I545 Assignment #12: Melody Matching with Wildcards

Donald Byrd, 4 April 2007

This assignment is a relatively minor change to the the previous one. Again, you’ll match a melody against a query the way Themefinder does, using pitch intervals and considering only exact matches between query and theme, and only matching at the beginning of the theme. However, this time, the queries might contain one or more wildcards, i.e., elements that match anything rather than a specific value. The type of wildcard element we're using is the simplest one: it matches exactly one element of any value. This “dot” wildcard element is represented in Themefinder with a period, but we're matching numbers rather than characters, so we'll use the value 99 instead. For example, the interval vector (1, 99, -1) would match any sequence of four notes where the first interval is a half-step up and the last is a half-step down, regardless of the second interval.

 The database we’ll use this time is also similar to that in the previous assignment, except it’s again larger: instead of 1836 themes, it includes 3509, each in a separate file archived at http://www.informatics.indiana.edu/donbyrd/INFO545Site-Spring07/B+SThemesAllData.zip. (Despite the “x” prefix on the filenames, these are more-or-less all of the themes for composers with names starting with “B” or “S” in the Barlow & Morgenstern Dictionary of Musical Themes.) The format is the same as the last assignment.

Just like last time, your program should go through the set of themes and turn each theme in turn into an interval vector; then compare that vector with the query interval vector, probably by subtraction. Like last time, if you have a match, append the theme number to a list of matches (as we did with numPitchAll in the last assignment). But this time, you don’t need all zeros to have a match: you should ignore the result anywhere the query has a 99. Say, for example, that a certain theme has pitches (MIDI note numbers) 60, 59, 57, 59, 62; then its pitch-interval vector would be (-1, -2, 2, 3). Say the query is (-1, -2, 99, 3).

In this case,
(-1, -2, 2, 3)

minus

(-1, -2, 99, 3)

equals

(0, 0, -97, 0).

The result is zero except where the query has 99, so it’s a match. Note that the query might have more than one wildcard (99)!

The framework is at http://www.informatics.indiana.edu/donbyrd/INFO545Site-Spring07/MelodyMatchWildcard.R. To finish it, as usual, just fill in some code at the point indicated. Feel free to use my solution to the previous assignment, now located in the RSamples+Solutions folder, as a starting point. As before, your code has to set themeList to include all of the themes (numbers) that are exact matches to a query, but this time “exact matches” taking into account the wildcard feature. Important: again, the valid themes vary in length considerably, and there are some incorrect versions of themes with only a note or three! To avoid serious problems, before trying to match a theme against your query, check that the theme is at least as long as the query; if it's not, you know it won't match without even trying. Since lenQ is the length of the query, you can do this by setting intsInTheme to the number of intervals in each them, then saying

if (lenQ > length(intsInTheme)) next

Be sure to test your solution with the sample query (the first seven intervals of theme 44) given. The only match should be 44. Also test it with one wildcard and with more than one wildcard.

As usual, please e-mail your program (not its output) to both John and me by the due date. Be sure to use an appropriate filename, e.g., Hacker_Assignment12.R.

