The Holy Grail of Gradual Security

Final Examination for Doctor of Philosophy in Computer Science

Tianyu Chen

Indiana University

© The Summons.The Holy Grail tapestries by Morris & Co. Birmingham Museum and Art Gallery

1/38

Tianyu’s Thesis Statement

It is possible to design a gradual IFC
programming language that satisfies both
noninterference and the gradual guarantee
while supporting type-based reasoning, by
excluding the unknown label * from run-
time security labels and using security co-
ercions to represent casts.

2/38

Road Map

1= Background

e}

(¢]
[e]
[©]

*
> Mkt

o
o

Explicit flow and implicit flow

Information flow control (IFC): static, dynamic, and gradual
The gradual guarantee and its tension with IFC

Source of the tension: including * in runtime labels

a gradual IFC calculus

Afrc enforces IFC while satisfying gradual guarantee
Afrc supports type-based reasoning (free theorems)

» Technical development

o
O
o

Formal definition of Ay
Coercion calculi for IFC
The IFC cast calculus Afg;

» Meta-theoretic results

o
(¢]

Type safety for Afg;

Gradual guarantee for A\

o Noninterference for Ay

3/38

Explicit Information Flow

Can we infer input from output in the following program?

let input = private-input () in
publish (- input)

4/38

Explicit Information Flow

Can we infer input from output in the following program?

let input = private-input () in
publish (- input)

v Yes!
» Witness at least two executions
» Output is the negation of input
» Explicit flow

4/38

Implicit Information Flow

Can we infer input from output in the following program?

let input = private-input () in
publish (if input then false else true)

5/38

Implicit Information Flow

Can we infer input from output in the following program?

let input = private-input () in
publish (if input then false else true)

v Also yes
» Again, output is the negation of input

» Implicit flow: input influences output through branching

5/38

Information-Flow Control (IFC)

» Ensures that information transfers adhere to a security policy

v

For example, high input must not flow to low output

v

Propagate and check the security labels

Stath using a type system

IFCin PL .
dynamlc using runtime monitoring

v

6/38

Static IFC Accepts Legal Explicit Flow

(Static IFC using a type system)

let fconst = A b : Boolnigy. false in
let input = private-input () in
let result = fconst input in

publish result

v/ Well-typed and runs successfully tounit

always false
» Why? The return value of fconst is]
of low-security

» Accepted by type-checker. No runtime check

®private-input : Unitj,, — Boolp;gpn and publish : Boolj,, — Unitj,,

7/38

Static IFC Rejects Illegal Explicit Flow

(Replace fconst with flip)

let flip ANb : Booly,, . = b in

let input = private-input () in

let result = flip dinput in // compilation error
publish result

X Ill-typed. Illegal explicit flow:
o inputishigh
o flipexpects low argument

» Rejected by type-checker. Again no runtime check

8/38

Dynamic Enforcement of Explicit Flow

(Revisit f1ip with dynamic IFC)

let flip Ab. = b in

let input private-input () in

let result = flip input in
publish result // runtime error

X Errors at runtime (regardless of input)
» A runtime check happens before calling publish

In dynamic IFC, runtime values are tagged with their security level.
The labels can originate from

» primitive operations
» annotations on literals

» the security level of the execution context

9/38

Static Enforcement of Implicit Flow

(Different behavior in different branches)

let flip : Boolpigy — Booly, =
A b : Boolyigh. if b then false else true in
let input = private-input () in
let result = flip input in
publish result
X Tll-typed

» Security label on the type of if is the join (least upper bound)
of its branches (1ow) and the branch condition (high).

» Rejected by type-checker. No runtime check

10/38

Dynamic Enforcement of Implicit Flow

(Enforcing implicit flow with dynamic IFC)

let flip = A b. if b then false else true in
let input private-input () in
let result flip input in

publish result

X Errors at runtime (regardless of input)
» flip produces a high value because of high branch condition
» A runtime check happens before calling publish

» Illegal implicit flow ruled out at runtime

/38

Static IFC Is Hard to Use

Unother myth spread by security researchers is
that the planet Earth contains more than six pro-
grammers who can correctly wuse security labels

and information flow control (IFC).”"

"James Mickens. This IWorld of Ours. Usenix ;login: 2014

12/38

https://scholar.harvard.edu/files/mickens/files/thisworldofours.pdf

Gradual IFC Comes to the Rescue!

performance

AN

e static

.
-

e gradual

"o dynamic

» speed of development

In gradual IFC, static type information is optional:
» Go static in parts of the application where performance matters

» Go dynamic when performance matters less, and ease-of-use matters more

Principle of Locality: 90% of execution time in 10% of the code ?

*Dr. Ranjani Parthasarathi. Computer Architecture: Engineering And Technology
13/38

https://www.cs.umd.edu/~meesh/411/CA-online/index.html

Gradual Typing Bridges Static and Dynamic IFC

Partially-annotated flip:

let flip : Bool, — Booly,, =
AMb : Bool,. if b then false else true in
let input = private-input () in
let result = flip input in
publish result

» Well-typed but errors at runtime

» Checking happens on the boundaries between static and
dynamic fragments

» The information flow violation is detected earlier than the
dynamic version, as f1ip returns.

*Blue: types with statically-known security. Red: types with unknown security.

14 /38

The Gradual Guarantee

less precise more precise
let f : Bool, — Bool, let f : Bool, — Booly, = let f : Boolpigy — Boolyy,
Ab : Booly . true in [ANb : Booly . true in c A b @ Boolpjg, . true in
let i = private-input () in let i = private-input () in let i = private-input () in
let result = f i in let result = f i in let result = f i in
publish result publish result publish result

» In the absense of errors, adding or removing security
annotations does not change the result of the program.

> Adding security annotations may trigger errors.

> Removing security annotations may not trigger errors.

15/38

The Gradual Guarantee

less precise more precise

let f : Bool, — Bool, = let f : Bool, — Boolyy, = let f @ Boolyigy — Boolyy, =
Ab : Booly . true in [ANb : Booly . true in [A b @ Boolpjg, . true in

let i = private-input () in let i = private-input () in let i = private-input () in

let result = f i in let result = f i in let result = f i in

publish result publish result publish result

» In the absense of errors, adding or removing security
annotations does not change the result of the program.

> Adding security annotations may trigger errors.

> Removing security annotations may not trigger errors.

There is a tension between the gradual guarantee and IFC!

®

15/38

Static Enforcement of Flows Through
Mutable References

let a ref low true in
let input = private_input () in
if input then
a := false
else
a := true
publish (! a)

» The reference has type Ref (Bool,,,). It points to a low
memory location.

» The type of the branch condition is Booly;

X Weiting to] s o hioh branch-condii

16/38

Dynamic Enforcement of Flows Through
Mutable References

let a = ref low true in
let input = private_input () in
if input then
a := false
else
a := true
publish (! a)

The assignments fail at runtime because the no-sensitive-upgrade
(NSU) mechanism * prevents writing to a low security pointer in a
high security branch.

3 Austin and Flanagan. Efficient purely-dynamic information flow analysis. PLAS 2009.
17/38

https://doi.org/10.1145/1554339.1554353

Counterexample of Gradual Guarantee in GSLRgef

less precise more precise

let x = private-input () in | let x = private-input () in

let a = ref x true, in let a = ref high trueng, in

if x then (a := falsenig) if x then (a := falsenig)
else () else ()

v/ The more precise program (right) runs successfully
X But the less precise version (left) errors in GSLge*

» The assignment fails because it is in a high-security branch and
GSLgef conservatively treats the reference’s label (*) as if it
were low

4Toro, Garcia, Tanter. Type-Driven Gradual Security with References. TOPLAS 2018.
18/38

https://doi.org/10.1145/3229061

But wait... GSLges allows * labels on values?

The counterexample depends on labeling a reference with
unknown security (*):

let x private-input () in

let a = ref = true, in

if x then (a := falsepig)
else ()

» Dynamic IFC languages don’t use * as a runtime security label.

» Gradual languages traditionally use * for type checking, but
not for categorizing runtime values.

» The inputs to an information flow system are the user’s
choices regarding what data is high or low security.

19/38

Sources of the Tension with the Gradual Guarantee

Lang, Nfoninter— Gradual Type.—gui(.ied NSU Ru~ntime
erence Guarantee | classification security labels

GSLRef e _|l__-X v v {low, high, x}

GLIO v el _--X v {low, high}
WHILES v/ -l o] - X {Iow, high, x}

i (ours) v/ v — | v/ _//_’_ {low, high}

Removing * from the runtime labels enables the gradual guarantee.

20/38

Road Map

» Background
55 \ge: a gradual IFC calculus

o Afjc enforces IFC while satistying gradual guarantee
o Ay supports type-based reasoning (free theorems)

» Technical development

» Meta-theoretic results

21/38

*

less precise

let x =
. let a :

private-input () in
(Ref Bool,).
ref high truepg, in

. if x then (a := falseg)
else ()

trc Excludes * From Runtime Labels

more precise

let x =
let a :

private-input () in
(REf BOOlhigh)high
ref high trueyig, in

if x then (a := falsepig)
else ()

v/ The more precise program runs successfully to unit

v/ The less precise program also runs successfully to unit

22/38

*

trc Excludes * From Runtime Labels

less precise more precise

. let x = private-input () in | let x = private-input () in

. let a : (RefBool,), = let a : (Ref Boolhign)nigh
ref high truepg, in ref high trueyig, in

, if x then (a := falsepig) if x then (a := falseniq)
else () else ()

v/ The more precise program runs successfully to unit

v/ The less precise program also runs successfully e unit

» Problem solved!

22/38

Comparing A7 With GSLges

» The default security label in A is 1ow, so the programmer
does not have to label constants

» Remove the labels on constants to obtain the following
program, which also reduces successfully to unit:

let x = private-input () in
let a : (RefBool,), = ref high true in

if x then (a := false)
else ()

Comparing with the program in GSLgef, which errors:

let x private-input () in

let a = ref x true, in

if x then (a := falsepig)
else ()

23/38

Vigilance: Type-Based Reasoning for Explicit Flows

Consider the example from Toro et al. [2018]:

let mix : Inty, — Inthign — Inty, =
N pub priv
if pub < (priv : Int, : Inty,) then 1 else 2 in
mix Tiow 510w

Free theorem: The mix function either () returns a value that does
not depend on priv or (2) produces a runtime error.

In A, 5<1; high!; low?”) — blame

24/38

Type-Guided Classification:
Type-Based Reasoning for Implicit Flows

Consider another example from Toro et al. [2018]:

let mix : Inty,, — Int. — Inty, =

A pub priv. if pub < priv then 1 else 2 in
let smix : Inty, — Inthign = Inty, =

N pub priv. mix pub priv in
smix 110w 510w

Free theorem: The smix function either (1) returns a value that does
not depend on priv or (2) produces a runtime error.

25/38

Type-Based Reasoning for Implicit Flows in A7

let mix = A pub priv.
(if ((pub ¢ low!)) < priv)

let mix : Inty,, — Inty — Inty,, = then (1 ¢ low!))
A pub priv. if pub < priv then 1 else 2 in

let smix : Intyo, — Inthigy — Intygy = - else (2 ¢ low! »)) (low?”) in
A pub priv. mix pub priv in let smix = A pub priv.

smix 1 5
Lou Plou mix pub (priv ¢ high!)) in

smix 1 (5 ¢ 1))

—* (if (1(low!y < 5¢t;high!)) then 1{low!) else ...)(low?")
—* (if (true{1; high!)) then 1<low!) else ...){low?”)
—* (prot high (1¢low!)))(low?”)

—* 1(1; high! >{ low?”)

— blame

26/38

Road Map

» Background

» Afrc: agradual IFC calculus
15 Technical development

o Formal definition of Ay
o Coercion calculi for IFC
o TheIFC cast calculus A

» Meta-theoretic results

27/38

Syntax of AJg;

We define a gradual IFC calculus A\f;; with mutable references,
first-class functions, and conditionals. Highlighted security labels
default to low if omitted:

{low, high}

{low, high, »}

Unit | Bool

v | AL A|Ref (T,)

Ty

n= x| kg | ()\gx:A.M)E | (M M)
| (if M then M else M)

| (ref € M) | "M | (M :=M)

'”'rnrn

SN e ~
|

28/38

Semantics of A\

The semantics of Ay is by translation C to a cast calculus.

evaluationresult r == Kk | fun | addr | diverge | stuck
obs(V) =r

obs(k) =k
obs(k(e)) =k
obs(Az. N') = fun
obs((Az. N){e)) = fun
obs(addr n) = addr
obs((addr n) {¢)) = addr

Let M be a well-typed Afy, term: (2:Boolhigh); low = M : Booly,

eval(M,b) = r

eval(M,b) = obs(V) ifF(CM)z:=b| TV |p
eval(M,b) = diverge if (CM)[z:=0b]| | blamep | p

or (C M)z :=b] | T 1
eval(M,b) = stuck otherwise

29/38

The Cast Calculus Afg;

The casts in Af; are represented by coercions on types (a la
Henglein) and coercions on security labels.

¢ = dlg) | 1| er] e L

¢ == id(g) | LV | ¢5¢

e == [| blamep | e{c)

¢ u= 1id(t) | Refece | (¢, c—)

c == (¢, 0)

M = z | k| M.M| leta=M:Ain M
M{c)

|
| M-M| M*M

| if MthenMelseM | if* M then M else M
| ref¢M | ref2?¢M | 'M | "M

| M:=M | M:=2"M

| addrn | protel M A | blame

30/38

Road Map

» Background
» Afrc: a gradual IFC calculus

» Technical development
15 Meta-theoretic results

o Type safety for Afg
o Gradual guarantee for Afg
o Noninterference for Afy

31/38

k:t
ko I addr : (Ref A),
— fun: (A 2 B),, - diverge : A

Theorem (Type safety of Ajgc)

If M is a well-typed Ny term: (x:Boolyig,); Low = M : Booly,,
and eval(M,b) = r
then the evaluation result is well-typed \— 1 : Booly,,.

32/38

Theorem (Gradual guarantee for AJg;)
Suppose M and M' are well-typed Ne; terms:

: high/» . ow
(2:Boolyiqy); Low M : Bool,
x:Boolyiq); low =M’ : Booly,,
g

and they are related by precision: = M = M'. If
eval(M',b1) = by

then
eval(M, by) = by

33/38

Theorem (Noninterference for Ajr)

If M is a well-typed N term: (x:Boolyig,); Low = M : Booly,,
and

eval(M,by) = b}

and

eval(M, by) = U,

then b = b,.

34/38

Conclusion

» Itis possible to satisfy noninterference and the gradual
guarantee while supporting type-based reasoning.

» The security labels on constants and memory locations should
default to low or high so that * is not included in runtime
security labels.

» Security checks can be modeled using coercions.

Show me the code! The Agda mechanization of A is at

https://github.com/Gradual-Typing/LambdaIFCStar

35/38

https://github.com/Gradual-Typing/LambdaIFCStar

Thank you! ®

NSU Checking

M| p|PC— N |1/

n FreshIn () PC{* ="{) —* pC
ref?” ¢V | u| PC— addrn | (u, € — n— V)

NF¢ Fcec:Tyg=5 rd:5=1T,
(stamp! PC |¢|) {x =" £y —* PC’
Vie)y —*W
(addr n{Refed, &) :='V | u| PC—> unit | [— n— W] pu

37/38

Simulation Between More and Less Precise Coercions

Consider the following Ajy; terms related by precision:
truey,, : Bool, : Bool, and truey, : Boolyig, : Bool,
We need to show the two coercion sequences are related:

 id(low); low! = id(low); 1 ; high!

38/38

