
Generic Blame-Subtyping Theorem in Agda Using Abstract Binding Trees
Tianyu Chen

Computer Science, Indiana University. Advised by Professor Jeremy G. Siek

Figure: The new architecture (right) of the blame-subtyping theorem
proof compared with the old one (left). The proofs of the highlighted
lemmas are replaced by the instantiation of the ABT library. Edges
indicate dependency.

Introduction

The Gradual Typing in Agda project develops a
generic cast calculus called CC(⇒) that is param-
eterized by casts. The meta-theory of the Grad-
ually Typed Lambda Calculus (GTLC) developed
with CC(⇒) is reusable across multiple variants
of cast representations. Siek and Chen [1] prove
1) type safety 2) blame-subtyping, and 3) the dy-
namic gradual guarantee about CC(⇒). To re-
duce repetitive work, it is necessary to abstract
away the similarities between different cast repre-
sentations and the proofs of various lemmas and
theorems. The former is done by leveraging the
module system of Agda, which makes code and
proof sharing between cast representations possi-
ble (Table 1). This poster targets the latter half
of the problem: generalizing over the preserva-
tion proofs of various predicates. Many proofs in-
volve lemmas about “substitution preserves”, such
as “substitution preserves type” in type preserva-
tion, “substitution preserves term precision” in the
dynamic gradual guarantee, and “substitution pre-
serves ‘safe for‘” in the blame-subtyping theorem
[2]. Specifically in this project, we focus on the last
one: proving the blame theorem [3, 4, 2] by using
the ABT library to represent CC(⇒) terms and get
the substitution lemma for free (Figure 1).

Background

[Gradual Typing] Gradual typing is a paradigm
that combines static and dynamic typing by insert-
ing checks on the boundaries. Consider the follow-
ing partially typed program, where * stands for the
statically unknown type:
(define (abs (n : Int)) ᶡṞ Int

(if (n < 0) (- n) n))
(define (dist (n : Int) (m : *)) ᶡṞ Int

(abs (n - m))
Function call dist(0, ``yes'') will result in a
failed cast, which is caught at runtime. Interme-
diate languages where all casts are explicit are usu-
ally called cast calculi.
[Abstract Binding Tree]We use the ABT library,
which is an Agda implementation of Chapter 1
of Harper [5]. For example, Figure 2 represents
the term (λ x : * . x) (unit ⟨ Unit ⇒ * ⟩) in
CC(⇒) as an ABT:

Figure: Representing (λx:*.x) (unit⟨Unit ⇒ *⟩) as ABT

Approach and Implementation

Instead of the usual approach of defining the
“safe for” predicate as a datatype, we instantiate
module ABTPredicate in the ABT library, which
contains a notion of “generic predicate on ABT”.
For example, consider the rule for cast:
safefor-cast : ∀ {S T M} {c : Cast (S ⇒ T)} {ℓ}

→ CastBlameSafe c ℓ
→ M SafeFor ℓ

----------------------
→ (M ⟨ c ⟩) SafeFor ℓ

It becomes a clause of 𝑃ₛ, which is for the predicate
on operator nodes:
𝑃ₛ (op-cast c) (ℓₘ ∷ []) ⟨ tt , tt ⟩ ℓ =
CastBlameSafe c ℓ × ℓ ≡ ℓₘ

Essentially, we need one such clause for each op-
erator, the right hand side of which stands for the
constraints. For cast, they say 1) cast c is safe 2) the
cast term and its sub-term are safe for the same la-
bel. The counterpart of 𝑃ₛ on variable nodes is 𝑉ₛ.
The “safe for” predicate is then created as an instan-
tiation of the generic predicate, by passing the def-
initions of both 𝑉ₛ and 𝑃ₛ. Similarly, we instantiate
module SubstPreserve and get the lemma “substi-
tution preserves ‘safe for‘” for free.
We state the blame-subtyping theorem as:
soundness-<ᩄ : ∀ {A} {M : Term} {ℓ}

→ M SafeFor ℓ
--------------------

→ ¬ (M —↠ blame A ℓ)
Theproof is by induction on the reduction sequence
M —↠ blame ℓ, which depends on the substitution
lemma and “reduction preserves ‘safe for‘”. The
proof of the latter follows the overall structure of
type preservation.

Theoretic Results of the Gradual Typing in Agda Project (Table 1)

We compare the proofs of various properties (rows) across cast representations (columns) before (to the
left of “/”) and after (to the right of “/”) Gradual Typing in Agda. The status of a proof can be 1) m: has
proof assistant mechanization 2) p: has pen-and-paper proof in prior literature or 3) x: has no proof.

Cast Representation EDA EDI λB EDC LDC λC
Type Safety m / m x / m m / m x / m p / m p / m
Blame-subtyping Theorem p / m x / m p / m x / m p / m p / m
Dynamic Gradual Guarantee x / x x / x m / m x / x x / x x / x

Summary of Contributions

We obtain a shorter Agda proof of the blame-
subtyping theorem of the parameterized cast
calculus CC(⇒) by switching to the abstract
binding tree (ABT) library as the representation
for terms. We define the “safe for” predicate in
the style of the library and acquire the substi-
tution lemma for free. We argue that this proof
technique is suitable for proving the preserva-
tion of arbitrary predicates on terms.

Future Work

There are two possible future research directions:
[The ABT library]The ABT library does not pro-
vide generic theorems about reduction. A possible
extension to the library may handle the reduction
of ABT generically. In addition to “substitution
preserves predicate”, we can then obtain generic
proofs of properties about rewriting like conflu-
ence.
[Gradual Typing in Agda] We plan to make the
transition to using ABTs across the entire project.
We are also investigating ways to decouple blame-
strategy, UD versus D, from our current proof of
the dynamic gradual guarantee. Additionally, we
would like to incorporate mutable references and
different heap models into the project.

References

[1] Jeremy G. Siek and Tianyu Chen. Parameterized cast calculi and reusable meta-
theory for gradually typed lambda calculi. Journal of Functional Programming, 31:
e30, 2021. doi: 10.1017/S0956796821000241.

[2] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In
European Symposium on Programming, ESOP, pages 1–16, March 2009.

[3] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Re-
fined criteria for gradual typing. In SNAPL: Summit on Advances in Programming
Languages, LIPIcs: Leibniz International Proceedings in Informatics, May 2015.

[4] Jeremy G. Siek, Peter Thiemann, and Philip Wadler. Blame and coercion: Together
again for the first time. In Conference on Programming Language Design and Imple-
mentation, PLDI, June 2015.

[5] Professor Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, New York, NY, USA, 2012. ISBN 1107029570,
9781107029576.

Contact Information

• Website:
https://homes.luddy.indiana.edu/chen512

• Email: chen512@indiana.edu

https://homes.luddy.indiana.edu/chen512
mailto:chen512@indiana.edu

	References

