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 Hello! I'm Tianyu and I'm a PhD student at Indiana University. Today we're going to talk about our paper, - . This is a joint work with my advisor, Prof. Jeremy Siek. 



Road Map

I Why Gradual Information Flow Typing? �

I Interpreting GLIO, in Agda
I Proving Type Safety
I Existing Designs and Future Directions
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 We're going to talk about 4 things: 
 1. In the 1st part, we talk about why we care about gradual IF typing. 
 2. In the 2nd part, we'll introduce a definitional interpreter for GLIO, a language with gradual information flow typing. 
 3. In the 3rd part, we prove type safety in a proof assistant by following the interpreter in sec. 2. 
 4. Finally, we compare existing designs and propose future directions. 
 In the following discussion we use ``information flow typing'' and ``security typing'' interchangeably. 



The Problem: Protecting Sensitive User Input

Consider an application:
I A user enters a string as input. Selected parts of the string

are sensitive.
I Sensitive information in the input string must not be

disclosed on the web page.

3 / 22

 So why gradual information flow typing? The question is twofold: 
 Why information flow typing? 
 And why gradual typing? 
 To answer the first question, let's look at an example. Suppose we have an application. A user enters a string and selected parts of the string are sensitive. There is a web page that displays some computation results. We don't want sensitive information to be displayed on the publicly visible website. How are we going to achieve this? 



A Solution: Information Flow Typing!

I A solution is to implement the application in a
security-typed language.
I The language regulates the flow of information and

enforce confidentiality.
I It satisfies the noninterference property, so sensitive

input does not interfere with publicly observable
output: High 6⇒ Low .

I Implementing the application in a security-typed
language will guarantee the confidentiality of sensitive
user information.
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 One possible solution to this problem is that we can implement such an application using a security-typed language. A security-typed language reguates the flow of information and enforce the confidentiality of data. 
 By confidentiality, we usually mean a property called noninterference. Sensitive user input data does not interfere with publicly visible, low-security output. 
 In this example, high-security source cannot flow into a low-security sink, since otherwise any observer can simply look at the output and infer the input. In the implementation of the language, you'll see that the right arrow, the ``flows to'' operator, also doubles as the operator for cast. As a result, implement such an application using a security-typed language will guarantee that sensitive information stays confidential. 



Defining the Grammar with Security Labels
Consider the following user input string:

{FirstName=Mad;LastName=Hatter;SSN=012-34-5678}

The input grammar:
I High-security terminals are in red; low-security ones in blue.

I The labels are propagated into further processing.

I Thanks to the language satisfying noninterference, high-security SSN
digits will never be disclosed.

〈RECORD〉 ::={FirstName=〈ID〉;
LastName=〈ID〉;
SSN=〈SSN〉}

〈ID〉 ::=w,w ∈ {A, ...Z, a, ...z}+

〈SSN〉 ::=〈D〉〈D〉〈D〉-〈D〉〈D〉-〈D〉〈D〉〈D〉〈D〉
〈D〉 ::=d, d ∈ {0, ...9}
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 Let's get back to the example application and consider the following user input string. The string consists of 3 parts - the first name, the last name, and a social security number. We are okay with displaying the name but would like to shield the digits in the SSN against public disclosure. To solve the problem of securely parsing and processing the input string, we would like to define a grammar of the input, where selected terminals are marked as high-security, and the rest are marked as low-security. 
 The security annotations defined in the grammar are propagated into further processing. 
 Thanks to noninterference, high-security information will not be unsafely disclosed. 
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Why Gradual Typing?

Static Dynamic
Developer can choose between:
3 Putting in effort to make the program type check at

compile time.

3 Leaving out the annotations to defer the enforcement
until runtime.

Our work is based upon GLIO, a gradual security-typed
language first introduced by de Amorim et al. 1

1A. A. de Amorim, M. Fredrikson, and L. Jia, “Reconciling noninterference and gradual typing”, LICS, July 2020.
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 The other question is why gradual typing? Gradual typing bridges static typing and dynamic typing by including checks at the boundaries of statically typed and dynamically typed code fragments. 
 Developer can choose to ... 
 Gradual information flow typing bridges static IFC and dynamic IFC using implicit casts that serve as security checks. 
 Our work is based on ... 
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 In the 2nd section we present an interpreter for GLIO. Compared to the previous paper, where the authors choose to use denotational semantics, we find definitional interpreter to be easier to reason about in a proof assistant. 
 Another benefit is we can see GLIO running in action thanks to our interpreter. 



Enforcing IFC in GLIO, Fully Dynamically
Example Md :

let f = λ x : (Lab ¿ Bool) . publish x in
let g = λ x : (Lab ¿ Bool) . (f x) in
let v = to-label High true in

g v
Consider the example program above, Md:
I The function publish publishes a low -security value to publicly

visible output.

I Function f , g both take boolean with statically unknown label ¿ .

I Variable v is bound to a value of high -security.

3 Md is well-typed.

! Now lets see what happens when we run Md!
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 Let's consider a program Md. In the function application, applying g to v, variable v is bound to a high security boolean. 
 Function g and function f both take statically unknown label, which we write as an inverted question mark. 
 In the body of function g, function f is applied to variable x. And in the body of function f, variable x is passed into a function publish that expects a value of low security. Function publish displays the value onto some, say, web page. 
 This program Md is well-typed, so let's see how it runs! 
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Security Checking at Runtime
let f = λ x : (Lab ¿ Bool) . publish x in

let g = λ x : (Lab ¿ Bool) . (f x) in

let v = to-label High true in
g v

The implicit casts serve as security checks and catch
information flow violation at runtime.
I 1st cast: Lab High Bool⇒ Lab ¿ Bool - permitted 3

I 2nd cast: Lab ¿ Bool⇒ Lab ¿ Bool - permitted 3

I 3rd cast: Lab ¿ Bool⇒ Lab Low Bool - rejected 7.
Execution is terminated due to castError and thus
information leakage is prevented.
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 The casts serve as security checks that can capture information flow violations at runtime. 
 The 1st cast, at the application site of g, is permitted, since we cast from High to Unk. The 2nd cast, at the application site of f, is also permitted, since it is from Unk to Unk. The 3rd cast, however, is rejected, because the program runtime detects that we're trying to cast a high security value to low security, which results in an information flow violation. 
 At this step, the execution is terminated and the information leakage is prevented. 
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Enforcing IFC in GLIO, Fully Statically

Example M s :

let f = λ x : (Lab Low Bool) . publish x in
let g = λ x : (Lab Low Bool) . (f x) in
let v = to-label High true in

g v 7

I M s is the fully statically typed counterpart of Md.
I We annotation f and g with static labels Low.
I The program is rejected by the type checker because

High 64 Low. Security is enforced statically.
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 If we replace the 2 Unks in the previous example with static labels Low, the program Ms will no longer well-typed. The type checker figures out that at the application site of g, there is a problem since High does not subsume Low. As a result, in this case information flow control is enforced fully statically. 



Partially Annotated Program

Example M :

let f = λ x : (Lab Low Bool) . publish x in
let g = λ x : (Lab ¿ Bool) . (f x) in
let v = to-label High true in

g v
The program M is partially annotated, f has a static
annotation while g does not.
I The program is statically well-typed, unlike M s.
I But compared to Md, the security violation can be

detected earlier! We shall see on the next slide when M
runs.
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 Since GLIO is gradual, we can have partially annotated program M, where the programmer keeps the static label on f but leave out the annotation on g. 
 Unlike its fully static counterpart Ms, M is well-typed similar to Md. But compared to Md, the security violation is detected earlier. 
 Let's take a closer look at how M runs. 



Detecting Security Violation in M

let f = λ x : (Lab Low Bool) . publish x in

let g = λ x : (Lab ¿ Bool) . (f x) in

let v = to-label High true in
g v

Similar to Md, security is enforced at runtime:
I 1st cast: Lab High Bool⇒ Lab ¿ Bool - permitted 3

I 2nd cast: Lab ¿ Bool⇒ Lab Low Bool - rejected 7.
Execution is terminated due to castError earlier than
Md because the program is more annotated.
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 Similar to Md, the 1st cast from High to Unk is successfully. However, the 2nd cast, from Unk to Low, fails. We note that the execution is terminated one cast earlier than Md since the program is now more annotated. 
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 Similar to Md, the 1st cast from High to Unk is successfully. However, the 2nd cast, from Unk to Low, fails. We note that the execution is terminated one cast earlier than Md since the program is now more annotated. 



The Definitional Interpreter V

V : ∀ Γ T ˆ̀1 ˆ̀2 . (γ : Env) → (M : Term)

→ (µ : Store) → (pc : L) → (k : N)

→ Result Conf

γ : Env Maps variables to values.

M : Term Runs on a well-typed term.

µ : Store Maps addresses to type-value pairs 〈T , v〉.

pc : L The program counter label to start with.

k : N Gas; so that the interpreter is total.

Result Conf The evaluation result configuration.
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 Here we present the type signature of the interpreter, V. It takes 5 parameters and returns a result configuration when successfully. A machine configuration is a 3-tuple that consists of a value, a store after evaluation, and a program counter label after evaluation. 
 The interpreter takes an environment gamma, which is a mapping from variables to values; a well-scoped well-typed term M; a store called mu, which is a mapping from addresses to type-value pairs, for which we write T , v; a program counter label that the evaluation starts with; and a number k called gas. The gas number decreases at each step of the evaluation, so that the interpreter is total. 



An Example Evaluation (of M)

As expected, evaluating M yields a cast error at runtime:

Evaluating M :
run-M : V [] M [] Low 42 ≡ error castError
run-M = refl
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 If we run example M in our interpreter, we can see that the evaluation result indeed equals to a cast error. 
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 In section no.3 we'll talk about the type safety. But first, we would like to explain why we care about type safety at all. We start this discussion by talking about different properties that a gradual security typed language is expected to satisfy. 



Desirable Language Properties
I de Amorim et al. prove that :

I Noninterference: GLIO is secure.
I Gradual Guarantees: Removing annotations, the

term remains well-typed and has the same runtime
behavior.

I We prove that:
I Type Safety: Undefined behavior never occurs in

GLIO.
I Future work:

I Blame theorem: A cast cannot be blamed if its
source type and target type satisfy subtyping.

I Space Efficiency: Casts are compressed so they do
not grow in an unbounded fashion.

16 / 22

 As for a gradual security typed language, there are 5 properties that we need to care about. Let's again take GLIO as an example. In the previous paper, de Amorim et al. has proved that GLIO satisfies noninterference, which says that the language is secure; and gradual guarantees, which says that removing annotations makes a term remain well-typed and does not change its runtime behavior. 
 In addition to those, in our work we prove that GLIO also satisfies type safety, which says that all errors are trapped errors so undefined behavior will never happen. 
 GLIO currently doesn't satisfy either blame theorem or space efficiency, so they are left for future work. 



Why Care About Type Safety?

I Distinguish between different types of errors:

All errors
{ Trapped

Untrapped
I Untrapped errors are bad because they are undefined

behavior; can be used to hack a program.
I Type safety: untrapped errors never occur!

I Machine configuration and evaluation result:

L = {Low, High}
c ∈ Store× Value× L, e ∈ Error

Result ::= timeout|error e|conf c

17 / 22

 So a natural question is, why do we care about type safety? If we think about errors in a program, they fall into two general categories, trapped errors, which are expected by the language designer, and untrapped errors, where the program goes into limbo states. 
 Untrapped errors are particularly bad, because they're undefined behavior, so a malicious party may take advantage of that and hack the program, which is scary. 
 Type safety basically says that untrapped errors can never occur. This is why it is desired. 
 Let's take a look at our machine model. An evaluation can result in a timeout, where we run out of gas; throw an error, or return a valid machine configuration. A configuration is a 3-tuple, store, value, and a program counter label, either low or high. 
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Theorem Statement of Type Safety

Theorem (Type safety)
If term M is well-typed: [] `ˆ̀1,ˆ̀2 M : T , the evaluation result of M
is also well-typed:

` V [] M _ [] pc k : T

Untrapped error is ruled out by well-typedness:

` timeout : T

e ∈ TrappedErrors

` error e : T
µ ` µ µ ` v : T

` conf 〈µ, v, pc〉 : T

18 / 22

 The theorem statement of type safety says that if the term M is well-typed, then its evaluation result after running the interpreter V is also well-typed. 
 When typing the result, note that in the error case, e can only be a trapped error. An untrapped error cannot be well-typed, thus rules out undefined behavior. 
 The configuration case is straightforward, the value is well-typed and the heap is also well-typed. A well-typed heap means that the value in each cell jives with the type stored on that cell. 
 The proof is by induction on the typing derivation of the term and we proceed by following the branches of the interpreter. 
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 In the last part, we summarize 4 existing gradual security typed languages. They serve as inspirations for a new design that we will briefly sketch. 



Gradual Security-Typed Language Properties

System Noninter-
ference

Type
Safety

Gradual
guarantees

Blame
theorem

Space
efficiency

λgif 3 Yes 3 Yes R Maybe 3 Yes 7 No
ML-GS 3 Yes 3 Yes R Maybe R Maybe 7 No
GSLRef 3 Yes 3 Yes 7 No 7 No R Maybe
GLIO 3 Yes 3 Yes 3 Yes 7 No 7 No

I Two languages that satisfy the most properties are λgif and GLIO.
However, as is mentioned earlier, λgif lacks mutable reference.

I The paper de Amorim et al. proves both noninterference and gradual
guarantees for GLIO, resolving the tension proposed in the GSLRef
paper by having casts checking labels only, with classifying the data.

I Unfortunately, GLIO does not perform blame tracking. It would be
difficult to add blame tracking to GLIO due to its heap model.

R We summarize our vision for a future design on the next slide.
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 We summarize the language properties of the 4 designs in a table. Lambda-gif and GLIO both 3 of the 5 properties, which are the most among others. Lambda-gif lacks mutable reference, so it's not very interesting compared to GLIO. 
 Instead of using gradual labels to actually classifying the data, the authors of GLIO choose to have casts checking labels only, so they prove both noninterference and the gradual guarantees, which the authors of GSL-Ref claim that there is a tension between the two. 
 GLIO doesn't do blame tracking. It would be difficult to add blame tracking to GLIO the straightforward way, since casts are inserted on-the-fly when the program runs and the types that construct the casts are stored on the heap. 
 Based on our observations, we propose our vision for a future design on the next slide. 



Language Design Choices & Future Directions

To facilitate all five properties, we recommend the following
design choices:
I Value labeling: Associating values with concrete labels

(Low, High, ...); similar to GLIO.
I Heap model: Simple heap (no extra information stored)

and reference proxies.
I Surface language and cast insertion: Having both

surface language and cast insertion; similar to GSLRef .
I Labeling granularity: Fine-grained labeling; similar to
λgif , ML-GS, and GSLRef .
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 To facilitate all five properties, we recommend the following choices of a future language design: 1. In terms of value labeling, we prefer the approach taken by GLIO, where values must be associated with concrete labels. Different from GSL-Ref, which has the problem of the labels on values becoming unknown when the program shifts to being more dynamic, hopefully our approach will facilitate gradual guarantees as GLIO does. 2. Different from all existing designs, we plan to use a simple heap (no extra information stored) and reference proxies. Hopefully this will better facilitate defining and proving blame theorem. 3. We plan to include a surface language with good programmer usability, since the user does not need to mess with inserting explicit casts. We compile it to a cast calculus and define the semantics based on the cast calculus, similar to the path GSL-Ref has taken. 4. Since both fine-grained labeling, where every value has to be labeled, and coarse-grained labeling, where an unlabeled value takes on a default visibility, are equally expressive. We arbitrarily choose the path of lambda-gif, ML-GS, and GSL-Ref, which is fine-grained. We do not plan to support first-class labels for simplicity, which is also similar to the aforementioned three designs. 



Thank you!!
Any questions?
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