
The Holy Grail of Gradual Security
Final Examination for Doctor of Philosophy in Computer Science

Tianyu Chen

Indiana University

0The Summons.The Holy Grail tapestries by Morris & Co. BirminghamMuseum and Art Gallery
1 / 38

Tianyu’s Thesis Statement

It is possible to design a gradual IFC
programming language that satisfies both
noninterference and the gradual guarantee
while supporting type-based reasoning, by
excluding the unknown label ‹ from run-
time security labels and using security co-
ercions to represent casts.

2 / 38

Road Map
+ Background

˝ Explicit flow and implicit flow
˝ Information flow control (IFC): static, dynamic, and gradual
˝ The gradual guarantee and its tension with IFC
˝ Source of the tension: including ‹ in runtime labels

§ λ‹
IFC: a gradual IFC calculus

˝ λ‹
IFC enforces IFC while satisfying gradual guarantee

˝ λ‹
IFC supports type-based reasoning (free theorems)

§ Technical development
˝ Formal definition of λ‹

IFC
˝ Coercion calculi for IFC
˝ The IFC cast calculus λc

IFC
§ Meta-theoretic results

˝ Type safety for λ‹
IFC

˝ Gradual guarantee for λ‹
IFC

˝ Noninterference for λ‹
IFC

3 / 38

Explicit Information Flow

Can we infer input from output in the following program?

let input = private -input () in
publish (¬ input)

3 Yes!
§ Witness at least two executions
§ Output is the negation of input
§ Explicit flow

4 / 38

Explicit Information Flow

Can we infer input from output in the following program?

let input = private -input () in
publish (¬ input)

3 Yes!
§ Witness at least two executions
§ Output is the negation of input
§ Explicit flow

4 / 38

Implicit Information Flow

Can we infer input from output in the following program?

let input = private -input () in
publish (if input then false else true)

3 Also yes
§ Again, output is the negation of input
§ Implicit flow: input influences output through branching

5 / 38

Implicit Information Flow

Can we infer input from output in the following program?

let input = private -input () in
publish (if input then false else true)

3 Also yes
§ Again, output is the negation of input
§ Implicit flow: input influences output through branching

5 / 38

Information-Flow Control (IFC)

§ Ensures that information transfers adhere to a security policy
§ For example, high input must not flow to low output
§ Propagate and check the security labels

§ IFC in PL

$

&

%

static using a type system

dynamic using runtime monitoring

6 / 38

Static IFC Accepts Legal Explicit Flow

(Static IFC using a type system)

1 let fconst = λ b : Boolhigh. false in
2 let input = private -input () in
3 let result = fconst input in
4 publish result

3 Well-typed and runs successfully to unit

§ Why? The return value of fconst is
"always false
of low-security

§ Accepted by type-checker. No runtime check

0private-input : Unitlow → Boolhigh and publish : Boollow → Unitlow
7 / 38

Static IFC Rejects Illegal Explicit Flow

(Replace fconstwith flip)
1 let flip = λ b : Boollow . ¬ b in
2 let input = private -input () in
3 let result = flip input in 㘊㙒 compilation error
4 publish result

7 Ill-typed. Illegal explicit flow:
˝ input is high
˝ flip expects low argument

§ Rejected by type-checker. Again no runtime check

8 / 38

Dynamic Enforcement of Explicit Flow
(Revisit flipwith dynamic IFC)

1 let flip = λ b. ¬ b in
2 let input = private -input () in
3 let result = flip input in
4 publish result 㘊㙒 runtime error

7 Errors at runtime (regardless of input)
§ A runtime check happens before calling publish

In dynamic IFC, runtime values are tagged with their security level.
The labels can originate from

§ primitive operations
§ annotations on literals
§ the security level of the execution context

9 / 38

Static Enforcement of Implicit Flow

(Different behavior in different branches)

1 let flip : Boolhigh → Boollow =
2 λ b : Boolhigh. if b then false else true in
3 let input = private -input () in
4 let result = flip input in
5 publish result

7 Ill-typed
§ Security label on the type of if is the join (least upper bound)

of its branches (low) and the branch condition (high).
§ Rejected by type-checker. No runtime check

10 / 38

Dynamic Enforcement of Implicit Flow

(Enforcing implicit flow with dynamic IFC)

1 let flip = λ b. if b then false else true in
2 let input = private -input () in
3 let result = flip input in
4 publish result

7 Errors at runtime (regardless of input)
§ flip produces a high value because of high branch condition
§ A runtime check happens before calling publish
§ Illegal implicit flow ruled out at runtime

11 / 38

Static IFC Is Hard to Use

“Another myth spread by security researchers is
that the planet Earth contains more than six pro-
grammers who can correctly use security labels
and information flow control (IFC).” 1

1James Mickens. This World of Ours. Usenix ;login: 2014
12 / 38

https://scholar.harvard.edu/files/mickens/files/thisworldofours.pdf

Gradual IFC Comes to the Rescue!

speed of development

performance

static

dynamic

gradual

In gradual IFC, static type information is optional:
§ Go static in parts of the application where performance matters
§ Go dynamic when performance matters less, and ease-of-use matters more

Principle of Locality: 90% of execution time in 10% of the code 2

2Dr. Ranjani Parthasarathi. Computer Architecture: Engineering And Technology
13 / 38

https://www.cs.umd.edu/~meesh/411/CA-online/index.html

Gradual Typing Bridges Static and Dynamic IFC

Partially-annotated flip:
1 let flip : Bool‹ → Boollow =
2 λ b : Bool‹ . if b then false else true in
3 let input = private -input () in
4 let result = flip input in
5 publish result

§ Well-typed but errors at runtime
§ Checking happens on the boundaries between static and

dynamic fragments
§ The information flow violation is detected earlier than the

dynamic version, as flip returns.

2Blue: types with statically-known security. Red: types with unknown security.
14 / 38

The Gradual Guarantee
less precise

let f : Bool‹ → Bool‹ =
λ b : Bool‹ . true in

let i = private -input () in
let result = f i in

publish result

Ď

let f : Bool‹ → Boollow =

λ b : Bool‹ . true in
let i = private -input () in
let result = f i in

publish result

Ď

more precise

let f : Boolhigh → Boollow =

λ b : Boolhigh . true in
let i = private -input () in
let result = f i in

publish result

§ In the absense of errors, adding or removing security
annotations does not change the result of the program.

§ Adding security annotations may trigger errors.
§ Removing security annotations may not trigger errors.

There is a tension between the gradual guarantee and IFC!

/

15 / 38

The Gradual Guarantee
less precise

let f : Bool‹ → Bool‹ =
λ b : Bool‹ . true in

let i = private -input () in
let result = f i in

publish result

Ď

let f : Bool‹ → Boollow =

λ b : Bool‹ . true in
let i = private -input () in
let result = f i in

publish result

Ď

more precise

let f : Boolhigh → Boollow =

λ b : Boolhigh . true in
let i = private -input () in
let result = f i in

publish result

§ In the absense of errors, adding or removing security
annotations does not change the result of the program.

§ Adding security annotations may trigger errors.
§ Removing security annotations may not trigger errors.

There is a tension between the gradual guarantee and IFC!

/
15 / 38

Static Enforcement of Flows Through
Mutable References

1 let a = ref low true in
2 let input = private_input () in
3 if input then
4 a := false
5 else
6 a := true
7 publish (! a)

§ The reference has type Ref (Boollow). It points to a low
memory location.

§ The type of the branch condition is Boolhigh
7 Writing to low memory under a high branch condition

16 / 38

Dynamic Enforcement of Flows Through
Mutable References

1 let a = ref low true in
2 let input = private_input () in
3 if input then
4 a := false
5 else
6 a := true
7 publish (! a)

The assignments fail at runtime because the no-sensitive-upgrade
(NSU) mechanism 3 prevents writing to a low security pointer in a
high security branch.

3Austin and Flanagan. Efficient purely-dynamic information flow analysis. PLAS 2009.
17 / 38

https://doi.org/10.1145/1554339.1554353

Counterexample of Gradual Guarantee in GSLRef

less precise
1 let x = private -input () in
2 let a = ref ‹ true‹ in
3 if x then (a := falsehigh)
4 else ()

more precise
let x = private -input () in
let a = ref high truehigh in
if x then (a := falsehigh)

else ()

3 The more precise program (right) runs successfully
7 But the less precise version (left) errors in GSLRef

4

§ The assignment fails because it is in a high-security branch and
GSLRef conservatively treats the reference’s label (‹) as if it
were low

4Toro, Garcia, Tanter. Type-Driven Gradual Security with References. TOPLAS 2018.
18 / 38

https://doi.org/10.1145/3229061

But wait... GSLRef allows ‹ labels on values?

The counterexample depends on labeling a reference with
unknown security (‹):

1 let x = private -input () in
2 let a = ref ‹ true‹ in
3 if x then (a := falsehigh)
4 else ()

§ Dynamic IFC languages don’t use ‹ as a runtime security label.
§ Gradual languages traditionally use ‹ for type checking, but

not for categorizing runtime values.
§ The inputs to an information flow system are the user’s

choices regarding what data is high or low security.

19 / 38

Sources of the Tension with the Gradual Guarantee

Lang. Noninter-
ference

Gradual
Guarantee

Type-guided
classification NSU Runtime

security labels
GSLRef 3 7 3 3 tlow, high, ‹u

GLIO 3 3 7 3 tlow, highu

WHILEG 3 3 3 7 tlow, high, ‹u

λ‹
IFC (ours) 3 3 3 3 tlow, highu

Removing ‹ from the runtime labels enables the gradual guarantee.

20 / 38

Road Map

§ Background
+ λ‹

IFC: a gradual IFC calculus
˝ λ‹

IFC enforces IFC while satisfying gradual guarantee
˝ λ‹

IFC supports type-based reasoning (free theorems)

§ Technical development
§ Meta-theoretic results

21 / 38

λ‹
IFC Excludes ‹ From Runtime Labels

less precise
1 let x = private -input () in
2 let a : (Ref Bool‹)‹ =
3 ref high truehigh in
4 if x then (a := falsehigh)
5 else ()

more precise
let x = private -input () in
let a : (Ref Boolhigh)high =

ref high truehigh in
if x then (a := falsehigh)

else ()

3 The more precise program runs successfully to unit
3 The less precise program also runs successfully to unit

3 Problem solved!

22 / 38

λ‹
IFC Excludes ‹ From Runtime Labels

less precise
1 let x = private -input () in
2 let a : (Ref Bool‹)‹ =
3 ref high truehigh in
4 if x then (a := falsehigh)
5 else ()

more precise
let x = private -input () in
let a : (Ref Boolhigh)high =

ref high truehigh in
if x then (a := falsehigh)

else ()

3 The more precise program runs successfully to unit
3 The less precise program also runs successfully to unit

3 Problem solved!

22 / 38

Comparing λ‹
IFC With GSLRef

§ The default security label in λ‹
IFC is low, so the programmer

does not have to label constants
§ Remove the labels on constants to obtain the following

program, which also reduces successfully to unit:

let x = private -input () in
let a : (Ref Bool‹)‹ = ref high true in
if x then (a := false)

else ()

Comparing with the program in GSLRef, which errors:

let x = private -input () in
let a = ref ‹ true‹ in
if x then (a := falsehigh)

else ()
23 / 38

Vigilance: Type-Based Reasoning for Explicit Flows

Consider the example from Toro et al. [2018]:

1 let mix : Intlow → Inthigh → Intlow =
2 λ pub priv .
3 if pub < (priv : Int‹ : Intlow) then 1 else 2 in
4 mix 1low 5low

Free theorem: The mix function either 1⃝ returns a value that does
not depend on priv or 2⃝ produces a runtime error.

In λ‹
IFC, 5 ⟨ Ò ; high ! ; low ?p ⟩ ÝÑ blame p

24 / 38

Type-Guided Classification:
Type-Based Reasoning for Implicit Flows

Consider another example from Toro et al. [2018]:

1 let mix : Intlow → Int‹ → Intlow =
2 λ pub priv. if pub < priv then 1 else 2 in
3 let smix : Intlow → Inthigh → Intlow =
4 λ pub priv. mix pub priv in
5 smix 1low 5low

Free theorem: The smix function either 1⃝ returns a value that does
not depend on priv or 2⃝ produces a runtime error.

25 / 38

Type-Based Reasoning for Implicit Flows in λ‹
IFC

let mix : Intlow → Int‹ → Intlow =
λ pub priv. if pub < priv then 1 else 2 in

let smix : Intlow → Inthigh → Intlow =
λ pub priv. mix pub priv in

smix 1low 5low

ñ

let mix = λ pub priv.
(if ((pub ⟨ low ! ⟩) < priv)

then (1 ⟨ low ! ⟩)
else (2 ⟨ low ! ⟩)) ⟨ low ?p ⟩ in

let smix = λ pub priv.
mix pub (priv ⟨ high ! ⟩) in

smix 1 (5 ⟨ Ò ⟩)

ÝÑ˚ (if (1 ⟨ low ! ⟩ < 5 ⟨ Ò ; high ! ⟩) then 1 ⟨ low ! ⟩ else 㗙㘡㙩) ⟨ low ?p ⟩

ÝÑ˚ (if (true ⟨ Ò ; high ! ⟩) then 1 ⟨ low ! ⟩ else 㗙㘡㙩) ⟨ low ?p ⟩

ÝÑ˚ (prot high (1 ⟨ low ! ⟩)) ⟨ low ?p ⟩

ÝÑ˚ 1 ⟨ Ò ; high ! ⟩ ⟨ low ?p ⟩
ÝÑ˚ blame p

26 / 38

Road Map

§ Background
§ λ‹

IFC: a gradual IFC calculus
+ Technical development

˝ Formal definition of λ‹
IFC

˝ Coercion calculi for IFC
˝ The IFC cast calculus λc

IFC

§ Meta-theoretic results

27 / 38

Syntax of λ‹
IFC

We define a gradual IFC calculus λ‹
IFC with mutable references,

first-class functions, and conditionals. Highlighted security labels
default to low if omitted:

ℓ P tlow, highu

g P tlow, high, ‹u

ι ::“ Unit | Bool
T ::“ ι | A

g
ÝÑ A | Ref (Tg)

A ::“ Tg

M ::“ x | k
ℓ

| (λgx:A.M)
ℓ

| (M M)p

| (if M then M else M)p
| (ref ℓ M)p | !p M | (M ㍞= M)p

28 / 38

Semantics of λ‹
IFC

The semantics of λ‹
IFC is by translation C to a cast calculus.

evaluation result r ::“ k | fun | addr | diverge | stuck

obs(V) “ r

obs(k) “ k

obs(k ⟨ c ⟩) “ k

obs(λx.N) “ fun
obs((λx.N) ⟨ c ⟩) “ fun

obs(addr n) “ addr
obs((addr n) ⟨ c ⟩) “ addr

LetM be a well-typed λ‹
IFC term: (x:Boolhigh); low $ M : Boollow

eval(M, b) “ r

eval(M, b) “ obs(V) if (C M)[x :“ b] | H ó V | µ

eval(M, b) “ diverge if (C M)[x :“ b] | H ó blame p | µ

or (C M)[x :“ b] | H ò

eval(M, b) “ stuck otherwise

29 / 38

The Cast Calculus λc
IFC

The casts in λc
IFC are represented by coercions on types (a la

Henglein) and coercions on security labels.

c ::“ id(g) | Ò | ℓ ! | ℓ ?p | Kp

c̄ ::“ id(g) | Kp | c̄ ; c
e ::“ ℓ | blame p | e ⟨ c̄ ⟩
cr ::“ id(ι) | Ref c c | (c̄, c Ñ c)
c ::“ (cr, c̄)

M ::“ x | k | λx.M | let x=M:A in M
| M ⟨ c ⟩
| M ¨ M | M ¨‹ M

| ifM thenM elseM | if‹ M thenM elseM
| ref ℓ M | ref?p ℓ M | !M | !‹ M

| M ㍞=M | M ㍞=?p M
| addr n | prot e ℓ M A | blame p

30 / 38

Road Map

§ Background
§ λ‹

IFC: a gradual IFC calculus
§ Technical development

+ Meta-theoretic results
˝ Type safety for λ‹

IFC
˝ Gradual guarantee for λ‹

IFC
˝ Noninterference for λ‹

IFC

31 / 38

$ r : A

k : ι
$ k : ιℓ $ addr : (Ref A)g

$ fun : (A g2
ÝÑ B)g1

$ diverge : A

Theorem (Type safety of λ‹
IFC)

If M is a well-typed λ‹
IFC term: (x:Boolhigh); low $ M : Boollow

and eval(M, b) “ r
then the evaluation result is well-typed $ r : Boollow.

32 / 38

Theorem (Gradual guarantee for λ‹
IFC)

Suppose M and M 1 are well-typed λ‹
IFC terms:

(x:Boolhigh); low $M : Boollow
(x:Boolhigh); low $M 1 : Boollow

and they are related by precision: $ M Ď M 1. If

eval(M 1, b1) “ b2

then
eval(M, b1) “ b2

33 / 38

Theorem (Noninterference for λ‹
IFC)

If M is a well-typed λ‹
IFC term: (x:Boolhigh); low $ M : Boollow

and
eval(M, b1) “ b1

1

and
eval(M, b2) “ b1

2

then b1
1 “ b1

2.

34 / 38

Conclusion

§ It is possible to satisfy noninterference and the gradual
guarantee while supporting type-based reasoning.

§ The security labels on constants and memory locations should
default to low or high so that ‹ is not included in runtime
security labels.

§ Security checks can be modeled using coercions.

Show me the code! The Agda mechanization of λ‹
IFC is at

https://github.com/Gradual-Typing/LambdaIFCStar

35 / 38

https://github.com/Gradual-Typing/LambdaIFCStar

Thank you! ,

36 / 38

NSU Checking

M | µ | PC ÝÑ N | µ1

n FreshIn µ(ℓ) PC ⟨ ‹ ñp ℓ ⟩ ÝÑ˚ PC1

ref?p ℓ V | µ | PC ÝÑ addr n | (µ, ℓ ÞÑ n ÞÑ V)

NF c̄ $ c : Tg ñ Sℓ̂ $ d : Sℓ̂ ñ Tg

(stamp! PC |c̄|) ⟨ ‹ ñp ℓ̂ ⟩ ÝÑ˚ PC1

V ⟨ c ⟩ ÝÑ˚ W

(addr n ⟨Ref c d, c̄ ⟩) ㍞=p V | µ | PC ÝÑ unit | [ℓ̂ ÞÑ n ÞÑ W] µ

37 / 38

Simulation Between More and Less Precise Coercions

Consider the following λ‹
IFC terms related by precision:

truelow : Bool‹ : Bool‹ and truelow : Boolhigh : Bool‹

We need to show the two coercion sequences are related:

$ id(low) ; low ! Ď id(low) ; Ò ; high !

38 / 38

