
circuits [2] have already been experimentally demonstrated.

CNT process variations. CNFETs performance are quantized
in terms of the CNT-count in each device. Limited by the current
CNT growth processes [24], it is difficult to ensure uniform density
(i.e., CNT density variation) and precise positioning of CNTs (i.e.,
mis-aligned CNTs). Moreover, roughly 33% of the CNTs are metallic
(i.e., m-CNT) [19, 25]. Current m-CNT removal techniques [23]
may inadvertently remove some semiconducting CNTs (s-CNTs),
aggravating the CNT density variations. Previous work [24] pre-
sented a parameterized model for CNT-count by incorporating all
the aforementioned process variations. As validated by experimen-
tally results, the CNT-count in a practical sized CNFET follows the
Gaussian distribution and can cause significant latency variations
in CNFETs-based computing units and memory elements [12].

Existing solutions. The misaligned-CNT-immune layout [16]
has addressed the mis-aligned CNTs problem with minimal over-
head. For other CNT process variations, there are mainly two main
schemes. (1)Worst-case design: For a CNFET circuit, a nominal cycle
time is determined by the critical path delay when there are no
variations. Such worst-case design ensures reliable compute but sac-
rifices system performance; (2) CNFET upsizing: The CNFETs circuit
failure probability, pF , is defined by the following equation [26],
where CNT density variation, Prob{N (W ) = Ni }, is a function of
the CNFET chanel widthW , andpNi

f represents them-CNT induced
variation. Since pF decreases exponentially withW . Therefore, a
minimalW can be determined to meet the delay requirements of a
target system.

pF =
∑
Ni

pNi
f Prob{N (W ) = Ni } (1)

Spatial correlation.A strong spatial correlation in CNT process
variations have been identified and confirmed by prototypes [24].
Figure 2 (b) conceptually illustrates this unique property with a sim-
ple four CNFET layout. The CNT-count distribution along the CNT
growth direction is highly correlated, therefore, for FETs imple-
mented along the CNT growth direction, i.e., CNFET1 and CNFET2,
have identical performance. While for FETs implemented perpen-
dicular to the CNT growth direction, i.e., CNFET1 and CNFET3, are
independent. Note that when the x-distance increase beyond the
length of CNT stripes, a change in correlation should be expected
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Figure 4: Speedup (norm. to TPU).

even for devices along the x-axis. Current fabrication processes
can achieve stable and consistent millimeter-scale CNTs [4], which
can accommodate large functional units with tens of thousands of
CNFETs.

3 RELATEDWORK AND MOTIVATION

Baselinemodeling. For ideal CNFET-based designs, we model the
circuit in Verilog and synthesize it with Synopsys Design Compiler
using 28 nm Open Cell Library (modified for CNFET technology).
We achieved a clock frequency of 2.4 GHz. The transistors number
per 8-bit MAC is 2817. We implement each MAC in a square-sized
area. We adopt the misaligned-CNT-immune layout [16] in the
backend flow using Cadence Innovus. Based on the practical de-
vice nonidealities calibrated with experimental CNT data [5], a
conservative 13.2% (12.5%), 11.6% (13.4%), and 8.1% (6.4%) overhead
is imposed respectively on circuit area, energy, and delay for an
8-bit full adder (multiplier). We assume a 200 um [4] CNT length
and validated that 256 MACs can be realized within the length.
For non-ideal designs, we apply the CNT count variation by using
parameters in Table 1. Detailed explanation of each parameter can
be found in Section 5.

Performance comparison.We show the extracted transistor
sizing distribution in Figure 3. According to Equation 1, a minimum
160 nm of transistors width is desired to ensure a >90% circuit
yield, resulting a 2× enlarged area and 1.5% increased delay (due to
gate capacitance penalty associated with transistor upsizing) in the
CNFET upsizing implementation. For fair comparison, we increase
the computing resource for worst-case design by 2× and report the
iso-area performance comparison in Figure 4. All data are normal-
ized to worst-case design. The results show that worst-case design
and CNFET upsizing respectively lead to 85% and 40% performance
degradation compared to the Ideal CNFET-based design.

Limitation of prior techniques. Previous CNFET-based de-
signs sacrifice the CNFETs EDP benefits to reduce the impact of
process variation. The spatial correlation of CNT variations is ex-
ploited in a SIMD processor [12], but the the impact of such cor-
relations on a systolic array is not studied. The recent work [7]
proposed a CNFET-based DNN accelerator in monolithic 3D, but
its fabrication cost increases significantly due to expensive mono-
lithic 3D interconnects. In this work, we set out to explore process
variation aware DNN accelerator designs and expect to retain the
benefits of CNFETs despite the CNT process variations that exsist
in today’s CNT fabrication.

4 CANOPY

In this section, we propose a process variation aware systolic DNN
accelerator architecture, Canopy, which allows each MAC row to
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Figure 5: The Canopy architecture overview.

run at its best performance, and hence retain the EDP benefits of
CNFETs. To address the computing synchronization challenge in
non-uniform MAC arrays, we present an optimized execution flow
for high-throughput DNN batch processing and a dynamic recon-
figurability to adapt for latency-oriented single-input processing.

4.1 The Canopy Architecture

Figure 5 shows the Canopy architecture. Canopy consists of four
tiles, each of which has a 256×256 MAC array, a 6KB local buffer

and a two-input multiplexer (MUX) for each computing column.
Each MAC has two one-byte registers to store IFPs and weights,
one two-byte register to store temporal product, and one four-byte
register to store the partial sum. Each register is connected to their
neighboring MAC units for local operands transforming. Each row
has an individual MAC on/off control. The four tiles shares an 8
MB input buffer, an 8 MB weight buffer, and an 8MB weight buffer.
A controller manages the dataflow and orchestrate the computing.

Based on our preliminary study in Section 3, all the 256 MACs
in a row within the same tile can be implemented along the growth
direction of a monolithic 200 µm CNT. We assume they have the
same latency due to the CNT spatial correlation. It is safe to assume
that the chip can be fully tested after fabrication to obtain the 256
distinct MAC row delay in each tile. In this case, each tile can be
taken as 256 1×256MAC rowswith non-uniform computing latency.
We quantize the delay in four discrete values and apply a working
frequency such as f Hz, 2f Hz, 4f Hz, and 8f Hz (e.g., f =300 MHz)
to the corresponding MAC row.

A monolithic systolic array architecture inherently utilizes data
reuse along its rows and columns in a two-dimensional pipeline [13,
17]. The synchronization of such parallel execution depends on the
identity of processing units. However, Canopy contains 256 1× 256
MAC rows cannot support parallelism and ensure synchronization
among different rows with non-uniform delays. Therefore, it is
desirable that we design a new dataflow that can break the long
systolic pipeline in the original design and parallelize DNN execu-
tion across multiple (e.g., 256) MAC rows, such that it would exploit
finer-grain parallellism and yield better resource utilization.

4.2 The Canopy Computing Dataflow

Data mapping and computing flow. To accommodate the non-
uniform MAC delay, the key is to avoid systolic pipeline which
requires data synchronization among different rows. Therefore, we
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present an OS-like data mapping and computation flow, where the
compute required for each element in OFPs are mapped to a given
MAC such that the partial sum reduction operation is performed
in place with no further communication between MAC rows.

We explain the steps by walking through a simple example of
a convolutional layer as illustrated in Figure 6. The example layer
has 256 5×5×32 IFPs, 64 3×3×32 weight kernels. We first prepare
kernel weights onto different column of the systolic array. We then
fill MAC rows with unrolled inputs from different IFPs. The whole
array is clocked at the highest working frequency, i.e., 8f Hz.

Now consider the following computation order. In the first cycle,
the first element in the first IFP, i.e., I11 , and the first weight value
in the first weight kernel, i.e., K1

1 , are read into the leftmost MAC
in the first row. Accordingly, a partial sum in the first channel of
the first OFP is calculated and stored in place. In the second cycle,
the leftmost two MACs in the first row and the leftmost MAC in
the second row both obtained their operands to generate an output
value in the corresponding OFPs. DifferentMAC rows have different
compute delay and hence their operands (e.g., IFPs and weights)
are consumed at different frequency. For the specific configuration
in Figure 6, it takes respectively 1, 2, and 8 cycles for the 1st , 2nd ,
and last systolic row to complete one MAC. In this case, when MAC
rows with a working frequency of 8f Hz finish calculation and are
expecting a new set of IFPs/weights to be loaded, MAC rows with
a frequency of 4f , 2f , and f Hz only complete calculation on 1/2,
1/4, and 1/8 of the IFPs/weights values.

Operands alignment on non-uniform systolic array. To en-
sure functional correctness in such a systolic arraywith non-uniform
row-wise latency, IFPs and weights need to be carefully aligned
with each other. To address this problem, a control signal is sent
to each row every cycle by using the discrete on/off logic reserved
for each MAC row. As shown in Figure 6, no particular dataflow
control is applied in the first round of computation. While in the
second round, a row_off signal is applied on the first cycle to all
the MAC rows except those with an 8f Hz frequency. In this case,
MAC rows with a frequency of 4f , 2f , and f Hz can finish compute
on the unused IFPs in the buffer while MAC rows with a frequency
of 8f is executing on a new set of loaded IPF values. Similarly, a
row_off signal is applied on the first two cycles for MAC rows with
a frequency of 2f and f in the next round. With such configuration,
operands for non-uniform MAC rows are respectively aligned to
ensure the correctness of function.

4.3 Dynamic Reconfigurability

TheCanopy dataflow exploits reuse of weights among different IFPs,
which is optimized for the high-throughput execution of DNN batch
(e.g., 64, 128, etc.) processing. For single-input DNN processing,
there is no such data parallelism, and more importantly, the most
critical metric becomes latency instead of throughput. To this end,
we devise Canopy with reconfigurability among tiles such that the
fast MAC rows (i.e., MAC rows working at 8f Hz) from each tile
can be resembled to construct a uniform systolic array for latency-
oriented DNN processing. The reconfigurability is ensured by (1)
dynamic weights selection: the weights fed to the top row of each
tile come either from neighboring tile or directly from the weight
buffer; and (2) direct inputs fetch: inputs streamed to the left edge
of each tile are directly fetched from the local buffer to avoid the
non-uniform row delay among different tiles.

Canopy is composed of four tiles that are physically imple-
mented in a 2×2 layout. Figure 7 illustrates the three possible logical
configurations. Figure 7 (a) shows a assembling array with square
aspect-ratio, while Figure 7 (b) and (c) illustrate instances of vertical
long-narrow and horizontal short-wide configurations, respectively.
In general, Figure 7 (a) yields the best performance for batch pro-
cessing. For single-input processing, Figure 7 (b) and (c) will be the
best choice respectively for a model that dominated by CONV or
FC layers. The table in Figure 7 lists the applicable tasks and the
overall array size for each configuration. For single input inference,
Canopy provides an high-performance MAC array where only the
MAC rows with a frequency of 8f Hz are selected. In this case, a
CNFET-based monolithic systolic array with uniform MAC delays
can be constructed.

4.4 Design Overhead

One MUX is added to each MAC column, which is negligible. One
6 KB local buffer is added to each tile, resulting in a total of 24 KB
SRAM. Compute alignment requires a minimal circuit revision for
adding a control signal to each MAC row.

5 EXPERIMENTAL METHODOLOGY

CNT process variation modeling. We use the variation-aware
CNFET process design kits (PDKs) [9] to evaluate the circuit-level
impact of CNT count variations. The CNT count variations are
quantified by the parameters shown in Table 1. Back-end-of-line
(BEOL) wire parasitics are extracted with Synopsys Raphael using
wire dimensions in [13] and then modified for CNFET technology.
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Table 1: CNT processing parameters.

Definition Ideal Val. Experimental Val.

Mean µ and variance σ σ 2/µ2 = 0 σ 2/µ2 = 0.5
Probability ofm −CNT pm = 0% pm = 10%∼33%
C.P.∗ of removed s-CNT pRs = 0% pRs = 1%
C.P. of removedm-CNT pRm = 100% pRm = 99.99%

∗
C.P.: Conditional Probability.

We also leverage the SPICE-compatible CNFET compact model [6],
which is calibrated with experimental data from CNFETs down to 9
nm gate length.We leverage RTL-based simulations tomodel the im-
pact of timing violations. Variations in standard cell power/timing
are characterized using the methodology described in [10]. We
quantify the following circuit-level metrics: (1) nominal systolic
array (256×256) delay/energy: the critical path delay and associated
energy when there are no timing variations; (2) MAC row (1× 256)
delay/energy: the compute delay and associated energy of MACs
implemented with correlated CNTs. We adopt the CNFET-based
SRAM in [14]. We upsize all non-MAC logic (e.g., control, nonlinear
units, etc.) to ensure system reliability, similar to [11].

Simulation. We adopt SCALE-Sim [17] to capture the MAC
compute cycles, MAC resource utilization, memory bandwidth and
access counts for various accelerator configurations and DNN archi-
tecture. The dynamic energy consumption are calculated based on
the compute cycles and the energy of different components obtained
from circuit-level simulation. The chip static energy consumption
are estimated based on the chip size and validated against previ-
ous CNFET-based digital prototype [11]. We assumed a low-power
DRAM interface with 4 pJ/bit, similar to baseline HBM [15].

Benchmarks. We evaluate the Canopy architecture on vari-
ous deep learning applications across seven state-of-the-art DNN
models. The detailed DNN topology and compute density are sum-
marized in Table 2. Note that we use the same DNN configurations
and workloads hyper-parameters as in [17]. We quantized both the
activations and weights of all CNNs with 8-bit of precision, similar
to Google TPU [13].

Schemes. We implement the following schemes:
• Worst-case: The chip contains 4 256×256 systolic arrays. The
working frequency is set as the slowest f Hz to ensure there are
no variations;

• Upsizing: All CNFETs are upsized to meet the 8f Hz working
frequency. The chip contains 1 256×256 systolic array. A 30%
delay overhead is applied due to the increased gate capacitance
penalty at 28 nm technology node [26].

• Ideal: The chip has 4 256×256 systolic arrays. No process variation
is considered. The frequency is set at 8f Hz.
Table 2: The DNN benchmarks (C: conv. layer; F: FC layer).

Name Database Topology Ops
AlexNet∗ ImageNet 5C 724.4M
ResNet-50 ImageNet 49C,1F 4.1G
MobileNet ImageNet 10C,1F 569.4M
GoogleNet ImageNet 57C,1F 1.5G
YOLO ImageNet 9C 2.24G
FasterRCNN ImageNet 46C 3.9G
Transformer ImageNet 288C,603F 868.7M

∗
We omit the FC layers in AlexNet similar to [17].
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Figure 8: The batch speedup (norm. to TPU).

• Canopy: The chip contains 4 256×256 systolic arrays with non-
uniform MAC row delays.
The MAC rows inWorst case, Upsizing, and Ideal all runs at iden-

tical speed. Their data mapping and computing flow follows the
conventional scheme presented in the TPU work [13]. For Canopy,
we implement all data mapping and computing flow schemes pro-
posed in this work.

6 RESULTS AND ANALYSIS

6.1 Inferencing A Batch of Inputs

Performance. Figure 8 compares the DNN batch processing perfor-
mance. Among the four schemes, the available on-chip computing
resource in Upsizing has reduced by 4× compared to others due to
the exponentially increased CNFET device sizes, while its working
frequency is 8× higher thanWorst case. On average, Upsizing, Ideal,
and Canopy achieves respectively 4.66×, 7×, and 135.2× speed up
compared to Worst case. It is remarkable that Canopy achieves
∼20× speedup compared with Ideal, which can be attributed to
the efficient Canopy computing dataflow. More specifically, the
utilization of systolic array in OS dataflow is greatly limited by the
hyper-parameters of DNN layers, i.e., <5% when processing an FC
layer. In our design, the problem of low utilization is addressed by
parallel processing different inputs in each row. And of course, the
effectiveness of such dataflow only holds when a batch of IFPs are
processed at the same time. For batch inferencing of FC-dominated
Transformer, an order-of-magnitude improvement can be observed.
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Figure 9: The batch energy consumption (norm. to TPU).

Energy. Figure 9 compares energy consumption of different
schemes when inferencing a batch of IFPs. Although Worst case

achieves a lower power consumption due to its very low working
frequency (i.e., 300 MHz), its prolonged processing latency leads
to a high energy consumption. Upsizing and Ideal both run at the
highest frequency (i.e., 2.4 GHz), but the computing resource of
Ideal is 4× that of Upsizing. Therefore, Upsizing consumes less
energy than Ideal. In contrast to Upsizing, Canopy allows each
MAC rows run at its best performance without extra hardware
overhead. The performance improvement from the dataflow also
leads to significant reduced computing latency when compared
to Ideal. Overall, the energy consumption of Upsizing, Ideal, and
Canopy are reported as 0.77×, 1.63×, and 0.096× compared to the
baselineWorst case scheme.
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Figure 10: The single input speedup (norm. to TPU).

6.2 Inferencing A Single Input

Performance. Figure 10 compares the single-input performance
of different designs. Canopy provides reconfigurability for different
workloads and the optimized 65536 (i.e., 256×256) MACs are guar-
anteed to run at 8f Hz. Averagely, Canopy achieves 1.25× speedup
compared to Upsizing. The performance comparison between Ideal

and Canopy depend on the topology of DNN workloads. In gen-
eral, Canopy with optimized array size also runs at 8f Hz, but its
computing resource is only 1/4 of Ideal. For all the seven workloads,
Ideal and Canopy show respectively 7× and 5.85× improvement
compared to Worst case. For the FC-dominated Transformer model,
Canopy achieves a 2% speedup than Ideal. This is mainly due to
the flexibility of array reconfigurability, which provides improved
hardware utilization.

1

0

0.5

1

1.5

2

En
er

gy
 c

on
su

m
pt

io
n 

Worst case Upsizing Ideal Canopy

0

0.5

1

1.5

2

En
er

gy
 c

on
su

m
pt

io
n 

Worst case Upsizing Ideal Canopy

En
er

gy
 C

on
su

m
pt

io
n 

 

2 
1.5 

1
0.5 

0 

En
er

gy
 C

on
su

m
pt

io
n 

 

2 
1.5 

1
0.5 

0 

1.E+00

1.E+01

1.E+02

1.E+03

Pe
rfo

rm
an

ce
 S

pe
ed

up Worst case Upsizing Ideal Canopy

0

2

4

6

8

Pe
rfo

rm
an

ce
 S

pe
ed

up

Worst case Upsizing Ideal Canopy

Sp
ee

du
p 

1e3 

1e2 

1e1

1e0 

Sp
ee

du
p 

8 
6 
4
2 

0 

0%

20%

40%
256*256 64*1024

U
til

iz
at

io
n 40%

20% 

0% 

Figure 11: The single input energy consum. (norm. to TPU).

Energy. Figure 11 compares the energy consumpation of differ-
ent designs when processing a single input. Upsizing, Ideal, and
Canopy respectively consume 0.77×, 1.63× and 0.66× energy com-
pared to Worst case. The energy saving of Canopy when compared
to Ideal mainly comes from (1) Canopy only assembles MAC rows
working at 8f Hz, while the rest of the array is all powered off,
resulting in improved utilization and energy saving; (2) The perfor-
mance speedup demonstrated in Figure 10 leads to short processing
latency, thereby reducing leakage energy consumption.
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Figure 12: The utilization on different configurations.

Resource utilization. Figure 12 compares the hardware uti-
lization among different Canopy configuration (corresponding to
Figure 7 (b) and (c)) when inferencing a single input. In general,
CONV-dominated models favor a systolic array with square aspect-
ratio, i.e., a 256 × 256 MAC array achieves averagely 2× speedup
compared to a 64 × 1024 MAC array. FC-dominated models (e.g.,
Transformer), however, demonstrate a better performance on a
short-wide systolic array due to the significantly improved hard-
ware utilization. This can be attributed to the small number of

convolution windows and the large number of kernels in such
models. Similar observation is also reported in [17].

7 CONCLUSION

In this work, we study the impact of process variations on the per-
formance of a carbon nanotube field-effect transistor based systolic
array. We then present Canopy, a process variation aware systolic
accelerator for deep neural networks. We co-optimize architecture
and dataflow to allow the compute units in a systolic array run at
their best performance with non-uniform processing latency. We
further device Canopy with dynamic reconfigurability to adapt
to different compute requirements of various deep learning mod-
els. Experimental results show that Canopy achieves significant
performance improvement and energy reduction compared to the
baseline design across a wide range of workloads.
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