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grammers the choice between runtime versus compile-time enforcement. Along the way we uncovered a
flaw in one of the noninterference proofs in the literature, and give a counterexample for one of the main
lemmas. The particular language studied in this paper, 𝜆★SEC, is based on the GLIO language of Azevedo de
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traditional semantics for the language, that is, we define compilation from 𝜆★SEC to a cast calculus and design
a reduction semantics for the latter that includes blame tracking. In addition to the proof of noninterference,
we also mechanize proofs of type safety, determinism, and that compilation preserves types.
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1 INTRODUCTION
Information-flow control (IFC) ensures that information transfers within a program adhere to a
security policy, for example, by preventing high-security data from flowing to a low-security chan-
nel. This adherence can be enforced statically using a type system [Myers 1999; Myers and Liskov
1997; Volpano et al. 1996], or dynamically using runtime monitoring [Askarov and Sabelfeld 2009;
Austin and Flanagan 2009; Austin et al. 2017; Devriese and Piessens 2010; Stefan et al. 2011], or with
a combination of the two [Chandra and Franz 2007; Shroff et al. 2007; Zheng and Myers 2005]. The
two approaches have complementary strengths and weaknesses; the dynamic approach requires
less effort from the programmer while the static approach provides stronger guarantees and less
runtime overhead.

Taking inspiration from gradual typing [Siek and Taha 2006, 2007], researchers have explored
how to give programmers control over which parts of the program are secured statically versus dy-
namically. The main challenge in such systems is controlling the flow of values (and information)
between the static and dynamic regions of code, which is traditionally accomplished using run-
time casts. Disney and Flanagan [2011] design a cast calculus with IFC for a pure lambda calculus
and prove noninterference. Fennell and Thiemann [2013] design a cast calculus for an imperative,
object-oriented language [Fennell and Thiemann 2015], using the no-sensitive-upgrade runtime
checks of Austin and Flanagan [2009].
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Toro et al. [2018] analyze the semantics of runtime casts through the lense of Abstracting
Gradual Typing [Garcia et al. 2016], and observe that security typing should induce “free theo-
rems” [Wadler 1989] about noninterference, but that prior cast calculi do not. Toro et al. [2018]
propose a new semantics for casts with the GSLRef calculus and prove noninterference. However,
they also discover that there is a tension between gradual security and the gradual guarantee, an
important property of gradual typed languages [Siek et al. 2015]. Azevedo de Amorim et al. [2020]
pinpoint one source of the tension: the type-guided classification performed by casts in GSLRef .
They propose a new gradually typed source language, GLIO, give it a denotational semantics, and
prove that it satisfies both noninterference and the gradual guarantee. Bichhawat et al. [2021] lo-
cate another source of the tension, and instead resolve it via a hybrid approach that leverages static
analysis to determine the write effects in untaken branches.

Meanwhile, advances in proof assistants [Bove et al. 2009; Nipkow et al. 2007; The Coq Dev.
Team 2004] have made it feasible to produce machine-checked (aka. mechanized) proofs of meta-
theoretic properties of programming languages [Aydemir et al. 2005]. Given the sensitive nature
of information-flow control, there is greater desire to know that the proofs are correct. Indeed,
Stefan et al. [2017] develop a mechanized proof of noninterference for LIO, a functional language
with dynamic IFC. Xiang and Chong [2021] take this a step further and produce a mechanized
proof on noninterference for an imperative object-oriented language.

The primary contribution of this paper is a mechanized proof of noninterference for a gradual
security-typed language named 𝜆★SEC that is similar GLIO [Azevedo de Amorim et al. 2020]. The
secondary contribution is the definition of 𝜆★SEC via traditionalmeans, that is, through a cast calculus
and reduction semantics, to make the semantics accessible to more researchers.

When a 𝜆★SEC program is fully statically typed, the type system enforces information flow security
just like that of a static security-typed language. Unlike a static language, in 𝜆★SEC, programmers
do not have to supply all the static type information up-front when developing the software. They
may instead opt for less precise type annotations by using the unknown security label, written ★,
which defers some of the IFC checks until runtime. During program execution, security labels are
attached to values and the deferred IFC checks inspect those labels to guarantee secure information
flow.This approach alleviates some of the pain of the programmer wrestling with the type checker,
while keeping the security level of data unambiguous.

This paper makes the following technical contributions:
• First mechanized proof of noninterference for a gradual information-flow language (§ 6.3).
• Design of a cast calculus for gradual information-flow, including blame tracking (§ 5).
• Mechanized proofs of type safety (§ 6.1), determinism for the cast calculus under erasure
(§ 6.2), and that compilation preserves types (§ 6.4).

• Counterexample to a noninterference theorem of Fennell and Thiemann [2013] (§ 3.1).
The semantics of 𝜆★SEC and its cast calculus, and all the above-mentioned proofs are mechanized

in the Agda proof assistant and are available at the following URL:
https://github.com/Gradual-Typing/LambdaSecStar/archive/refs/tags/v0.9-alpha.tar.gz

2 EXAMPLE PROGRAMS: 𝜆★SEC IN ACTION
In this section we present example programs so the reader can get a taste of 𝜆★SEC and establish the
intuition that 𝜆★SEC satisfies noninterference. We briefly review the basics of IFC and gradual typing
in Section 2.1. We then compare 𝜆★SEC with GSLRef and GLIO with respect to the dynamic gradual
guarantee in Section 2.2.
For simplicity, we use the security lattice ⟨{high, low}, ≼, ⋎, ⋏⟩, where high is for private data

while low for publicly disclosable data. They satisfy low ≼ high and high $ low, meaning that
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information can flow from public sources to private sinks but not the other way around. Types
have security labels associated with them, for example, Boolhigh is the type for booleans with high
security and Unitlow is the type for the unit value with low security. We use () as a shorthand for
the value of Unitlow. We model I/O with two functions, user-input and publish: the former returns
a high-security boolean that represents sensitive input information; the latter takes a low-security
boolean and publishes it into a publicly visible channel. They have the following signatures:
user-input : Unitlow → Boolhigh
publish : Boollow → Unitlow

2.1 Basics of Gradual Information Flow Security
Consider a program that takes in high-security user input and publishes the return value of fconst:

1 let fconst = (λ b : Boolhigh. falselow )low in
2 let input = user-input () in
3 let result = fconst input in
4 publish result

The program is fully statically typed, as there are no uses of the unknown label. The program
type-checks and runs without error. Indeed, a malicious party cannot infer anything about high-
security input, because 1) the return value of fconst is always the same value falselow 2) the value
falselow is of low security, so the explicit flow into publish is allowed.
If we replace fconst with the identity function on Boollow, fid, the program becomes ill-typed,

because our type system does not allow the explicit flow from the high-security input to fid:
1 let fid = (λ b : Boollow . b)low in
2 let input = user-input () in
3 let result = fid input in error, input is high security but fid expects low
4 publish result

Sometimes the observable behaviors of a program can depend on its branching structure. If some
of the branch conditions have a data dependency on high-security input, a malicious party might
be able to infer it from the observable behaviors, giving rise to illegal implicit flows [Denning 1976],
which must be ruled out in order to guarantee security.

Consider the following program in which the function flip contains one if-expression, whose
branch condition is dependent on high-security user input. Its two branches return different low-
security booleans, creating a potential implicit flow from high to low:

1 let flip : Boolhigh → Boollow = (λ b : Boolhigh. if b then falselow else truelow )low in
2 let input = user-input () in
3 let result = flip input in
4 publish result

This program is rejected by the type checker, thereby preventing an information leak through
an implicit flow. The programmer annotates the return type of flip thinking that it must return
Boollow, because both branches contain low-security values. However, because the branch condi-
tion is of high security the type of the if-expression as a whole must be Boolhigh. In particular, the
type checker computes the security level of a conditional to be the join of its branches (both low)
and the branch condition (high), low⋎ high = high. The flip function is expected to return Boollow
according to its type annotation, but returns Boolhigh because of the conditional, high $ low, so
the program is ill-typed.

To summarize, 𝜆★SEC behaves just like a static security-typed language in the above examples.
When everything is statically typed, the type system of 𝜆★SEC guards against illegal information
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flows, whether explicit or implicit. Meanwhile, in addition to concrete security labels, low and high,
𝜆★SEC also provides another label ★, which stands for statically unknown security level. We explain
how the unknown security level works in the next paragraph.

To repair the flip example, the programmer has two choices. They can either invest time and
effort in reasoning rigorously about the program and providing precise and correct type informa-
tion, or instead change the type annotations to be more dynamic. Suppose they chooses the latter
approach, changing the argument annotation on the 𝜆 from Boolhigh to Bool★ and changing its type
signature annotation accordingly. In the meantime, the return type remains Boollow, to conform
with the signature of publish. Line 1 thus becomes:

let flip : Bool★ → Boollow = (λ b : Bool★ . if b then falselow else truelow)low in
This change makes the program well-typed. The IFC enforcement of the implicit flow is deferred
until runtime, because the branch condition now has type Bool★, with an unknown security level.
The dynamic semantics of 𝜆★SEC is defined by compilation into 𝜆⇒SEC by inserting casts. A cast

calculus is an intermediate representation where all casts are made explicit. We define 𝜆⇒SEC and
present the compilation rules formally in Section 5. The general idea is to expose a cast wherever
an implicit cast occured in the typing derivation of the 𝜆★SEC term. The result of cast insertion on
this program is the following 𝜆⇒SEC term:

1 let flip = (λ b. (if b then falselow else truelow) ⟨Bool★ ⇒𝑝 Boollow⟩ )low in
2 let input = user-input () in
3 let result = flip (input ⟨Boolhigh ⇒𝑞 Bool★⟩ ) in
4 publish result

where two casts are made explicit. Each cast has a blame label attached to it. In case a cast fails,
it produces a cast error, called blame, that contains its label. In this way, the programmer knows
which cast is causing the problem. This feature is often referred to as blame tracking [Findler and
Felleisen 2002; Wadler and Findler 2009].
The first cast, which has blame label 𝑝 , casts the result of the if-expression to a low security

Boolean. We refer to such casts from ★ to a concrete label as projections. The second cast with
blame label 𝑞 casts input from Boolhigh to Bool★, to conform with the parameter type of flip. We
call the casts from a concrete label to ★ as injections.
If we run the program with truehigh or falsehigh as input, the 𝜆⇒SEC term reduces to blame 𝑝 in

either situation.The illegal implicit flow is captured by the runtime. Regardless of the branch taken,
the observable behavior is always the same, so no information is leaked. The following shows
the highlights of the reduction to blame with input truehigh, which we discuss in the following
paragraph.

−→∗ let result = ((λ b. (if b then falselow else truelow) ⟨Bool★ ⇒𝑝 Boollow⟩)low
(truehigh ⟨Boolhigh ⇒𝑞 Bool★⟩)) in (1)

−→∗ let result = prot low ((if (truehigh ⟨Boolhigh ⇒𝑞 Bool★⟩) then falselow )
⟨Bool★ ⇒𝑝 Boollow⟩) in (2)

−→∗ let result = prot low ((prot high falselow) ⟨Boolhigh ⇒𝑞 Bool★⟩
⟨Bool★ ⇒𝑝 Boollow⟩) in (3)

−→∗ let result = prot low (falsehigh ⟨Boolhigh ⇒𝑞 Bool★⟩ ⟨Bool★ ⇒𝑝 Boollow⟩) in (4)
−→∗ blame 𝑝 (5)
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The reduction sequence begins by evaluating the first two lets by substituting flip with the
lambda and input with truehigh (1). The next step is function application, which substitutes b with
truehigh injected from Boolhigh to Bool★ and encloses the body of the function in a protection
term prot low because the lambda itself was of low security (2). (We say more about protection
terms shortly.) The next step is to reduce the if conditional, which gives rise to the implicit flow
of interest. The condition value is a true of high security, so the if reduces to the then-branch
surrounded by a high security protection term and a cast from Boolhigh to Bool★ (3). As is standard
for security-typed languages [Fennell and Thiemann 2013; Heintze and Riecke 1998; Toro et al.
2018], the protection term ensures that the computed value and the side effects of its sub-term
must be at least as secure as the security level of the protection term. In this case the protection
term turns falselow into falsehigh (4). Next the sequence of two casts, from Boolhigh to Boollow,
trigger a runtime error because a high security value is not allowed to be cast to low security.
Following standard practice, the blame goes to the projecting cast, so label 𝑝 is blamed (5).

2.2 Mutable References and Graduality
In 𝜆★SEC we use the no-sensitive-upgrade (NSU) [Austin and Flanagan 2009] technique to protect
against illegal implicit flows through the heap. An NSU check happens at runtime when there is
insufficient information to determine statically whether a heap write operation is secure or not.
Consider the following well-typed program in 𝜆★SEC:

1 let input : Bool★ = user-input () in
2 let a = ref low truelow in
3 let _ = if input then a = falselow else a = truelow in
4 publish (! a)

The assignments in the two branches try to write different low-security booleans to address 𝑎,
depending on a branch condition whose security level is statically unknown because of the type
annotation ★. If the branch condition turns out to be high security, and if the assignments were
successfully, the program would leak information via an implicit flow. Fortunately, if we run this
program, it reduces to an NSU error regardless of the input, thanks to the NSU technique. The way
NSU checking works is that a security label is associated with the current program counter and
then at the point of every assignment, the system compares the program counter’s security label
PC with the security level of the memory location, making sure that the later is at least as high as
the former. In the above example, the NSU check fails because the program counter’s label is high
during the execution of the branch but the write is to lowmemory. In general, all memory locations
allocated or mutated must have security levels that are higher than the program counter’s label.
In this paper, we refer to the program counter’s label as the dynamic PC and the type system’s
approximation of it as the static PC.
The dynamic heap policy of GSLRef [Toro et al. 2018] is also based on NSU checks. Interestingly,

the authors of GSLRef claim that there is a tension between NSU and graduality. Consider the
following pair of programs adapted from Section 6.3:
[Left: more precise, more static]

1 let x = user-input () in
2 let y = ref Boolhigh truehigh in
3 if x then (y = falsehigh) else ()

[Right: less precise, more dynamic]
let x = user-input () in
let y = ref Bool★ true★ in

if x then (y = falsehigh) else ()
The dynamic gradual guarantee (DGG) says that when moving type annotations to be less precise,
the runtime behaviors of a program remain the same. In the above example, both variants type
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check but evaluate to different results, thus violating the DGG. Let us examine their runtime be-
haviors in further detail. The fully static program on the left runs without error regardless of the
input being truehigh or falsehigh. Based on NSU, GSLRef ’s heap policy allows assignments where
the security effect subsumes the lower bound of the possible security levels that the memory lo-
cation can have. At assignment, we know that y references a high-security memory cell and PC is
high. The assignment on line 3 is allowed, because high ≼ high. We change the type annotations
to be less precise by replacing some highs with ★ and get the program on the right. When we run
the program with input truehigh, the assignment will be conservatively rejected by the NSU check.
This is because GSLRef considers ★ corresponding to the interval [low, high], the lower bound of
which is not subsumed by a high PC. Therefore, the runtime behaviors on the same input differ:
the more precise program (left) runs successfully while the less precise one (right) errors.
GLIO is proved to satisfy DGG by its authors [Azevedo de Amorim et al. 2020]. Consider the

loose translation of the example above into GLIO:
1 f Lab high Bool LIO Unit
2 f x = do
3 b Lab high Bool toLab high true
4 b' unlabel b
5 y new high b'
6 x' unlabel x
7 if x' then set y false
8 else return unit
9

10 do { in input; f in }

f Lab ⋆ Bool LIO Unit
f x = do

b Lab ⋆ Bool toLab high true
b' unlabel b
y new high b'
x' unlabel x
if x' then set y false

else return unit

do { in input; f in }
NSU checks pass and executions are successful for both programs. But there are two major differ-
ences from GSLRef : 1) only the labels on type annotations become ★when migrating to dynamic,
while labels on values and new memory locations remain concrete (i.e., not ★) (line 3 and 5); 2)
there is no “type-guided classification” of data, in other words, casts only check for compatibil-
ity between types but never modify the labels on values. These design choices enable GLIO to
reconcile the use of NSU and the DGG.

We adopt the two design choices of GLIO in 𝜆★SEC. The example becomes:
1 let x = user-input () in
2 let y = ref high truehigh in
3 if x then (y = falsehigh) else ()

let x = user-input () in
let y = ref high (truehigh : Bool★) in

if x then (y = falsehigh) else ()
Similar to GLIO, both variants reduce to the unit value regardless of the input, thereby not violating
DGG. When the program moves toward dynamic, an★ annotation is added, while the label on the
boolean constant and the label of the new memory location remain concrete (right, line 2), similar
to GLIO. In other words, only labels on types are allowed to decrease in precision; labels on objects
(values, memory locations …) shall always be concrete. Also similar to GLIO, our system ditches
type-guided classification, for example: truelow ⟨ Boollow ⇒ Bool★ ⟩ ⟨ Bool★ ⇒ Boolhigh ⟩ −→ truelow.
Type annotations are compiled into explicit casts and casts never modify labels on the values that
represent data (not “classifying data”). We will elaborate on the design of 𝜆★SEC in Section 4.

3 DESIGN OF THE MECHANIZED NONINTERFERENCE PROOF
The complexity of a mechanized proof can vary considerably depending on the technical choices
regarding the definition of the semantics and the proof strategy. In this section we give a high
level discussion of our choices when designing the noninterference proof in Agda. We adopt the
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usual statement of termination-insensitive noninterference as the security guarantee of 𝜆★SEC: a po-
tentially malicious observer cannot discover the secretive inputs based on the computation results
(values) produced by multiple successful executions of a 𝜆★SEC program.

We choose the erasure approach [Fennell and Thiemann 2013; Li and Zdancewic 2010; Stefan
et al. 2017, 2011, 2012] as our proof technique. The basic idea is that for a low-privilege observer,
high-security parts of a program that cannot be seen do not matter and can be “erased” to a single
opaque value ●. In this way, all secretive inputs erase to ●, so a program substituted with different
inputs always erases to the same term. Noninterference is a straightforward corollary of 1) simu-
lation between the original program and the erased program and 2) the erased program evaluates
deterministically. We define the dynamics of 𝜆⇒SEC terms using big-step operational semantics that
is straightforwardly derived from our small-step semantics (Section 5.4). We give an overview of
our proof of noninterference in Section 3.2.
Alternatively, we could have based our mechanization on some of the pen-and-paper proofs of

other gradual security languages. For example, Toro et al. [2018], use step-indexed logical relations,
but there is no support for that approach in Agda, and building it would be a complex undertaking.
Another approach is to define a denotational semantics and prove noninterference by relating
the denotations [Azevedo de Amorim et al. 2020]. But again, building the infrastructure for such
denotational semantics in Agda would require a major up-front investment. Our proof and that of
Fennell andThiemann [2013] both apply the erasure technique, however their simulation lemma is
stated using small-step semantics and has a proof-breaking flaw, which we describe in Section 3.1.

3.1 Counterexample to Fennell and Thiemann [2013]
Fennell and Thiemann [2013] present a cast calculus named ML-GS and claim that it satisfies non-
interference. Their small-step semantics takes the form𝑀 | 𝜇 | 𝑝𝑐 −→ 𝑀 ′ | 𝜇′, in which a term𝑀
reduces to𝑀 ′ while changing heap 𝜇 into 𝜇′, and pc is the current PC of the computation.

Their proof depends on a simulation lemma (Lemma 2) between ML-GS and ML-GS𝐿 . The latter
is extended with an “opaque” value that all high-security parts of the program are erased to. We
use ● the for opaque value and 𝜖 for the erasure function.

Lemma 2 (Fennell and Thiemann [2013]) If 𝑀 | 𝜇 | low −→ 𝑀 ′ | 𝜇′, then
𝜖𝑀 | 𝜖𝜇 | low −→∗ 𝜖𝑀 ′ | 𝜖𝜇′.

Consider creating a reference of a boolean of high security where the reference itself is low
security, which then takes the following reduction step:

newlow truehigh | 𝜇 | low −→ 𝑎low | 𝜇′ , where 𝜇′ = 𝑎 ↦→ truehigh :: 𝜇 (6)

These terms erase as follows

𝜖 (newlow truehigh) = newlow ● and 𝜖 (𝑎low) = 𝑎low

but newlow ● does not reduce to 𝑎low. Instead it reduces to ●.

3.2 Overview of Our Noninterference Proof
Let us see if there is a straightforward fix to the counterexample in Section 3.1. Perhaps we could
have a reduction rule that goes from newlow ● to some address 𝑎 that is in sync with the unerased
side. However, it is difficult to choose which address 𝑎 to allocate. When we erase 𝜇 to 𝜖𝜇, all
locations that store high-security values are erased and we end up with fewer heap cells. If we
naïvely choose a fresh address in 𝜖𝜇 it may be one that is already in use in 𝜇 for a different allocation,
making it difficult to synchronize the heap 𝜇 with the heap on the erased side. This motivates us
to rethink the heap model and revise the erasure function.
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Heap model. We employ a split heap model that indexes low-security and high-security cells
separately. A memory address 𝑎 = 𝑛ℓ̂ , where ℓ̂ indicates whether it points to the high-security
half or the low-security half and 𝑛 is the index of the cell in the half-heap. Each half-heap is rep-
resented in Agda as an association list that maps addresses to values. The high-heap can store
low-security values, but the low-heap cannot store high-security values. When a reference is cre-
ated, the programmer needs to explicit specify whether the new memory location is low-security
or high-security, as in the examples of Section 2.2. In Agda we cannot hand-wave regarding the
address being fresh, so we specifically choose the current length of the half-heap as the index part
of our new address.Thememory operations to the low-heap on the erased side mirror those on the
unerased side, so the addresses are synchronized. When assignment happens, we know precisely
which half-heap the address is referencing from its ℓ̂ . Leveraging NSU checking, we can prove a
lemma that all side effects that happen under a high PC only affect the high half of the heap, so
they are not observable at the low privilege level.

Erasure.The intuition is that we erase everything that a low-privilege observer cannot see.This
includes high-security constants, functions, and addresses. The erasure of address terms require
some extra care: not only are address terms that are high-security themselves erased to●, but also
those addresses that point to the high-heap. In other words, only address terms shaped (addr 𝑎)low
where 𝑎 = 𝑛low (both being low) are not erased. We erase the terms related to gradual typing,
specifically, the cast terms and PC-cast terms by discarding those casts and recursively erasing
their sub-terms. As for the heap, erasure discards the high-half. For the low-half, we retain all the
heap cells but apply the erasure function to their contents.

Big-step semantics.We formulate noninterference using a big-step semantics. The reason that
we prefer big-step is that erasure-based proofs of noninterference rely on determinism of evalu-
ation of the erased term, but that is difficult to achieve in a small-step semantics while also es-
tablishing a simulation between the original and erased program. For example, one cannot decide
whether an NSU check on an opaque term● =? 𝑀 should succeed or not because we can’t access
the security level of the memory location corresponding to the erased address. For the purposes of
establishing the simulation, one might consider defining two reduction rules, one that results in a
checked term while the other fails with NSU error, but that would give rise to non-determinism.

Our big-step semantics is straightforwardly derived from the small-step semantics, but simpli-
fied because it relates terms to values, while leaving out rules that generate or propagate errors.
This is because the theorem statement of termination-insensitive noninterference only concerns
successful executions that produce values. In our noninterference proof (Section 6.3), we correct
“Lemma 2” into Lemma 7 and prove the revised lemma.

4 𝜆★SEC: THE SURFACE LANGUAGE
In this section we present the formal definition of 𝜆★SEC. Our high level design goal is to create a
surface language whose meta-theory is easy to reason about in a mechanized way. Rather than
being creative about individual language features, 𝜆★SEC is more about rearranging and recombining
the design choices in existing gradual security languages, such as GSLRef and GLIO. 𝜆★SEC uses fine-
grained labeling [Austin and Flanagan 2009; Rajani and Garg 2018] similar to GSLRef , and yet it
resembles GLIO in that all runtime labels that come from the syntax are concrete.

4.1 Syntax of 𝜆★SEC
Our syntax and operations for types are adapted from those of GSLRef and GLIO. Figure 1 de-
fines security labels and security types. For simplicity, we consider base types ({Unit, Bool}), func-
tion types, and reference types as our raw types. The PC label decoration gc on a function type

8



Mechanized Noninterference for Gradual Security Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

concrete security labels ℓ, pc ∈ {low, high}
gradual security labels 𝑔, gc ::= ★ | ℓ

base types 𝜄 ::= Unit | Bool
raw types 𝑇, 𝑆 ::= 𝜄 | 𝐴

𝑔𝑐
−→ 𝐵 | Ref 𝐴

types 𝐴, 𝐵 ::= 𝑇𝑔
blame labels 𝑝, 𝑞

variables 𝑥,𝑦, 𝑧
constants 𝑘 ∈ {unit, true, false}

terms 𝐿,𝑀, 𝑁 ::= 𝑥 | ($ 𝑘)ℓ | (λpc𝑥:𝐴.𝑁 )ℓ | (𝐿 𝑀)𝑝
| (if 𝐿 then 𝑀 else 𝑁 )𝑝 | let 𝑥 = 𝑀 in 𝑁
| (ref ℓ 𝑀)𝑝 | ! 𝑀 | (𝐿 = 𝑀)𝑝 | (𝑀 : 𝐴)𝑝

Fig. 1. Syntax of the surface language 𝜆★SEC

comes from 𝜆-abstraction. It is gradual because we allow casting between function types. A raw
type forms a type by adding a gradual label ascription. A gradual label can be either concrete
({low, high}) or statically unknown (★).

Figure 1 also defines the syntax of 𝜆★SEC, with the following characteristics and design choices:
Concrete runtime labels. We require concrete security labels (not ★) on the syntax of con-

stants ($ 𝑘)ℓ , 𝜆-abstractions (λpc𝑥:𝐴.𝑁 )ℓ , and reference cell creation (ref ℓ 𝑀)𝑝 . These labels
are the mechanism by which the programmer conveys to 𝜆★SEC which pieces of data are sensitive
and which ones are not. In this way our design choice is similar to GLIO, in which the toLab and
new operators require concrete labels. In contrast, GSLRef allows the programmer to label a value
with ★, meaning “either low or high”, and this design choice is part of why GSLRef violates the
DGG. Indeed, we have shown in Section 2.2 a counterexample for the DGG in GSLRef , but not in
either GLIO or 𝜆★SEC. To reduce the annotation burden on programmers, we adopt the convention
for 𝜆★SEC that an unannotated value is shorthand for annotating the value with low.
Type annotations. There are two places where the programmer may introduce type annota-

tions: 1) the 𝜆-abstraction (λpc𝑥:A.𝑁 )ℓ and 2) the explicit annotation term (𝑀 : A)𝑝 . The syntax
of types is defined in Figure 1. The programmer has the freedom to control the precision of these
annotations and move to either more static or more dynamic, as we have shown in Section 2.

Support for blame. To support blame tracking, 𝜆★SEC terms that involve implicit casts are deco-
rated with blame labels (in orange) so they can be placed on casts during compilation to 𝜆⇒SEC.
Labeling granularity.Wechoose fine-grained labeling similar toGSLRef because 1) fine-grained

labeling and coarse-grained labeling are proved to be equally expressive [Rajani and Garg 2018]
2) fine-grained labeling simplifies the presentation by labeling every value and every type in a
uniform way, which declutters the language and makes it easier to study the meta-theory.

Agda implementation note. In the Agda development of 𝜆★SEC, we model terms using abstract
binding trees, leveraging the ABT library 1. We use variable names in this paper for presentation
purposes only. In the actual implementation, we employ De Bruijn indices to represent variables
and use the ABT library to handle substitution.

4.2 Type System of 𝜆★SEC
The typing rules of 𝜆★SEC are shown in Figure 2. The rules are syntax-directed; they are based on the
type system of GSLRef , which is derived from its static counterpart SSLRef by replacing labels and
1https://github.com/jsiek/abstract-binding-trees
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Γ; gc ⊢ 𝑀 : 𝐴

⊢var Γ ∋ 𝑥 : 𝐴
Γ; gc ⊢ 𝑥 : 𝐴

⊢unit
Γ; gc ⊢ ($ unit)ℓ : Unitℓ

⊢bool
𝑏 ∈ {true, false}

Γ; gc ⊢ ($ 𝑏)ℓ : Boolℓ

⊢lam
(Γ, 𝑥 :𝐴); pc ⊢ 𝑁 : 𝐵

Γ; gc ⊢ (λ𝑝𝑐𝑥:𝐴.𝑁 )ℓ : (𝐴
pc
−→ 𝐵)ℓ

⊢app

Γ; gc ⊢ 𝐿 : (𝐴
gc′

−−→ 𝐵)𝑔 Γ; gc ⊢ 𝑀 : 𝐴′

𝐴′ ≲ 𝐴 𝑔 ≾ gc′ gc ≾ gc′

Γ; gc ⊢ (𝐿 𝑀)𝑝 : 𝐵 ⋎̃𝑔

⊢let

Γ; gc ⊢ 𝑀 : 𝐴
(Γ, 𝑥 :𝐴); gc ⊢ 𝑁 : 𝐵

Γ; gc ⊢ let 𝑥 = 𝑀 in 𝑁 : 𝐵
⊢if

Γ; gc ⊢ 𝐿 : Bool𝑔
Γ; gc ⋎̃𝑔 ⊢ 𝑀 : 𝐴 Γ; gc ⋎̃𝑔 ⊢ 𝑁 : 𝐵

𝐴 ∨̃𝐵 = 𝐶

Γ; gc ⊢ (if 𝐿 then 𝑀 else 𝑁 )𝑝 : 𝐶 ⋎̃𝑔

⊢ref

Γ; gc ⊢ 𝑀 : 𝑇𝑔
𝑇𝑔 ≲ 𝑇ℓ gc ≾ ℓ

Γ; gc ⊢ (ref ℓ 𝑀)𝑝 : (Ref 𝑇ℓ )low
⊢deref

Γ; gc ⊢ 𝑀 : (Ref 𝐴)𝑔
Γ; gc ⊢ ! 𝑀 : 𝐴 ⋎̃𝑔

⊢assign

Γ; gc ⊢ 𝐿 : (Ref 𝑇𝑔)𝑔 Γ; gc ⊢ 𝑀 : 𝐴

𝐴 ≲ 𝑇𝑔 𝑔 ≾ 𝑔 gc ≾ 𝑔

Γ; gc ⊢ (𝐿 = 𝑀)𝑝 : Unitlow
⊢ann

Γ; gc ⊢ 𝑀 : 𝐴′

𝐴′ ≲ 𝐴

Γ; gc ⊢ (𝑀 : 𝐴)𝑝 : 𝐴

Fig. 2. Typing rules of the surface language 𝜆★SEC

types as well as their operators and predicates with the gradual variants. SSLRef is in turn a straight-
forward adaptation of prior security-typed languages (Fennell and Thiemann [2013]; Heintze and
Riecke [1998]; Zdancewic [2002]).
For example, in SSLRef the typing rule of application looks like:

Γ; pc ⊢ 𝐿 : (𝐴
pc′

−−→ 𝐵)ℓ Γ; pc ⊢ 𝑀 : 𝐴′

𝐴′ <: 𝐴 ℓ ≼ pc′ pc ≼ pc′

Γ; pc ⊢ (𝐿 𝑀) : 𝐵 ⋎ ℓ
(7)

where𝐴′ <: 𝐴 is the usual type subsumption of function argument.The side conditions ℓ ≼ pc′ and
pc ≼ pc′ restricts the PC label on the function type so that no information is leaked through side
effects. The type of the application has label that is the join of the label on 𝐵 and ℓ (𝐵 ⋎ ℓ). In 𝜆★SEC,
the typing judgment takes the form Γ; gc ⊢ 𝑀 : 𝐴, where the static PC gc and the type 𝐴 become
gradual (may be or contain ★). Like GSLRef , we replace label partial order with label consistent
subtyping, type subtyping with type consistent subtyping, and label join with label consistent join
and get rule ⊢app. Similarly, in ⊢if the join of the types from the two branches is replace by the
consistent join 𝐴 ∨̃𝐵. We define the gradual predicates and operators in Figure 9 and Figure 10 in
the Appendix.2 They are straightforwardly adapted from those of GSLRef and GLIO.
The only major difference from the type system of GSLRef is that because of the concrete label

restriction on the syntax of constants and 𝜆-abstractions, these terms must have concrete labels at
the top level of their respective types (rule ⊢unit, ⊢bool, and ⊢lam). Similarly, the type of the value

2Note to reviewers: the Appendix of this paper is in the supplementary text.
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errors 𝑒 ::= nsu−error | blame𝑝
casts 𝑐 ::= 𝐴 ⇒𝑝 𝐵
terms 𝐿,𝑀, 𝑁 ::= 𝑥 | ($ 𝑘)ℓ | (addr 𝑎)ℓ | (λpc𝑥:𝐴.𝑁 )ℓ | 𝐿 𝑀 | if 𝐿 𝐴 𝑀 𝑁

| let 𝑥 = 𝑀 in 𝑁 | ref ℓ 𝑀 | ref✓ ℓ 𝑀 | ref? ℓ 𝑀 | ! 𝑀
| 𝐿 = 𝑀 | 𝐿 =✓ 𝑀 | 𝐿 =? 𝑀 | 𝑀 ⟨ 𝑐 ⟩ | castpc 𝑔 𝑀
| prot ℓ 𝑀 | error 𝑒 | ●

values 𝑉 ::= (addr 𝑎)ℓ | ($ 𝑘)ℓ | (λpc𝑥:𝐴.𝑁 )ℓ | ● | 𝑉 ⟨ 𝑐 ⟩ , where 𝑐 is inert

Fig. 3. Syntax of the cast calculus 𝜆⇒SEC

in a newly allocated cell (rule ⊢ref ) has a concrete top-level label: (Ref 𝑇ℓ )low. The reference itself
has a low label because it is newly created and cannot leak information.

5 𝜆⇒SEC: THE CAST CALCULUS (CC)
In this section we present the cast calculus 𝜆⇒SEC. We define the syntax (Section 5.1), the type system
(Section 5.3), and the operational semantics for 𝜆⇒SEC (Section 5.4).We show that 𝜆★SEC can be compiled
into 𝜆⇒SEC by inserting casts and NSU checks in a type-directed way (Section 5.2).

5.1 Syntax of 𝜆⇒SEC
The syntax of 𝜆⇒SEC is shown in Figure 3. Compared with the surface language 𝜆★SEC, 𝜆

⇒
SEC has the

following auxiliary language constructs:
Explicit casts. Casts are made explicit using the cast term𝑀 ⟨ 𝑐 ⟩. A cast 𝑐 is of shape 𝐴 ⇒𝑝 𝐵,

where𝐴 is the source type, 𝐵 the target type, and 𝑝 is the blame label.We require that𝐴 is consistent
with 𝐵, written 𝐴 ∼ 𝐵, defined in Figure 8 of the Appendix.

Support for NSU checking. Recall that NSU checking is required to prevent illegal implicit
flows through the heap whenever static typing information is insufficient to decide whether a heap
write operation is safe or not. Consequently, in 𝜆⇒SEC, we have variants of the reference creation
and assignment terms that statically prevent illegal implicit flows, ref ℓ 𝑀 and 𝐿 = 𝑀 , and other
variants that dynamically prevent illegal implicit flows using NSU, ref? ℓ 𝑀 and 𝐿 =? 𝑀 . Dur-
ing reduction, a statically-enforced heap write operation immediately becomes a checked write,
ref✓ 𝑀 𝑜r 𝐿 =✓ 𝑀 . On the other hand, the dynamic (NSU) variant reduces to the checked form
or throws an NSU error depending on whether the NSU check passes.

Terms that arise during reduction. As usual, we have an address term (addr 𝑎)ℓ . It has a
label decoration ℓ just like constants and 𝜆, which indicates the security level of the address itself.
As we have discussed, an address is of shape 𝑎 = 𝑛ℓ̂ , where ℓ̂ signifies which half of the heap, low
or high, the address points to. In addition, we have an error term error 𝑒 , where 𝑒 can be either 1)
a cast failure blame𝑝 or 2) an nsu−error due to a failed NSU check. The protection term prot ℓ 𝑀
ensures that the computation result of 𝑀 and the side effects in 𝑀 must be at least as secure as ℓ .
Finally, the term castpc 𝑔 𝑀 (PC cast) is useful for ensuring type preservation. It can be viewed as
an adapter between the inner and the outer static PCs, as it uses the security label 𝑔 as the static
PC to type check the sub-term𝑀 . The castpc 𝑔 goes away as soon as𝑀 reduces to a value.
“Opaque” term for noninterference proof. We use ● for the opaque, erased value in 𝜆⇒SEC.
The values of 𝜆⇒SEC include addresses, constants, functions, opaque values, and values wrapped

in an inert cast. To explain the latter, we categorize casts into active casts, which can be applied
and then further reduce, and inert casts, which are value-forming (Figure 13 of the Appendix). If
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a value contains at least one inert cast, we say that it is wrapped. We refer to wrapped functions
and references as function proxies and reference proxies respectively.

5.2 Compilation from 𝜆★SEC to 𝜆⇒SEC
The function C compiles a well-typed 𝜆★SEC programs into 𝜆⇒SEC; it is shown in full in Figure 12
of the Appendix. The main idea is that we insert casts whenever there are consistent subtyping
side conditions on a 𝜆★SEC typing rule. To obtain the source and target types of the casts, which
must satisfy consistency instead of consistent subtyping, we turn to the merge operators, written
↼, between labels or types [Siek and Taha 2007]. The merge operators decouple consistency from
subtyping: the ↼ operator takes two types 𝐴, 𝐵 that satisfy 𝐴 ≲ 𝐵 and calculates 𝐶 such that
𝐴 ∼ 𝐶 <: 𝐵, while the ↽ operator, defined dually, calculates 𝐶′ such that 𝐴 <: 𝐶′ ∼ 𝐵. The
definitions of the merge operators are shown in Figure 11 of the Appendix and the subtyping
relations are defined in Figure 7 of the Appendix. Now consider the typing rule ⊢appwhich requires
the argument type𝐴′ to be a consistent subtype of the function’s parameter type𝐴, so we insert a
cast on the argument from𝐴′ to𝐴′ ↼ 𝐴. The ⊢if case requires extra attention, because it contains
consistent join. It can be converted into two uses of consistent subtyping because𝐴 ∨̃𝐵 = 𝐶 implies
𝐴 ≲ 𝐶 and 𝐵 ≲ 𝐶 . We insert casts from 𝐴 to 𝐴 ↼ 𝐶 and from 𝐵 to 𝐵 ↼ 𝐶 in the two branches.

There are two consistent subtyping side conditions that are different from the rest, on reference
creation (⊢ref ) and assignment (⊢assign), which we highlight in Figure 2. They are not compiled
into casts. Instead, they decide whether we performNSU checking or not. If both labels in each side
condition are concrete, we skip NSU checking by compiling into the statically-enforced variant,
ref ℓ 𝑀 or 𝐿 = 𝑀 ; otherwise, we perform runtime NSU checking by compiling into ref? ℓ 𝑀 or
𝐿 =? 𝑀 . In this way, unlike GSLRef or GLIO, the runtime overhead of NSU checks is only incurred
in dynamically-typed regions of code, and not statically-typed regions.

5.3 Type System of 𝜆⇒SEC
Figure 4 shows the typing rules for 𝜆⇒SEC. The typing judgment is of form Γ; Σ; gc;𝑝𝑐 ⊢ 𝑀 : 𝐴. Γ
and gc have the same meanings as in the typing of 𝜆★SEC. Σ is the heap typing context and pc is the
dynamic PC, both of which play an import role during reduction.

The heap context is split into low- and high- halves just like the heap:

Σ = ⟨Σlow, Σhigh⟩ , where Σlow, Σhigh : List (Index × RawType)

where each half is an association list from indices, modeled by N, to raw types. The type 𝐴 that
corresponds to a certain address 𝑎 = 𝑛ℓ is looked-up by Σ(𝑛ℓ ) = (Σℓ (𝑛))ℓ where Σℓ (𝑛) is usual
association list indexing.The type that an address references remains unchanged during reduction,
so reference creation is the only occasion that Σ grows. We write ∅ = ⟨[], []⟩ as a shorthand (for
both halves being empty).

A novel feature of 𝜆⇒SEC’s type system is that we quantify the typing judgment by pc to capture
successful NSU checks. In the typing rules for checked reference creation (⊢ref ✓) and assignment
(⊢assign✓), there are side conditions pc ≼ ℓ , highlighted in Figure 4, capturing the heap policy
that the dynamic PC pc is a lower bound on the security of all memory locations that are written
to, which is enforced by the NSU checks at runtime. Another novel aspect of rules is that in the
premises for sub-terms that do not immediately reduce, such as the body of a 𝜆 and the branches
of an if-expression, we universally quantify the pc (as in ∀pc). This universal quantification helps
us prove “compilation preserves type” (Lemma 9), because the typing judgment of 𝜆★SEC does not
contain pc while the typing judgment of 𝜆⇒SEC does. The reason this quantification being okay is
that we only insert static and NSU variants of heap write operations during compilation, while the
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Γ; Σ; gc;𝑝𝑐 ⊢ 𝑀 : 𝐴

⊢var Γ ∋ 𝑥 : 𝐴
Γ; Σ; gc; pc ⊢ 𝑥 : 𝐴

⊢unit
Γ; Σ; gc; pc ⊢ ($ unit)ℓ : Unitℓ

⊢bool
𝑏 ∈ {true, false}

Γ; Σ; gc; pc ⊢ ($ 𝑏)ℓ : Boolℓ
⊢addr

Σ(𝑎) = 𝐴

Γ; Σ; gc; pc ⊢ (addr 𝑎)ℓ : (Ref 𝐴)ℓ

⊢lam
∀pc′′ .(Γ, 𝑥 :𝐴); Σ; pc′; pc′′ ⊢ 𝑁 : 𝐵

Γ; Σ; gc; pc ⊢ (λpc′𝑥:𝐴.𝑁 )ℓ : (𝐴
pc′

−−→ 𝐵)ℓ
⊢let

Γ; Σ; gc; pc ⊢ 𝑀 : 𝐴
∀pc′ .(Γ, 𝑥 :𝐴); Σ; gc; pc′ ⊢ 𝑁 : 𝐵

Γ; Σ; gc; pc ⊢ let 𝑥 = 𝑀 in 𝑁 : 𝐵

⊢app

Γ; Σ; gc; pc ⊢ 𝐿 : (𝐴
gc ⋎̃𝑔
−−−−→ 𝐵)𝑔

Γ; Σ; gc; pc ⊢ 𝑀 : 𝐴

Γ; Σ; gc; pc ⊢ 𝐿 𝑀 : 𝐵 ⋎̃𝑔
⊢if

Γ; Σ; gc; pc ⊢ 𝐿 : Bool𝑔
∀pc′ .Γ; Σ; gc ⋎̃𝑔; pc′ ⊢ 𝑀 : 𝐴
∀pc′ .Γ; Σ; gc ⋎̃𝑔; pc′ ⊢ 𝑁 : 𝐴

Γ; Σ; gc; pc ⊢ if 𝐿 𝐴 𝑀 𝑁 : 𝐴 ⋎̃𝑔

⊢ref

Γ; Σ; pc′; pc ⊢ 𝑀 : 𝑇ℓ
pc′ ≼ ℓ

Γ; Σ; pc′; pc ⊢ ref ℓ 𝑀 : (Ref 𝑇ℓ )low
⊢ref ✓

Γ; Σ; gc; pc ⊢ 𝑀 : 𝑇ℓ
pc ≼ ℓ

Γ; Σ; gc; pc ⊢ ref✓ ℓ 𝑀 : (Ref 𝑇ℓ )low

⊢ref ?
Γ; Σ; gc; pc ⊢ 𝑀 : 𝑇ℓ

Γ; Σ; gc; pc ⊢ ref? ℓ 𝑀 : (Ref 𝑇ℓ )low
⊢deref

Γ; Σ; gc; pc ⊢ 𝑀 : (Ref 𝐴)𝑔
Γ; Σ; gc; pc ⊢ ! 𝑀 : 𝐴 ⋎̃𝑔

⊢assign

Γ; Σ; pc′; pc ⊢ 𝐿 : (Ref 𝑇ℓ )ℓ
Γ; Σ; pc′; pc ⊢ 𝑀 : 𝑇ℓ

pc′ ≼ ℓ

Γ; Σ; pc′; pc ⊢ 𝐿 = 𝑀 : Unitlow
⊢assign✓

Γ; Σ; gc; pc ⊢ 𝐿 : (Ref 𝑇ℓ )ℓ
Γ; Σ; gc; pc ⊢ 𝑀 : 𝑇ℓ

pc ≼ ℓ

Γ; Σ; gc; pc ⊢ 𝐿 =✓ 𝑀 : Unitlow

⊢assign?

Γ; Σ; gc; pc ⊢ 𝐿 : (Ref 𝑇𝑔)𝑔
∀pc′ .Γ; Σ; gc; pc′ ⊢ 𝑀 : 𝑇𝑔

Γ; Σ; gc; pc ⊢ 𝐿 =? 𝑀 : Unitlow

⊢cast
Γ; Σ; gc; pc ⊢ 𝑀 : 𝐴

Γ; Σ; gc; pc ⊢ 𝑀 ⟨𝐴 ⇒𝑝 𝐵 ⟩ : 𝐵
⊢castpc

Γ; Σ;𝑔; pc ⊢ 𝑀 : 𝐴
𝑝𝑐 ∼ 𝑔

Γ; Σ; gc; pc ⊢ castpc 𝑔 𝑀 : 𝐴

⊢prot
Γ; Σ; gc ⋎̃ ℓ ; pc ⋎ ℓ ⊢ 𝑀 : 𝐴

Γ; Σ; gc; pc ⊢ prot ℓ 𝑀 : 𝐴 ∨̃ ℓ
⊢error

Γ; Σ; gc; pc ⊢ error 𝑒 : 𝐴

⊢sub
Γ; Σ; gc; pc ⊢ 𝑀 : 𝐴

𝐴 <: 𝐵
Γ; Σ; gc; pc ⊢ 𝑀 : 𝐵

⊢subpc

Γ; Σ; gc′; pc ⊢ 𝑀 : 𝐴
gc <: gc′

Γ; Σ; gc; pc ⊢ 𝑀 : 𝐴

Fig. 4. Typing rules of the cast calculus 𝜆⇒SEC
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checked variants do not appear until reduction. If one sub-term has not yet been reduced, there is
no checked heap writes in it, so there is no term setting any constraint on pc.
Rule ⊢ref and rule ⊢assign perform static enforcement of the heap policy, highlighted in Fig-

ure 4. In these two rules, we use pc′ ≼ ℓ as side condition, where gc = pc′ is a concrete static PC.
This is because during compilation we only insert the static variants of heap writes when gc is
concrete. We are going to show in Section 5.4 that this static check supersedes its dynamic coun-
terpart, i.e., NSU checking. The NSU rules ⊢ref ? and ⊢assign? do not have any side condition. They
are for situations in which the heap policy will be dynamically enforced by NSU, but the actual
check has not yet happened.

Rule ⊢cast captures type consistency. The cast 𝐴 ⇒𝑝 𝐵 casts term 𝑀 from type 𝐴 to 𝐵, where
𝐴 ∼ 𝐵. Rule ⊢castpc allows us to switch from the current static PC gc, to a label 𝑔 consistent with
the current dynamic PC to type the sub-term. It is useful for proving type safety. Rule ⊢sub is the
subsumption rule for types. When we discharge consistent subtyping into consistency and subtyp-
ing, all subtyping relations are collapsed into this single rule. Similarly ⊢subpc is the subsumption
rule for static PCs. The intuition is that if gc′ is a lower bound of all side effects in 𝑀 , then gc,
which is lower, must also be a lower bound.

Rule ⊢prot is in accordance to the semantics of the protection term: the computation result is
protected at ℓ , thus the type is stamped with ℓ ; all side effects in its sub-term 𝑀 must write to
memory locations at least as secure as ℓ , so both PCs typing𝑀 are also stamped with ℓ .

5.4 Small-step and Big-step Operational Semantics
In this section, we first present a small-step semantics for 𝜆⇒SEC, which defines the dynamic seman-
tics for 𝜆⇒SEC. After that, we define a big-step semantics that we use as a technical device to prove
noninterference.

The small-step relation is of form 𝑀 | 𝜇 | pc −→ 𝑀 ′ | 𝜇′, which reduces the configuration of
term 𝑀 , heap 𝜇 under dynamic PC pc to another configuration 𝑀 ′, 𝜇′. We formally define heap 𝜇
as a pair of association lists mapping indices to values, one for low and the other for high:

𝜇 = ⟨𝜇low, 𝜇high⟩ , where 𝜇low, 𝜇high : List (Index × Value)

The lookup and cons of 𝜇 are defined using the respective operations for association lists after
performing case analysis on the address’s label:

lookup 𝜇 𝑛ℓ = 𝜇ℓ (𝑛) and cons 𝑛ℓ 𝑉 𝜇 =

{
⟨⟨𝑛,𝑉 ⟩ :: 𝜇low, 𝜇high⟩ , if ℓ = low
⟨𝜇low, ⟨𝑛,𝑉 ⟩ :: 𝜇high⟩ , if ℓ = high

An address 𝑎 = 𝑛ℓ is fresh if and only if its index 𝑛 equals to the length of the association list
that represents the half-heap of ℓ . Whenever we create a new reference or perform an assignment,
the heap grows by one index-value pair. There can be multiple pairs that contain the same index,
while the definition of lookup ensures that we always get back the latest value that an address
references. The shorthand for the empty heap is ∅ = ⟨[], []⟩.
We represent evaluation contexts using frames (Figure 16 of the Appendix). The plug function

replaces the hole (□) in a frame with a term and produces a term. In this way, all congruence
reduction rules are collapsed into a single 𝜉 rule (Figure 5) using plug. Similarly, 𝜉-err propagates
an error 𝑒 outside a frame.
Let us get back to Figure 5. Conforming to the usual approach of IFC, the protection term has

two functionalities: 1) it protects the computation result by stamping ℓ on the result value (rule
prot-val) 2) it limits the side effects in its sub-term 𝑀 to be at least as secure as ℓ , by upgrading
the PC used to reduce 𝑀 to pc ⋎ ℓ (rule prot-ctx). Also standard, we insert protection terms in
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𝑀 | 𝜇 | pc −→ 𝑀 ′ | 𝜇′

𝜉
𝑀 | 𝜇 | pc −→ 𝑀 ′ | 𝜇′

plug 𝑀 𝐹 | 𝜇 | pc −→ plug 𝑀 ′ 𝐹 | 𝜇′
𝜉-err

plug (error 𝑒) 𝐹 | 𝜇 | pc −→ error 𝑒 | 𝜇

prot-val
prot ℓ 𝑉 | 𝜇 | pc −→ 𝑉 ⋎ ℓ | 𝜇

prot-ctx
𝑀 | 𝜇 | pc ⋎ ℓ −→ 𝑀 ′ | 𝜇′

prot ℓ 𝑀 | 𝜇 | pc −→ prot ℓ 𝑀 ′ | 𝜇′

prot-err
prot ℓ (error 𝑒) | 𝜇 | pc −→ error 𝑒 | 𝜇

𝛽
(λ𝑝𝑐′𝑥:𝐴.𝑁 )ℓ 𝑉 | 𝜇 | pc −→ prot ℓ (𝑁 [𝑥 := 𝑉 ]) | 𝜇

𝛽-if-true
if ($ true)ℓ 𝐴 𝑀 𝑁 | 𝜇 | pc −→ prot ℓ 𝑀 | 𝜇

𝛽-if-false
if ($ false)ℓ 𝐴 𝑀 𝑁 | 𝜇 | pc −→ prot ℓ 𝑁 | 𝜇

𝛽-let
let 𝑥 = 𝑉 in 𝑁 | 𝜇 | pc −→ 𝑁 [𝑥 := 𝑉 ] | 𝜇

ref-static
ref ℓ 𝑀 | 𝜇 | pc −→ ref✓ ℓ 𝑀 | 𝜇

ref?-ok
pc ≼ ℓ

ref? ℓ 𝑀 | 𝜇 | pc −→ ref✓ ℓ 𝑀 | 𝜇
ref?-fail

pc $ ℓ

ref? ℓ 𝑀 | 𝜇 | pc −→ error nsu−error | 𝜇

ref
𝑎 = 𝑛ℓ FreshIn 𝜇

ref✓ ℓ 𝑉 | 𝜇 | pc −→ (addr 𝑎)low | cons 𝑎 𝑉 𝜇

deref
lookup 𝜇 𝑎 = 𝑉

! (addr 𝑎)ℓ | 𝜇 | pc −→ prot (ℓ̂ ⋎ ℓ) 𝑉 | 𝜇
, where 𝑎 = 𝑛ℓ̂

assign-static
𝐿 = 𝑀 | 𝜇 | pc −→ 𝐿 =✓ 𝑀 | 𝜇

assign?-ok
pc ≼ ℓ̂

(addr 𝑎)ℓ =? 𝑀 | 𝜇 | pc −→ (addr 𝑎)ℓ =✓ 𝑀 | 𝜇
, where 𝑎 = 𝑛ℓ̂

assign?-fail
pc $ ℓ̂

(addr 𝑎)ℓ =? 𝑀 | 𝜇 | pc −→ error nsu−error | 𝜇
, where 𝑎 = 𝑛ℓ̂

assign
(addr 𝑎)ℓ =✓ 𝑉 | 𝜇 | pc −→ ($ unit)low | cons 𝑎 𝑉 𝜇

Fig. 5. Small-step operational semantics for 𝜆⇒SEC

𝛽-if and 𝛽 , thus preventing implicit flows from the branch condition, or from which function is
being applied. We next introduce the more interesting reduction rules of 𝜆⇒SEC, which fall into two
categories: 1) the ones about the heap 2) the ones that deal with casts.

The rules for heap operations can be divided into reading and writing. Reading (rule deref ) is
simple: we protect the value looked-up from the heap with two labels: 1) ℓ on the address term, to
prevent leaking which address is being dereferenced (analogous to 𝛽) 2) ℓ̂ , to ensure that the value
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𝑀 | 𝜇 | pc −→ 𝑀 ′ | 𝜇′

𝛽-cast-pc
castpc 𝑔 𝑉 | 𝜇 | pc −→ 𝑉 | 𝜇

cast
Active 𝑐 Cast 𝑉 , 𝑐 { 𝑀

𝑉 ⟨ 𝑐 ⟩ | 𝜇 | pc −→ 𝑀 | 𝜇

if-cast-true Inert 𝑐

if (($ true)ℓ ⟨ 𝑐 ⟩) 𝐴 𝑀 𝑁 | 𝜇 | pc −→ (prot ℓ (castpc ★𝑀)) ⟨ branch𝑐 𝐴 𝑐 ⟩ | 𝜇

if-cast-false Inert 𝑐

if (($ false)ℓ ⟨ 𝑐 ⟩) 𝐴 𝑀 𝑁 | 𝜇 | pc −→ (prot ℓ (castpc ★ 𝑁 )) ⟨ branch𝑐 𝐴 𝑐 ⟩ | 𝜇

fun-cast Inert 𝑐
(𝑉 ⟨ 𝑐 ⟩)𝑊 | 𝜇 | pc −→ elim-fun-proxy 𝑉 𝑊 𝑐 pc | 𝜇

deref-cast Inert 𝑐
! (𝑉 ⟨ 𝑐 ⟩) | 𝜇 | pc −→ (! 𝑉 ) ⟨ out𝑐 𝑐 ⟩ | 𝜇

assign?-cast Inert 𝑐

(𝑉 ⟨ 𝑐 ⟩) =? 𝑀 | 𝜇 | pc −→ elim-ref-proxy 𝑉 𝑀 𝑐 - =?- | 𝜇

assign-cast Inert 𝑐

(𝑉 ⟨ 𝑐 ⟩) =✓ 𝑊 | 𝜇 | pc −→ elim-ref-proxy 𝑉 𝑊 𝑐 - =✓- | 𝜇

branch𝑐 : Type → Cast → Cast
dom𝑐 , cod𝑐 , in𝑐 , out𝑐 : Cast → Cast

branch𝑐 𝐴 (Bool𝑔 ⇒𝑝 Bool★) = 𝐴 ⋎̃𝑔 ⇒𝑝 𝐴 ⋎̃★ (8)

dom𝑐 ((𝐴
gc1−−→ 𝐵)𝑔1 ⇒𝑝 (𝐶

gc2−−→ 𝐷)𝑔2 ) = 𝐶 ⇒𝑝 𝐴

cod𝑐 ((𝐴
gc1−−→ 𝐵)𝑔1 ⇒𝑝 (𝐶

gc2−−→ 𝐷)𝑔2 ) = 𝐵 ⋎̃𝑔1 ⇒𝑝 𝐷 ⋎̃𝑔2

in𝑐 ((Ref 𝐴)𝑔1 ⇒𝑝 (Ref 𝐵)𝑔2 ) = 𝐵 ⇒𝑝 𝐴

out𝑐 ((Ref 𝐴)𝑔1 ⇒𝑝 (Ref 𝐵)𝑔2 ) = 𝐴 ⋎̃𝑔1 ⇒𝑝 𝐵 ⋎̃𝑔2

elim-fun-proxy : Term → Term → (𝑐 : Cast) → (pc : ConcreteLabel) → Term
elim-ref-proxy : Term → Term → (𝑐 : Cast) → (- =†- ∈ {- =-, - =?-, - =✓-}) → Term

elim-fun-proxy 𝑉 𝑊 ((𝐴
pc1−−→ 𝐵)ℓ1 ⇒𝑝 (𝐶

pc2−−→ 𝐷)𝑔2 ) pc = (𝑉 (𝑊 ⟨ dom𝑐 𝑐 ⟩)) ⟨ cod𝑐 𝑐 ⟩ (9)

elim-fun-proxy 𝑉 𝑊 ((𝐴
pc1−−→ 𝐵)ℓ1 ⇒𝑝 (𝐶 ★−→ 𝐷)𝑔2 ) pc =


(castpc pc (𝑉 (𝑊 ⟨ dom𝑐 𝑐 ⟩))) ⟨ cod𝑐 𝑐 ⟩

, if pc ⋎ ℓ1 ≼ pc1
error blame𝑝 , otherwise

(10)

elim-ref-proxy 𝑉 𝑀 ((Ref 𝑆ℓ̂1 )ℓ ⇒
𝑝 (Ref 𝑇ℓ̂2 )𝑔) - =†- = 𝑉 =† (𝑀 ⟨ in𝑐 𝑐 ⟩)

elim-ref-proxy 𝑉 𝑀 ((Ref 𝑆ℓ̂1 )ℓ ⇒
𝑝 (Ref 𝑇★)𝑔) - =†- =

{
𝑉 =† (𝑀 ⟨ in𝑐 𝑐 ⟩) , if ℓ ≼ ℓ̂1

error blame𝑝 , otherwise

Fig. 6. Small-step operational semantics cont’d: elimination rules for casts
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read from the high-heap is always high-security. Writing involves rules of three forms: static, not-
yet-checked, and checked. Consider reference creation. Rule ref-static goes from the static form
ref ℓ 𝑀 to the checked form ref✓ ℓ 𝑀 directly. Reduction preserves type (Section 6.1); therefore,
the side condition pc′ ≼ ℓ on ⊢ref (Figure 4) supersedes 𝑝𝑐 ≼ ℓ on ⊢ref ✓, so no NSU checking is
required. Rule ref?-ok performs a successful NSU check and reduces the not-yet-checked (ref? ℓ 𝑀)
to checked. When proving type preservation, the check 𝑝𝑐 ≼ ℓ goes into the typing of the checked
term (rule ⊢ref ✓). If NSU fails, we use ref?-fail and go to nsu-error. Finally, rule ref reduces the
checked form, creates a fresh memory location, and returns the address of the new location. The
address term has label low because the new address is freshly allocated. Assignment follows the
same pattern, the caveat being that the label ℓ̂ used in the NSU checks in rule assign?-ok and rule
assign?-fail comes from the address instead of the term.
The reduction rules that involve casts are shown in Figure 6. Applying an active cast is sum-

marized in a single rule cast utilizing relation ApplyCast (Figure 14 of the Appendix). We briefly
describe ApplyCast. Identity casts of base types are discarded immediately (cast-base-id). When
projecting to a base type with ℓ2, the value must be of canonical form that contains an injection
from ℓ1. We check whether ℓ1 subsumes ℓ2, because of subtyping. If ℓ1 ≼ ℓ2, we discard the injection
and the projection at the same time (cast-base-proj); if not, we blame the projection (cast-base-proj-
blame). A function cast is active, if either 1) the label 𝑔1 or 2) the PC label gc1 of the source type
is ★ (A-fun, A-fun-pc). On the other hand, a function cast is inert if both 𝑔1 and 𝑔𝑐1 are concrete
(I-fun). In case (1) the cast is applied to a value that contains an inert function cast that is an injec-
tion. Casing on the label of the active function cast’s target type yields two cases: cast-fun-id★ and
cast-fun-proj(-blame). Using ⃝ to represent the raw function types that we do not care about, the
redex for cast-fun-id★ is of shape 𝑉 ⟨⃝ℓ ⇒ ⃝★ ⟩ ⟨⃝★ ⇒ ⃝★ ⟩. We can see that the first (inert)
cast is an injection and the second (active) cast is an identity on★. Consequently, we propagate the
source of injection ℓ across and get: 𝑉 ⟨⃝ℓ ⇒ ⃝ℓ ⟩ ⟨⃝ℓ ⇒ ⃝★ ⟩. On the other hand, in cast-fun-
proj the second cast of the redex is a projection:𝑉 ⟨⃝ℓ1 ⇒ ⃝★ ⟩ ⟨⃝★ ⇒ ⃝ℓ4 ⟩. We check whether
ℓ1 ≼ ℓ4; if yes, we propagate ℓ4:𝑉 ⟨⃝ℓ4 ⇒ ⃝ℓ4 ⟩ ⟨⃝ℓ4 ⇒ ⃝ℓ4 ⟩, otherwise we blame the projection
(cast-fun-proj-blame). The rules for case (2), propagating PC labels in function casts, and the rules
for reference casts follow the same basic idea.

The elimination rules for wrapped values are shown in Figure 6. Consider if-cast-true; the high
level goal is to 1) reduce to the protected then-branch 2) convert the inert cast on the wrapped
branch condition into a cast on the protected branch.We protect the then-branch𝑀 with ℓ from the
boolean constant as usual, because casts do not classify values.Then we insert a cast (branch𝑐 𝐴 𝑐)
on the protected branch.The source and target types of the new cast are calculated by stamping the
respective labels from 𝑐 (the cast on the branch condition) onto 𝐴 (the type of𝑀) (8). To preserve
types, we insert a PC cast around𝑀 to adapt to the static PC of𝑀 , which is ★.

Next we discuss the fun-cast reduction. It eliminates a function proxy𝑉 ⟨ 𝑐 ⟩ being applied to𝑊 .
The high level idea is that we distribute the inert function cast into two casts: one on the domain
side and the other on the co-domain side.The helper function elim-fun-proxy cases on the PC label
of the target type, yielding two cases. If PC is concrete, nothing special is required to preserve types
(9). Otherwise if PC is★, we check if pc ⋎ ℓ1 ≼ pc1 holds. If yes, we insert a PC cast and make sure
that the static PC used to type the term before the co-domain cast equals to current dynamic PC
pc. Otherwise, we blame cast 𝑐 because the labels on it, pc1 and ℓ1, are ill-formed with respect to
the current pc. The insertion of the check and the PC cast is guided by our type safety proof. An
interesting observation about this check, equivalent to pc ≼ pc1 ∧ ℓ1 ≼ pc1, is that it is a direct
analogue of the side condition on the typing rule of application in a fully static type system (7).
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We obtain the big-step semantics in Figure 15 of the Appendix by a mechanical conversion from
the small-step semantics. It has form 𝜇 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇′, relating term𝑀 to value𝑉 . The big-step
semantics only considers successful evaluations of𝑀 and omits all the error cases because we use
it to prove noninterference which is termination and error-insensitive. The protection term is not
needed in a big-step semantics. Instead, we stamp PCs on values directly. Neither does PC cast
appear in the big-step semantics, because value typing is agnostic about the PC (Lemma 3).

6 MECHANIZED META-THEORETICAL RESULTS
In this section we describe the proofs of four theorems: type safety, determinism, noninterference,
and compilation preserves types. Everything is implemented in Agda and fully machine-checked,
so we here we give an overview of the proofs and explain the main ideas.

6.1 Type Safety of 𝜆⇒SEC
We show that 𝜆⇒SEC is type safe by proving progress (Theorem 2) and preservation (Theorem 4). We
first define what it means for heap 𝜇 to be well-typed under context Σ:

Definition 1 (Heap typing). Σ ⊢ 𝜇 iff. for any 𝑎 that satisfies Σ(𝑎) = 𝐴, there exists 𝑉 s.t
lookup 𝜇 𝑎 = 𝑉 and ∅; Σ; low; low ⊢ 𝑉 : 𝐴.

Note that we lookup 𝑎 in the half-heap that corresponds to the half-context. We prove that
reference creation and assignment both preserve well-typedness of the heap.

Progress says that a well-typed 𝜆⇒SEC term does not get stuck. The term is either be a value or an
error, which does not reduce, or the term takes one reduction step further:

TheoRem 2 (PRogRess). Suppose 𝑀 is well-typed: ∅; Σ; gc; pc ⊢ 𝑀 : 𝐴 and the heap 𝜇 is also well-
typed: Σ ⊢ 𝜇. Then either (1) 𝑀 is a value or (2) 𝑀 is an error: 𝑀 = error 𝑒 for some 𝑒 or (3) 𝑀 can
take a reduction step: 𝑀 | 𝜇 | pc −→ 𝑀 ′ | 𝜇′ for some 𝑀 ′ and 𝜇′.

PRoof sKetch. By induction on the typing derivation of 𝑀 . In the NSU cases, case on pc ≼ ℓ
(⊢ref?) and pc ≼ ℓ̂ (⊢assign?) respectively. Take one step by applying the success rule (ref?-ok,
assign?-ok) if the NSU check passes or the failure rule (ref?-fail, assign?-fail) if it does not. □

The preservation proof is relatively straightforward. Preservation of parallel and single substitu-
tions is proved by the usual approach [McBride 2005]. One major difference from GTLC, however,
is that for a specific typing rule, in addition to types, we also require the PCs agree between the
inner terms and the outer term.

One important observation is that with regard to typability, PCs do not matter for values, so we
can arbitrarily replace them.This is why we have pc annotations on 𝜆s. The static PC used for type
checking a 𝜆’s body comes from the annotation and has nothing to do with the one that types the
𝜆. We formalize this idea:

Lemma 3 (Value typing is agnostic about PCs). If Γ; Σ; gc; pc ⊢ 𝑉 : 𝐴, then Γ; Σ; gc′; pc′ ⊢ 𝑉 :
𝐴 , for any 𝑔𝑐′, 𝑝𝑐′.

PRoof sKetch. By induction on the typing derivation of𝑉 and then inversion on the value. □

We now state the preservation theorem for both the small-step and big-step semantics.

TheoRem 4 (PReseRvation). Suppose 𝑀 is well-typed: ∅; Σ; gc; pc ⊢ 𝑀 : 𝐴 and the heap 𝜇 is also
well-typed: Σ ⊢ 𝜇. The static and dynamic PCs satisfy: pc ≾ gc.

Small-step: If 𝑀 | 𝜇 | pc −→ 𝑀 ′ | 𝜇′, there exists Σ′ s.t Σ′ ⊇ Σ, ∅; Σ′; gc; pc ⊢ 𝑀 ′ : 𝐴, and Σ′ ⊢ 𝜇′.
Big-step: If 𝜇 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇′, there exists Σ′ s.t Σ′ ⊇ Σ, ∅; Σ′; gc; pc ⊢ 𝑉 : 𝐴, and Σ′ ⊢ 𝜇′.
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PRoof sKetch. By induction on the reduction step and then inversion on the typing derivation
of 𝑀 . Use “single substitution preserves types” in 𝛽 and 𝛽-let. Use “reference creation preserves
heap well-typedness” in ref and “assignment preserves heap well-typedness” in assign.
The proof for big-step is by induction on the big-step relation. Everything else is similar. □

6.2 Erasure and Determinism of Erased 𝜆⇒SEC
We define erased 𝜆⇒SEC as the image of 𝜆⇒SEC under the erasure function 𝜖 . Erased 𝜆⇒SEC is a subset of
𝜆⇒SEC. In this section, we prove that the big-step evaluation of erased 𝜆⇒SEC is deterministic.

First we briefly talk about the erasure function 𝜖 on terms and heap (Figure 17 of the Appendix).
As usual, high security constants and 𝜆s are erased, replaced with ●(22) (23). For reasons men-
tioned in Section 3.2, we erase addresses unless both labels are low (21). As we have discussed in
Section 2.2, we do not use type-guided classification, meaning that casts do not affect the security
of values, thus they can be directly discarded (24). So are PC casts (25). The low-heap is erased
point-wise (26) (27). The heap is erased by erasing the low-heap and ditching the high-heap (28).
The big-step semantics for erase 𝜆⇒SEC is presented in Figure 18 of the Appendix. The 𝜇 is for

low-heap only, because erasure discards the high-heap entirely. Basically, wherever constants, 𝜆s,
and addresses appear, their labels must be all low; otherwise they are erased into ●, which then
follow the “-●” rules. In either ⇓𝜖 -ref?-● or ⇓𝜖 -ref-●, we skip the reference creation and erase the
result, because it potentially produces an address that references the high-heap, which no longer
exists.
TheoRem 5 (Big-step evaluation of eRased 𝜆⇒SEC is deteRministic). If 𝜇 | pc ⊢ 𝑀 ⇓𝜖 𝑉1 | 𝜇1

and 𝜇 | pc ⊢ 𝑀 ⇓𝜖 𝑉2 | 𝜇2, then 𝑉1 = 𝑉2 and 𝜇1 = 𝜇2.

PRoof sKetch. By induction on the first big-step and then inversion on the second. □

6.3 Noninterference
In this section, we assemble everything proved so far together and further prove noninterference.

The key to the noninterference proof is a simulation lemma (Lemma 7) between the unerased
side and the erased side. One major challenge when proving this lemma is that we sometimes need
to reason about side effects under high PC. Take ⇓-if-true (Figure 15 of the Appendix) for example,
suppose ℓ = high, we know 𝜖 𝜇 | pc ⊢ 𝜖 𝐿 ⇓𝜖 ● | 𝜖 𝜇1 and 𝜖 𝜇1 | high ⊢ 𝜖 𝑀 ⇓𝜖 𝜖 𝑉 | 𝜖 𝜇2
by induction hypotheses. We need to show 𝜖 𝜇 | pc ⊢ if (𝜖 𝐿) 𝐴 (𝜖 𝑀) (𝜖 𝑁 ) ⇓𝜖 ● | 𝜖 𝜇2. We
can construct the proof using rule ⇓𝜖 -if-● (Figure 18 of the Appendix) if we know 𝜖 𝜇1 = 𝜖 𝜇2.
This observation above brings about Lemma 6. It says that if we evaluate a term𝑀 under high-PC,
then the heaps before and after are related by erasure. Intuitively, it means that all side effects
happening under a high-PC do not matter from a low-privileged observer’s perspective.
Lemma 6 (Heaps aRe Related by eRasuRe undeR high PC). Suppose ∅; Σ; gc; high ⊢ 𝑀 : 𝐴,

Σ ⊢ 𝜇, and high ≾ gc. If 𝜇 | high ⊢ 𝑀 ⇓ 𝑉 | 𝜇′, then 𝜖 𝜇 = 𝜖 𝜇′.

PRoof sKetch. By induction on the big-step and then inversion on the typing derivation. □

Lemma 7 (Simulation between oRiginal and eRased 𝜆⇒SEC). Suppose ∅; Σ; gc; pc ⊢ 𝑀 : 𝐴, Σ ⊢ 𝜇,
and pc ≾ gc. If 𝜇 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇′, then 𝜖 𝜇 | pc ⊢ 𝜖 𝑀 ⇓𝜖 𝜖 𝑉 | 𝜖 𝜇′.

PRoof sKetch. By induction on the big-step relation and then inversion on the typing deriva-
tion of𝑀 . Case on ℓ in ⇓-app, ⇓-if, and ⇓-if-cast. Use Lemma 6 when ℓ = high. □

We state noninterference inTheorem 8. The input is modeled as a free variable 𝑥 and the output
is the evaluation result of the 𝜆⇒SEC term𝑀 . The typing judgment of𝑀 says that the input is a high-
security boolean constant while the output is a low-security boolean constant. Both PCs, static
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and dynamic, are originally low and the heap is empty. If we run𝑀 with two values, ($ 𝑏1)high and
($ 𝑏2)high, which potentially carry different user-input data, Theorem 8 tells us that the observable
computation results (values) of the two executions, 𝑉1 and 𝑉2, are equal.

TheoRem 8 (NoninteRfeRence). If 𝑀 is well-typed: (𝑥 :Boolhigh); ∅; low; low ⊢ 𝑀 : Boollow and

∅ | low ⊢ 𝑀 [𝑥 := ($ 𝑏1)high] ⇓ 𝑉1 | 𝜇1 and ∅ | low ⊢ 𝑀 [𝑥 := ($ 𝑏2)high] ⇓ 𝑉2 | 𝜇2
then 𝑉1 = 𝑉2.

PRoof. Applying the simulation lemma (Lemma 7) on the premises respectively, we get:
∅ | low ⊢ 𝜖 𝑀 [𝑥 := ●] ⇓ 𝜖 𝑉1 | 𝜖 𝜇1 and ∅ | low ⊢ 𝜖 𝑀 [𝑥 := ●] ⇓ 𝜖 𝑉2 | 𝜖 𝜇2

Note that after erasure, the left hand sides of big-step in the above become the same. We apply the
determinism theorem (Theorem 5) to obtain 𝜖 𝑉1 = 𝜖 𝑉2. We know ⊢ 𝑉𝑖 : Boollow, 𝑖 ∈ {1, 2} because
big-step preserves types (Theorem 4). Consequently, we know 𝑉𝑖 = ($ 𝑏𝑖)low, 𝑖 ∈ {1, 2} due to the
canonical form of constants. So we have 𝜖 ($ 𝑏1)low = 𝜖 ($ 𝑏2)low. By the definition of erasure 𝜖
(Figure 17 of the Appendix), we have ($ 𝑏1)low = ($ 𝑏2)low, which is equivalent to 𝑉1 = 𝑉2. □

6.4 Compilation from 𝜆★SEC to 𝜆⇒SEC Preserves Types
Finally, we connect the surface language and its intermediate representation by proving that com-
piling from 𝜆★SEC to 𝜆

⇒
SEC preserves types.

Lemma 9. If Γ; gc ⊢ 𝑀 : 𝐴, then Γ; ∅; gc; pc ⊢ C 𝑀 : 𝐴 for any pc.

PRoof sKetch. By induction on the typing derivation of𝑀 and follow the definition of C. □
TheoRem 10 (Compilation pReseRves types). If Γ; gc ⊢ 𝑀 : 𝐴, then Γ; ∅; gc; low ⊢ C 𝑀 : 𝐴.

PRoof. By instantiating pc = low in Lemma 9. □

7 CONCLUSION
We have presented an information-flow control language, named 𝜆★SEC, that is gradual in the sense
that the programmer decides whether the IFC occurs statically or dynamically in different regions
of their program. This paper presents the first mechanized proof of noninterference for such a
language. The prior mechanized proofs of noninterference by Stefan et al. [2017] and Xiang and
Chong [2021] were for languages with dynamic control of information-flow, but not for static
or gradual control. Compared to pen-and-paper proofs of noninterference for gradually-typed
information-flow languages, our proof is most similar to the flawed proof of Fennell and Thie-
mann [2013] that also uses the erasure approach; the main differences are that we use a big-step
semantics instead of small-step and we use a split heap to fix how erasure handles addresses. Toro
et al. [2018] and Azevedo de Amorim et al. [2020] also develop pen-and-paper proofs of noninter-
ference for gradually-typed languages, and we are not aware of any flaws in those proofs, but the
proof techniques that they use are less amenable to mechanization.

Our language 𝜆★SEC is based on the GLIO language of Azevedo de Amorim et al. [2020], which
satisfies both noninterference and the dynamic gradual guarantee. (The GSLRef language of Toro
et al. [2018] satisfies noninterference but not the dynamic gradual guarantee.) Azevedo de Amorim
et al. [2020] choose to define GLIO via denotational semantics, which differs from the rest of the
literature on gradual typing, making their results difficult to build on by other researchers. In this
paper we contribute a traditional semantics for 𝜆★SEC, whose semantics is defined by 1) compilation
to a cast calculus and 2) a reduction semantics for the cast calculus.
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APPENDIX

𝑔1 <: 𝑔2, 𝑆 <: 𝑇 , and 𝐴 <: 𝐵

<:-★
★ <: ★

<:-ℓ
ℓ1 ≼ ℓ2
ℓ1 <: ℓ2

<:-𝜄
𝜄 <: 𝜄

<:-ref 𝐴 <: 𝐵 𝐵 <: 𝐴
Ref 𝐴 <: Ref 𝐵

<:-fun
gc2 <: gc1 𝐶 <: 𝐴 𝐵 <: 𝐷

𝐴
gc1−−→ 𝐵 <: 𝐶

gc2−−→ 𝐷
<:-𝜏

𝑔1 <: 𝑔2 𝑆 <: 𝑇

𝑆𝑔1 <: 𝑇𝑔2

Fig. 7. Subtyping of labels and types

𝑔1 ∼ 𝑔2, 𝑆 ∼ 𝑇 , and 𝐴 ∼ 𝐵

★~
★ ∼ 𝑔

~★
𝑔 ∼ ★

ℓ~
ℓ ∼ ℓ

~-𝜄 𝜄 ∼ 𝜄 ~-ref 𝐴 ∼ 𝐵

Ref 𝐴 ∼ Ref 𝐵

~-fun
gc1 ∼ gc2 𝐴 ∼ 𝐶 𝐵 ∼ 𝐷

𝐴
gc1−−→ 𝐵 ∼ 𝐶

gc2−−→ 𝐷
~-𝜏

𝑔1 ∼ 𝑔2 𝑆 ∼ 𝑇

𝑆𝑔1 ∼ 𝑇𝑔2

Fig. 8. Consistency for labels and types

𝑔1 ≾ 𝑔2, 𝑆 ≲ 𝑇 , and 𝐴 ≲ 𝐵

≾★
𝑔 ≾ ★

★≾
★ ≾ 𝑔

≾-ℓ
ℓ1 ≼ ℓ2
ℓ1 ≾ ℓ2

≲-𝜄
𝜄 ≲ 𝜄

≲-ref
𝐴 ≲ 𝐵 𝐵 ≲ 𝐴

Ref 𝐴 ≲ Ref 𝐵

≲-fun
gc2 ≾ gc1 𝐶 ≲ 𝐴 𝐵 ≲ 𝐷

𝐴
gc1−−→ 𝐵 ≲ 𝐶

gc2−−→ 𝐷
≲-𝜏

𝑔1 ≾ 𝑔2 𝑆 ≲ 𝑇

𝑆𝑔1 ≲ 𝑇𝑔2

Fig. 9. Consistent subtyping for labels and types
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ℓ ⊓ ℓ = ℓ

★⊓ 𝑔 = 𝑔

𝑔 ⊓★ = 𝑔

𝜄 ⊓ 𝜄 = 𝜄

(Ref 𝐴) ⊓ (Ref 𝐵) = Ref 𝐴′ where 𝐴′ = 𝐴 ⊓ 𝐵

(𝐴
gc1−−→ 𝐵) ⊓ (𝐶

gc2−−→ 𝐷) = 𝐴′ gc
−→ 𝐵′

where gc = gc1 ⊓ gc2, 𝐴′ = 𝐴 ⊓𝐶 , and 𝐵′ = 𝐵 ⊓ 𝐷

𝑆𝑔1 ⊓𝑇𝑔2 = 𝑇 ′
𝑔

where 𝑇 ′ = 𝑆 ⊓𝑇 and 𝑔 = 𝑔1 ⊓ 𝑔2

(-⊓- is undefined otherwise)

ℓ1 ⋎̃ ℓ2 = ℓ1 ⋎ ℓ2

- ⋎̃★ = ★

★ ⋎̃ - = ★

𝜄 ∨̃ 𝜄 = 𝜄

(Ref 𝐴) ∨̃ (Ref 𝐵) = Ref 𝐶 where 𝐶 = 𝐴 ⊓ 𝐵

(𝐴
gc1−−→ 𝐵) ∨̃ (𝐶

gc2−−→ 𝐷) = 𝐴′ gc1 ⋏̃ gc2−−−−−−→ 𝐵′

where 𝐴′ = 𝐴 ∧̃𝐶 and 𝐵′ = 𝐵 ∨̃𝐷

𝑆𝑔1 ∨̃𝑇𝑔2 = 𝑇 ′
𝑔1 ⋎̃𝑔2

where 𝑇 ′ = 𝑆 ∨̃𝑇
(- ∨̃ - is undefined otherwise)

ℓ1 ⋏̃ ℓ2 = ℓ1 ⋏ ℓ2

- ⋏̃★ = ★

★ ⋏̃ - = ★

𝜄 ∧̃ 𝜄 = 𝜄

(Ref 𝐴) ∧̃ (Ref 𝐵) = Ref 𝐶 where 𝐶 = 𝐴 ⊓ 𝐵

(𝐴
gc1−−→ 𝐵) ∧̃ (𝐶

gc2−−→ 𝐷) = 𝐴′ gc1 ⋎̃ gc2−−−−−−→ 𝐵′

where 𝐴′ = 𝐴 ∨̃𝐶 and 𝐵′ = 𝐵 ∧̃𝐷

𝑆𝑔1 ∧̃𝑇𝑔2 = 𝑇 ′
𝑔1 ⋏̃𝑔2

where 𝑇 ′ = 𝑆 ∧̃𝑇
(- ∧̃ - is undefined otherwise)

Fig. 10. Operators for gradual labels and types: gradual meet (-⊓-), consistent join (- ⋎̃ - for labels and - ∨̃ -
for types), and consistent meet (- ⋏̃ - for labels and - ∧̃ - for types)
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- ↼ - : (𝑔1 𝑔2 : Label) → Label , where 𝑔1 ≾ 𝑔2
- ↼ - : (𝑆 𝑇 : RawType) → RawType , where 𝑆 ≲ 𝑇
- ↼ - : (𝐴 𝐵 : Type) → Type , where 𝐴 ≲ 𝐵

- ↼★ = ★

★↼ 𝑔 = 𝑔

ℓ1 ↼ ℓ2 = ℓ1

𝜄 ↼ 𝜄 = 𝜄

Ref 𝐴 ↼ Ref 𝐵 = Ref 𝐵

𝐴
𝑔𝑐1−−→ 𝐵 ↼ 𝐶

𝑔𝑐2−−→ 𝐷 = 𝐴′ 𝑔𝑐
−→ 𝐵′

where 𝑔𝑐 = 𝑔𝑐2 ↽ 𝑔𝑐1,
𝐴′ = 𝐶 ↽ 𝐴, and 𝐵′ = 𝐵 ↼ 𝐷

𝑆𝑔1 ↼ 𝑇𝑔2 = 𝑇 ′
𝑔

where 𝑇 ′ = 𝑆 ↼ 𝑇 and 𝑔 = 𝑔1 ↼ 𝑔2

Fig. 11. Merge operators for labels and types
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C 𝑀 { 𝑀 ′

C ($ 𝑘)ℓ { ($ 𝑘)ℓ (11)

C 𝑥 { 𝑥 (12)

C (λpc𝑥:𝐴.𝑁 )ℓ { (λpc𝑥:𝐴.𝑁 ′)ℓ (13)
where 𝑁 { 𝑁 ′

C (𝐿 𝑀)𝑝 { 𝐿′ ⟨ 𝑐1 ⟩ 𝑀 ′ ⟨ 𝑐2 ⟩ (14)
where
𝐿 { 𝐿′, 𝑀 { 𝑀 ′,𝐶 = 𝐴′ ↼ 𝐴,𝑔1 = 𝑔𝑐 ↽ 𝑔𝑐′, 𝑔2 = 𝑔 ↽ 𝑔𝑐′

𝑐1 = (𝐴
𝑔𝑐 ′

−−→ 𝐵)𝑔 ⇒𝑝 (𝐴
𝑔1 ⋎̃𝑔2−−−−−→ 𝐵)𝑔, 𝑐2 = 𝐴′ ⇒𝑝 𝐶

Γ; gc ⊢ 𝐿 : (𝐴
𝑔𝑐′

−−→ 𝐵)𝑔, Γ; gc ⊢ 𝑀 : 𝐴′

C (if 𝐿 then 𝑀 else 𝑁 )𝑝 { if 𝐿′ 𝐶 𝑀 ′ ⟨ 𝑐1 ⟩ 𝑁 ′ ⟨ 𝑐2 ⟩ (15)
where
𝐿 { 𝐿′, 𝑀 { 𝑀 ′, 𝑁 { 𝑁 ′, 𝐴′ = 𝐴 ↼ 𝐶, 𝐵′ = 𝐵 ↼ 𝐶

𝑐1 = 𝐴 ⇒𝑝 𝐴′, 𝑐2 = 𝐵 ⇒𝑝 𝐵′

Γ; gc ⊢ 𝐿 : Bool𝑔, Γ; gc ⋎̃𝑔 ⊢ 𝑀 : 𝐴, Γ; gc ⋎̃𝑔 ⊢ 𝑁 : 𝐵

𝐶 = 𝐴 ∨̃𝐵 (therefore 𝐴 ≲ 𝐶, 𝐵 ≲ 𝐶)

C (𝑀 : 𝐴)𝑝 { 𝑀 ′ ⟨𝐴′ ⇒𝑝 𝐵 ⟩ (16)
where𝑀 { 𝑀 ′, 𝐵 = 𝐴′ ↼ 𝐴, Γ; gc ⊢ 𝑀 : 𝐴′

C (let 𝑥 = 𝑀 in 𝑁 ) { let 𝑥 = 𝑀 in 𝑁 (17)
where𝑀 { 𝑀 ′, 𝑁 { 𝑁 ′

C (ref ℓ 𝑀)𝑝 {
{
ref ℓ 𝑀 ′ ⟨𝑇𝑔 ⇒𝑝 𝐴 ⟩ , if gc is concrete
ref? ℓ 𝑀 ′ ⟨𝑇𝑔 ⇒𝑝 𝐴 ⟩ , if gc = ★

(18)

where𝑀 { 𝑀 ′, 𝐴 = 𝑇𝑔 ↼ 𝑇ℓ , Γ; gc ⊢ 𝑀 : 𝑇𝑔

C (! 𝑀) { ! 𝑀 (19)
where𝑀 { 𝑀 ′

C (𝐿 = 𝑀)𝑝 {
{
𝐿′ ⟨ 𝑐1 ⟩ = 𝑀 ′ ⟨ 𝑐2 ⟩ , if gc and 𝑔 are both concrete
𝐿′ ⟨ 𝑐1 ⟩ =? 𝑀 ′ ⟨ 𝑐2 ⟩ , if gc = ★ or 𝑔 = ★

(20)

where
𝐿 { 𝐿′, 𝑀 { 𝑀 ′, 𝐵 = 𝐴 ↼ 𝑇𝑔, 𝑔

′ = 𝑔 ↼ 𝑔

𝑐1 = (Ref 𝑇𝑔)𝑔 ⇒𝑝 (Ref 𝑇𝑔)𝑔′ , 𝑐2 = 𝐴 ⇒𝑝 𝐵

Γ; gc ⊢ 𝐿 : (Ref 𝑇𝑔)𝑔, Γ; gc ⊢ 𝑀 : 𝐴

Fig. 12. Compilation from surface language 𝜆★SEC to cast calculus 𝜆
⇒
SEC
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Active 𝑔1 ⇒ 𝑔2 and Active 𝐴 ⇒ 𝐵

A-label-id★
Active ★⇒ ★

A-label-proj
Active ★⇒ ℓ

A-base-id
Active 𝜄𝑔 ⇒ 𝜄𝑔

A-base-proj
Active 𝜄★ ⇒ 𝜄ℓ

A-fun
Active 𝑔1 ⇒ 𝑔2

Active (𝐴
gc1−−→ 𝐵)𝑔1 ⇒ (𝐶

gc2−−→ 𝐷)𝑔2
A-fun-pc

Active gc1 ⇒ gc2 Inert 𝑔1 ⇒ 𝑔2

Active (𝐴
gc1−−→ 𝐵)𝑔1 ⇒ (𝐶

gc2−−→ 𝐷)𝑔2

A-ref
Active 𝑔1 ⇒ 𝑔2

Active (Ref 𝐴)𝑔1 ⇒ (Ref 𝐵)𝑔2
A-ref-ref

Active 𝑔1 ⇒ 𝑔2 Inert 𝑔1 ⇒ 𝑔2

Active (Ref 𝑆𝑔1 )𝑔1 ⇒ (Ref 𝑇𝑔2 )𝑔2
Inert 𝑔1 ⇒ 𝑔2 and Inert 𝐴 ⇒ 𝐵

I-label
Inert ℓ ⇒ 𝑔

I-base-inj
Inert 𝜄ℓ ⇒ 𝜄★

I-fun
Inert gc1 ⇒ gc2 Inert 𝑔1 ⇒ 𝑔2

Inert (𝐴
gc1−−→ 𝐵)𝑔1 ⇒ (𝐶

gc2−−→ 𝐷)𝑔2
I-ref

Inert 𝑔1 ⇒ 𝑔2 Inert 𝑔1 ⇒ 𝑔2

Inert (Ref 𝑆𝑔1 )𝑔1 ⇒ (Ref 𝑇𝑔2 )𝑔2

Fig. 13. Active casts and inert casts
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Cast 𝑉 , 𝑐 { 𝑀

cast-base-id
Cast 𝑉 , 𝜄𝑔 ⇒𝑝 𝜄𝑔 { 𝑉

cast-base-proj
ℓ1 ≼ ℓ2

Cast 𝑉 ⟨ 𝜄ℓ1 ⇒𝑝 𝜄★ ⟩ , 𝜄★ ⇒𝑞 𝜄ℓ2 { 𝑉

cast-base-proj-blame
ℓ1 $ ℓ2

Cast 𝑉 ⟨ 𝜄ℓ1 ⇒𝑝 𝜄★ ⟩ , 𝜄★ ⇒𝑞 𝜄ℓ2 { error blame𝑞

cast-fun-id★
Cast 𝑉 ⟨ (𝐴1

gc1−−→ 𝐵1 )ℓ ⇒𝑝 (𝐴2
gc2−−→ 𝐵2 )★ ⟩ , (𝐴3

gc3−−→ 𝐵3 )★ ⇒𝑞 (𝐴4
gc4−−→ 𝐵4 )★ {

𝑉 ⟨ (𝐴1
gc1−−→ 𝐵1 )ℓ ⇒𝑝 (𝐴2

gc2−−→ 𝐵2 )ℓ ⟩ ⟨ (𝐴3
gc3−−→ 𝐵3 )ℓ ⇒𝑞 (𝐴4

gc4−−→ 𝐵4 )★ ⟩

cast-fun-proj
ℓ1 ≼ ℓ4

Cast 𝑉 ⟨ (𝐴1
gc1−−→ 𝐵1 )ℓ1 ⇒

𝑝 (𝐴2
gc2−−→ 𝐵2 )★ ⟩ , (𝐴3

gc3−−→ 𝐵3 )★ ⇒𝑞 (𝐴4
gc4−−→ 𝐵4 )ℓ4 {

𝑉 ⟨ (𝐴1
gc1−−→ 𝐵1 )ℓ4 ⇒

𝑝 (𝐴2
gc2−−→ 𝐵2 )ℓ4 ⟩ ⟨ (𝐴3

gc3−−→ 𝐵3 )ℓ4 ⇒
𝑞 (𝐴4

gc4−−→ 𝐵4 )ℓ4 ⟩

cast-fun-proj-
blame

ℓ1 $ ℓ4

Cast 𝑉 ⟨ (𝐴1
gc1−−→ 𝐵1 )ℓ1 ⇒𝑝 (𝐴2

gc2−−→ 𝐵2 )★ ⟩ , (𝐴3
gc3−−→ 𝐵3 )★ ⇒𝑞 (𝐴4

gc4−−→ 𝐵4 )ℓ4 { error blame𝑞

cast-fun-pc-id★

Cast 𝑉 ⟨ (𝐴1
pc
−→ 𝐵1 )𝑔1 ⇒𝑝 (𝐴2

★
−→ 𝐵2 )𝑔2 ⟩ , (𝐴3

★
−→ 𝐵3 )ℓ3 ⇒𝑞 (𝐴4

★−→ 𝐵4 )𝑔4 {

𝑉 ⟨ (𝐴1
pc
−→ 𝐵1 )𝑔1 ⇒𝑝 (𝐴2

pc
−→ 𝐵2 )𝑔2 ⟩ ⟨ (𝐴3

pc
−→ 𝐵3 )ℓ3 ⇒𝑞 (𝐴4

★−→ 𝐵4 )𝑔4 ⟩

cast-fun-pc-proj
pc4 ≼ pc1

Cast 𝑉 ⟨ (𝐴1
pc1−−→ 𝐵1 )𝑔1 ⇒𝑝 (𝐴2

★
−→ 𝐵2 )𝑔2 ⟩ , (𝐴3

★
−→ 𝐵3 )ℓ3 ⇒𝑞 (𝐴4

pc4−−→ 𝐵4 )𝑔4 {

𝑉 ⟨ (𝐴1
pc4−−→ 𝐵1 )𝑔1 ⇒𝑝 (𝐴2

pc4−−→ 𝐵2 )𝑔2 ⟩ ⟨ (𝐴3
pc4−−→ 𝐵3 )ℓ3 ⇒𝑞 (𝐴4

pc4−−→ 𝐵4 )𝑔4 ⟩

cast-fun-pc-
proj-blame

pc4 $ pc1

Cast 𝑉 ⟨ (𝐴1
pc1−−→ 𝐵1 )𝑔1 ⇒𝑝 (𝐴2

★−→ 𝐵2 )𝑔2 ⟩ , (𝐴3
★−→ 𝐵3 )ℓ3 ⇒𝑞 (𝐴4

pc4−−→ 𝐵4 )𝑔4 { error blame𝑞

cast-ref-id★
Cast 𝑉 ⟨ (Ref 𝐴)ℓ ⇒𝑝 (Ref 𝐵)★ ⟩ , (Ref 𝐶 )★ ⇒𝑞 (Ref 𝐷 )★ {

𝑉 ⟨ (Ref 𝐴)ℓ ⇒𝑝 (Ref 𝐵)ℓ ⟩ ⟨ (Ref 𝐶 )ℓ ⇒𝑞 (Ref 𝐷 )★ ⟩

cast-ref-proj
ℓ1 ≼ ℓ4

Cast 𝑉 ⟨ (Ref 𝐴)ℓ1 ⇒
𝑝 (Ref 𝐵)★ ⟩ , (Ref 𝐶 )★ ⇒𝑞 (Ref 𝐷 )ℓ4 {

𝑉 ⟨ (Ref 𝐴)ℓ4 ⇒
𝑝 (Ref 𝐵)ℓ4 ⟩ ⟨ (Ref 𝐶 )ℓ4 ⇒

𝑞 (Ref 𝐷 )ℓ4 ⟩

cast-ref-proj-blame
ℓ1 $ ℓ4

Cast 𝑉 ⟨ (Ref 𝐴)ℓ1 ⇒𝑝 (Ref 𝐵)★ ⟩ , (Ref 𝐶 )★ ⇒𝑞 (Ref 𝐷 )ℓ4 { error blame𝑞

cast-ref-ref-id★
Cast 𝑉 ⟨ (Ref (𝑇1 )ℓ̂ )𝑔1 ⇒𝑝 (Ref (𝑇2 )★)𝑔2 ⟩ , (Ref (𝑇3 )★)ℓ3 ⇒𝑞 (Ref (𝑇4 )★)𝑔4 {

𝑉 ⟨ (Ref (𝑇1 )ℓ̂ )𝑔1 ⇒𝑝 (Ref (𝑇2 )ℓ̂ )𝑔2 ⟩ ⟨ (Ref (𝑇3 )ℓ̂ )ℓ3 ⇒𝑞 (Ref (𝑇4 )★)𝑔4 ⟩

cast-ref-ref-proj
ℓ̂1 = ℓ̂4

Cast 𝑉 ⟨ (Ref (𝑇1 )ℓ̂1 )𝑔1 ⇒𝑝 (Ref (𝑇2 )★)𝑔2 ⟩ , (Ref (𝑇3 )★)ℓ3 ⇒𝑞 (Ref (𝑇4 )ℓ̂4 )𝑔4 {
𝑉 ⟨ (Ref (𝑇1 )ℓ̂4 )𝑔1 ⇒𝑝 (Ref (𝑇2 )ℓ̂4 )𝑔2 ⟩ ⟨ (Ref (𝑇3 )ℓ̂4 )ℓ3 ⇒𝑞 (Ref (𝑇4 )ℓ̂4 )𝑔4 ⟩

cast-ref-ref-
proj-blame

ℓ̂1 ≠ ℓ̂4

Cast 𝑉 ⟨ (Ref (𝑇1 )ℓ̂1 )𝑔1 ⇒𝑝 (Ref (𝑇2 )★)𝑔2 ⟩ , (Ref (𝑇3 )★)ℓ3 ⇒𝑞 (Ref (𝑇4 )ℓ̂4 )𝑔4 { error blame𝑞

Fig. 14. Application rules for active casts
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𝜇 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇′

⇓-val
𝜇 | pc ⊢ 𝑉 ⇓ 𝑉 | 𝜇

⇓-app

𝜇 | pc ⊢ 𝐿 ⇓ (λpc′𝑥:𝐴.𝑁 )ℓ | 𝜇1
𝜇1 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇2

𝜇2 | pc ⋎ ℓ ⊢ 𝑁 [𝑥 := 𝑉 ] ⇓𝑊 | 𝜇3
𝜇 | pc ⊢ 𝐿 𝑀 ⇓𝑊 ⋎ ℓ | 𝜇3

⇓-if-true

𝜇 | pc ⊢ 𝐿 ⇓ ($ true)ℓ | 𝜇1
𝜇1 | pc ⋎ ℓ ⊢ 𝑀 ⇓ 𝑉 | 𝜇2

𝜇 | pc ⊢ if 𝐿 𝐴 𝑀 𝑁 ⇓ 𝑉 ⋎ ℓ | 𝜇2
⇓-if-false

𝜇 | pc ⊢ 𝐿 ⇓ ($ false)ℓ | 𝜇1
𝜇1 | pc ⋎ ℓ ⊢ 𝑁 ⇓ 𝑉 | 𝜇2

𝜇 | pc ⊢ if 𝐿 𝐴 𝑀 𝑁 ⇓ 𝑉 ⋎ ℓ | 𝜇2

⇓-let

𝜇 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇1
𝜇1 | pc ⊢ 𝑁 [𝑥 := 𝑉 ] ⇓𝑊 | 𝜇2

𝜇 | pc ⊢ let 𝑥 = 𝑀 in 𝑁 ⇓𝑊 | 𝜇2
⇓-deref

𝜇 | pc ⊢ 𝑀 ⇓ (addr 𝑎)ℓ | 𝜇1
lookup 𝜇1 𝑎 = 𝑉

𝜇 | pc ⊢ ! 𝑀 ⇓ 𝑉 ⋎ ℓ̂ ⋎ ℓ | 𝜇1
, where 𝑎 = 𝑛ℓ̂

⇓-ref?
𝜇 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇1 𝑎 = 𝑛ℓ FreshIn 𝜇1 pc ≼ ℓ

𝜇 | pc ⊢ ref? ℓ 𝑀 ⇓ (addr 𝑎)low | cons 𝑎 𝑉 𝜇1

⇓-ref
𝜇 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇1 𝑎 = 𝑛ℓ FreshIn 𝜇1

𝜇 | pc ⊢ ref ℓ 𝑀 ⇓ (addr 𝑎)low | cons 𝑎 𝑉 𝜇1

⇓-assign?

𝜇 | pc ⊢ 𝐿 ⇓ (addr 𝑎)ℓ | 𝜇1
𝜇1 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇2 pc ≼ ℓ̂

𝜇 | pc ⊢ 𝐿 =? 𝑀 ⇓ ($ unit)low | cons 𝑎 𝑉 𝜇2
, where 𝑎 = 𝑛ℓ̂

⇓-assign

𝜇 | pc ⊢ 𝐿 ⇓ (addr 𝑎)ℓ | 𝜇1
𝜇1 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇2

𝜇 | pc ⊢ 𝐿 = 𝑀 ⇓ ($ unit)low | cons 𝑎 𝑉 𝜇2

⇓-cast

𝜇 | pc ⊢ 𝑀 ⇓ 𝑉 | 𝜇1
Active 𝑐 Cast 𝑉 , 𝑐 { 𝑁

𝜇1 | pc ⊢ 𝑁 ⇓𝑊 | 𝜇2
𝜇 | pc ⊢ 𝑀 ⟨ 𝑐 ⟩ ⇓𝑊 | 𝜇2

⇓-if-cast-true

𝜇 | pc ⊢ 𝐿 ⇓ ($ true)ℓ ⟨ 𝑐 ⟩ | 𝜇1 Inert 𝑐
𝜇1 | pc ⋎ ℓ ⊢ 𝑀 ⇓ 𝑉 | 𝜇2

𝜇2 | pc ⊢ 𝑉 ⋎ ℓ ⟨ branch𝑐 𝐴 𝑐 ⟩ ⇓𝑊 | 𝜇3
𝜇 | pc ⊢ if 𝐿 𝐴 𝑀 𝑁 ⇓𝑊 | 𝜇3

⇓-if-cast-false

𝜇 | pc ⊢ 𝐿 ⇓ ($ false)ℓ ⟨ 𝑐 ⟩ | 𝜇1 Inert 𝑐
𝜇1 | pc ⋎ ℓ ⊢ 𝑁 ⇓ 𝑉 | 𝜇2

𝜇2 | pc ⊢ 𝑉 ⋎ ℓ ⟨ branch𝑐 𝐴 𝑐 ⟩ ⇓𝑊 | 𝜇3
𝜇 | pc ⊢ if 𝐿 𝐴 𝑀 𝑁 ⇓𝑊 | 𝜇3

⇓-fun-cast

𝜇 | pc ⊢ 𝐿 ⇓ 𝑉 ⟨ 𝑐 ⟩ | 𝜇1 Inert 𝑐
𝜇1 | pc ⊢ 𝑀 ⇓𝑊 | 𝜇2

𝜇2 | pc ⊢ elim-fun-proxy 𝑉 𝑊 𝑐 pc ⇓ 𝑉 ′ | 𝜇3
𝜇 | pc ⊢ 𝐿 𝑀 ⇓ 𝑉 ′ | 𝜇3

⇓-deref-cast

𝜇 | pc ⊢ 𝑀 ⇓ 𝑉 ⟨ 𝑐 ⟩ | 𝜇1 Inert 𝑐
𝜇1 | pc ⊢ ! 𝑉 ⟨ out𝑐 𝑐 ⟩ ⇓𝑊 | 𝜇2

𝜇 | pc ⊢ ! 𝑀 ⇓𝑊 | 𝜇2

⇓-assign?-cast

𝜇 | pc ⊢ 𝐿 ⇓ 𝑉 ⟨ 𝑐 ⟩ | 𝜇1 Inert 𝑐
𝜇1 | pc ⊢ elim-ref-proxy 𝑉 𝑀 𝑐 - =?- ⇓𝑊 | 𝜇2

𝜇 | pc ⊢ 𝐿 =? 𝑀 ⇓𝑊 | 𝜇2

⇓-assign-cast

𝜇 | pc ⊢ 𝐿 ⇓ 𝑉 ⟨ 𝑐 ⟩ | 𝜇1 Inert 𝑐
𝜇1 | pc ⊢ elim-ref-proxy 𝑉 𝑀 𝑐 - =- ⇓𝑊 | 𝜇2

𝜇 | pc ⊢ 𝐿 = 𝑀 ⇓𝑊 | 𝜇2

Fig. 15. Big-step operational semantics of 𝜆⇒SEC
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frames 𝐹 ::= □ 𝑀 | 𝑉 □
| if □ 𝐴 𝑀 𝑁 | let 𝑥 = □ in 𝑁
| ref✓ ℓ □ | ! □
| □ =✓ 𝑀 | 𝑉 =✓ □
| □ =? 𝑀
| □ ⟨ 𝑐 ⟩ | castpc 𝑔 □

plug : Term → Frame → Term

plug 𝐿 (□ 𝑀) = 𝐿 𝑀

plug 𝑀 (𝑉 □) = 𝑉 𝑀

plug 𝐿 (if □ 𝐴 𝑀 𝑁 ) = if 𝐿 𝐴 𝑀 𝑁

plug 𝑀 (let 𝑥 = □ in 𝑁 ) = let 𝑥 = 𝑀 in 𝑁
plug 𝑀 (ref✓ ℓ □) = ref✓ ℓ 𝑀

plug 𝑀 (! □) = ! 𝑀
plug 𝐿 (□ =✓ 𝑀) = 𝐿 =✓ 𝑀

plug 𝑀 (𝑉 =✓ □) = 𝑉 =✓ 𝑀

plug 𝐿 (□ =? 𝑀) = 𝐿 =? 𝑀
plug 𝑀 (□ ⟨ 𝑐 ⟩) = 𝑀 ⟨ 𝑐 ⟩

plug 𝑀 (castpc 𝑔 □) = castpc 𝑔 𝑀

Fig. 16. Evaluation frames and plug
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𝜖 : Term → Term, 𝜖 : HalfHeap → HalfHeap, and 𝜖 : Heap → HalfHeap

𝜖 (addr 𝑛ℓ̂)ℓ =
{
(addr 𝑛low)low , if ℓ̂ = low and ℓ = low
● , if ℓ̂ = high or ℓ = high

(21)

𝜖 ($ 𝑘)ℓ =
{
($ 𝑘)low , if ℓ = low
● , if ℓ = high

(22)

𝜖 (λ𝑝𝑐𝑥:𝐴.𝑁 )ℓ =
{
(λ𝑝𝑐𝑥:𝐴. 𝜖 𝑁 )low , if ℓ = low
● , if ℓ = high

(23)

𝜖 𝑥 = 𝑥

𝜖 (𝐿 𝑀) = (𝜖 𝐿) (𝜖 𝑀)
𝜖 (if 𝐿 𝐴 𝑀 𝑁 ) = if (𝜖 𝐿) 𝐴 (𝜖 𝑀) (𝜖 𝑁 )

𝜖 (let 𝑥 = 𝑀 in 𝑁 ) = let 𝑥 = (𝜖 𝑀) in (𝜖 𝑁 )
𝜖 (ref ℓ 𝑀) = ref ℓ (𝜖 𝑀)
𝜖 (ref? ℓ 𝑀) = ref? ℓ (𝜖 𝑀)
𝜖 (ref✓ ℓ 𝑀) = ref✓ ℓ (𝜖 𝑀)

𝜖 (! 𝑀) = ! (𝜖 𝑀)
𝜖 (𝐿 = 𝑀) = (𝜖 𝐿) = (𝜖 𝑀)
𝜖 (𝐿 =? 𝑀) = (𝜖 𝐿) =? (𝜖 𝑀)
𝜖 (𝐿 =✓ 𝑀) = (𝜖 𝐿) =✓ (𝜖 𝑀)
𝜖 (𝑀 ⟨ 𝑐 ⟩) = 𝜖 𝑀 (24)

𝜖 (castpc 𝑔 𝑀) = 𝜖 𝑀 (25)
𝜖 - = ●
𝜖 [] = [] (26)

𝜖 (⟨𝑛,𝑉 ⟩ :: 𝜇low) = ⟨𝑛, 𝜖 𝑉 ⟩ :: (𝜖 𝜇low) (27)
𝜖 ⟨𝜇low, 𝜇high⟩ = 𝜖 𝜇low (28)

Fig. 17. Erasure of 𝜆⇒SEC terms and the heap
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𝜇 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇′

⇓𝜖 -val
𝜇 | pc ⊢ 𝑉 ⇓𝜖 𝑉 | 𝜇

⇓𝜖 -app

𝜇 | pc ⊢ 𝐿 ⇓𝜖 (λpc′𝑥:𝐴.𝑁 )low | 𝜇1
𝜇1 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇2

𝜇2 | pc ⊢ 𝑁 [𝑥 := 𝑉 ] ⇓𝜖 𝑊 | 𝜇3
𝜇 | pc ⊢ 𝐿 𝑀 ⇓𝜖 𝑊 | 𝜇3

⇓𝜖 -app-●

𝜇 | pc ⊢ 𝐿 ⇓𝜖 ● | 𝜇1
𝜇1 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇2
𝜇 | pc ⊢ 𝐿 𝑀 ⇓𝜖 ● | 𝜇2

⇓𝜖 -if-true

𝜇 | pc ⊢ 𝐿 ⇓𝜖 ($ true)low | 𝜇1
𝜇1 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇2

𝜇 | pc ⊢ if 𝐿 𝐴 𝑀 𝑁 ⇓𝜖 𝑉 | 𝜇2
⇓𝜖 -if-false

𝜇 | pc ⊢ 𝐿 ⇓𝜖 ($ false)low | 𝜇1
𝜇1 | pc ⊢ 𝑁 ⇓𝜖 𝑉 | 𝜇2

𝜇 | pc ⊢ if 𝐿 𝐴 𝑀 𝑁 ⇓𝜖 𝑉 | 𝜇2

⇓𝜖 -if-●
𝜇 | pc ⊢ 𝐿 ⇓𝜖 ● | 𝜇1

𝜇 | pc ⊢ if 𝐿 𝐴 𝑀 𝑁 ⇓𝜖 ● | 𝜇1
⇓𝜖 -let

𝜇 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇1
𝜇1 | pc ⊢ 𝑁 [𝑥 := 𝑉 ] ⇓𝜖 𝑊 | 𝜇2

𝜇 | pc ⊢ let 𝑥 = 𝑀 in 𝑁 ⇓𝜖 𝑊 | 𝜇2

⇓𝜖 -deref

𝜇 | pc ⊢ 𝑀 ⇓𝜖 (addr 𝑛low)low | 𝜇1
lookup 𝜇1 𝑛 = 𝑉

𝜇 | pc ⊢ ! 𝑀 ⇓𝜖 𝑉 | 𝜇1
⇓𝜖 -deref-●

𝜇 | pc ⊢ 𝑀 ⇓𝜖 ● | 𝜇1
𝜇 | pc ⊢ ! 𝑀 ⇓𝜖 ● | 𝜇1

⇓𝜖 -ref?
𝜇 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇1 𝑛 = length 𝜇1 pc ≼ low

𝜇 | pc ⊢ ref? low 𝑀 ⇓𝜖 (addr 𝑛low)low | ⟨𝑛,𝑉 ⟩ :: 𝜇1
⇓𝜖 -ref?-●

𝜇 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇1
𝜇 | pc ⊢ ref? high 𝑀 ⇓𝜖 ● | 𝜇1

⇓𝜖 -ref
𝜇 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇1 𝑛 = length 𝜇1

𝜇 | pc ⊢ ref low 𝑀 ⇓𝜖 (addr 𝑛low)low | ⟨𝑛,𝑉 ⟩ :: 𝜇1
⇓𝜖 -ref-●

𝜇 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇1
𝜇 | pc ⊢ ref high 𝑀 ⇓𝜖 ● | 𝜇1

⇓𝜖 -assign?

𝜇 | pc ⊢ 𝐿 ⇓𝜖 (addr 𝑛low)low | 𝜇1
𝜇1 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇2 pc ≼ low

𝜇 | pc ⊢ 𝐿 =? 𝑀 ⇓𝜖 ($ unit)low | ⟨𝑛,𝑉 ⟩ :: 𝜇2
⇓𝜖 -assign?-●

𝜇 | pc ⊢ 𝐿 ⇓𝜖 ● | 𝜇1
𝜇1 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇2

𝜇 | pc ⊢ 𝐿 =? 𝑀 ⇓𝜖 ($ unit)low | 𝜇2

⇓𝜖 -assign

𝜇 | pc ⊢ 𝐿 ⇓𝜖 (addr 𝑛low)low | 𝜇1
𝜇1 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇2

𝜇 | pc ⊢ 𝐿 = 𝑀 ⇓𝜖 ($ unit)low | ⟨𝑛,𝑉 ⟩ :: 𝜇2
⇓𝜖 -assign-●

𝜇 | pc ⊢ 𝐿 ⇓𝜖 ● | 𝜇1
𝜇1 | pc ⊢ 𝑀 ⇓𝜖 𝑉 | 𝜇2

𝜇 | pc ⊢ 𝐿 = 𝑀 ⇓𝜖 ($ unit)low | 𝜇2

Fig. 18. Big-step operational semantics of erased 𝜆⇒SEC
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