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Abstract
Data engineers increasingly use domain-specific languages
(DSLs) to generate the code for data pipelines. Such DSLs
are often embedded in Python. Unfortunately, there are chal-
lenges in debugging the generation of data pipelines: an error
in a Python DSL script is often detected too late, after the
execution of the script, and the source code location that
triggers the error is hard to pinpoint.
In this paper, we focus on the scenario where a DSL em-

bedded in Python (so it is dynamically-typed) generates data
pipeline description code that is statically-typed. We propose
gradual metaprogramming to (1) provide a migration path
toward statically typed DSLs, (2) immediately provide earlier
detection of code generation type errors, and (3) report the
source code location responsible for the type error. Gradual
metaprogramming accomplishes this by type checking code
fragments and incrementally performing runtime checks as
they are spliced together. We define MetaGTLC, a metapro-
gramming calculus inwhich a gradually-typedmetalanguage
manipulates a statically-typed object language, and give se-
mantics to it by translation to the cast calculus MetaCC. We
prove that successful metaevaluation always generates a
well-typed object program and mechanize the proof in Agda.

CCS Concepts: • Software and its engineering→ Seman-
tics; Software development techniques.

Keywords: semantics, gradual typing, metaprogramming,
data engineering, type-driven development, machine-checked
proofs, Agda

1 Introduction
Data engineers use domain-specific languages (DSLs) to gen-
erate and manipulate the code for data pipelines. Examples
include the Expression Language of Apache NiFi [Apache
NiFi Team 2024], DAG files of Apache Airflow [Harenslak
∗Both authors contributed equally to this research.

and De Ruiter 2021], the Jinja templating language used by
Data Build Tool (dbt) [dbt Labs 2025], and the language of Ma
et al. [2024]. Those DSLs are often embedded in Python. How-
ever, there are challenges in error detection: an error in a
Python DSL script is often detected too late, after the execu-
tion of the script, and the source code location that triggers
the error is hard to pinpoint.
We focus on the language of Ma et al. [2024], where a

DSL embedded in Python (so it is dynamically-typed) gener-
ates data pipeline description code that is statically-typed.
The goal of our research is to increase the data engineers’
efficiency of data pipeline construction and debugging. We
propose gradual metaprogramming, which incrementally
type checks code fragments as they are spliced together
during metaevaluation and reports the source location of the
problem when type checking fails, thereby enabling earlier
and finer-grained error detection and increasing the effi-
ciency of debugging the code that generates or manipulates
data pipelines. We define MetaGTLC, a metaprogramming
calculus in which a gradually-typed metalanguage manip-
ulates a statically-typed object language. The semantics of
MetaGTLC is given by translation to its cast calculusMetaCC.
We prove type safety for MetaGTLC, which means success-
ful metaevaluation will always generate a well-typed object
program. We mechanize MetaGTLC, MetaCC, and the type
safety proof in Agda.

1.1 Generating Data Pipelines and Challenges in
Error Detection

A data pipeline specifies the steps in which data is ingested,
processed, and then stored [Crickard 2020; Harenslak and
De Ruiter 2021; IBM 2024]. Data engineers generate and ma-
nipulate descriptions of data pipelines using DSLs, which
are often embedded in Python. We begin by reviewing some
metaprogramming systems that generate or manipulate data
pipeline descriptions. Apache NiFi (https://nifi.apache.org/)

https://nifi.apache.org/
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Figure 1. Difficulty in debugging dynamically-typed metaprograms that generate data pipelines

is a generic framework of modeling the flow of data between
systems. NiFi uses a metalanguage called the Expression
Language to generate and manipulate the attributes and
values of a FlowFile, which describes a piece of data that
constitutes a data pipeline, such as a local file on the hard
drive or a remote file on cloud storage. NiFi also supports
manipulating data pipelines using Python scripts [Apache
NiFi Team 2025]. After the data pipelines are generated,
NiFi runs them on a Java virtual machine. Apache Airflow
(https://airflow.apache.org/) is a tool that orchestrates differ-
ent components for data processing in a data pipeline. The
description for a data pipeline in Airflow is a directed acyclic
graph (DAG). Airflow supports using “DAG files,” a metalan-
guage that is Python augmented with additional metadata
(e.g., when the pipeline should be executed) to dynamically
generate and manipulate those DAGs. The Data Build Tool
(https://www.getdbt.com/) uses Jinja, a templating language
that translates to Python, to generate SQL database queries
that construct data pipelines. Ma et al. [2024] design a lan-
guage for AI data engineering. Their calculus is modeled on
a real world DSL for feature engineering, a pre-processing
step of machine learning that transforms raw data into a set
of measurable properties. A surface language embedded in
Python manipulates code in a statically-typed core calculus
for data pipeline descriptions. When such a data pipeline
description is deployed, it pulls data from databases, pre-
processes it, and provides the pre-processed data as input to
machine learning algorithms.
Data engineers face increasing challenges in debugging

and pinpointing errors as metaprograms grow in size and
complexity. Figure 1 demonstrates the difficulty in debug-
ging a metaprogram written in a dynamically-typed DSL
that generates statically-typed data pipeline descriptions
(the scenario of Ma et al. [2024]). A team of three program-
mers, Alice, Bob, and Carol, are collaboratively constructing
and debugging the same data pipeline. Carol constructs the
metaprogram by invoking the code in Library A by Alice

and Library B by Bob and adding code of her own. Carol
then runs the metaprogram and generates a data pipeline
description. Unfortunately, when Carol is ready to deploy
the pipeline to the machine learning backend, she discovers
(with confusion and disappointment) that the pipeline de-
scription is rejected by the typechecker and fails to compile.
To make things worse, Carol has no clue about the source
of the error. The mistake can be either in Alice’s or Bob’s
library code, or in Carol’s own code of the metaprogram.

1.2 Gradual Metaprogramming Helps Debugging
Data Pipeline Generation

The main technical goal of our research is to improve the
data engineers’ efficiency in debugging Python metapro-
grams that generate data pipeline descriptions. We model
data pipeline construction in a calculus,MetaGTLC, that com-
bines two language features: (1) metaprogramming through
quote and splice (2) gradual typing. The choice of perform-
ing metaprogramming through quote and splice is inspired
by the rich literature on static type systems for metapro-
gramming, going back to the work on MetaML by Sheard
and Taha [Sheard 1998; Taha and Sheard 1997, 2000] and
Moggi [Moggi et al. 1999]. MetaML shows that it is possible
to obtain a strong type safety guarantee: if the metapro-
gram successful type checks, then the code generated during
metaevaluation will also type check. MetaML obtains this
guarantee by tracking the type of a code fragment and by ma-
nipulates code fragments in a purely functional style using
quote and splice.

Like MetaML, MetaGTLC also guarantees that generated
data pipelines arewell-typed. However, different fromMetaML,
whose metalanguage (i.e., ML) is statically typed, MetaGTLC
employs a gradually-typed metalanguage. This design choice
is based on the real-world needs of data engineers, who cur-
rently use Python for fast data pipeline development. As the
metaprograms for data pipeline construction get increasing
complicated and consist of more and more components, the

https://airflow.apache.org/
https://www.getdbt.com/
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Figure 2. Our proposed workflow of generating data pipelines using gradual metaprogramming

data engineers will need to add type annotations by using
a gradual typechecker for Python such as MyPy [Lehtosalo
and mypy contributors 2025] so that the mistakes in the
metaprograms are reported in earlier stages of the pipeline
generation. The calculus we study in this paper is agnostic
to the details of the object language, just that it should be
statically typed to model the statically-typed nature of the
data pipeline description language of Ma et al. [2024]. As a re-
sult, we choose simply-typed lambda calculus (STLC) as our
object language as a simple representative of statically-typed
languages.

Early error detection. MetaGTLC is able to detect errors
earlier than the language of Ma et al. [2024]. The main prob-
lem of the error reporting in data pipeline construction is
that a run of the metaprogram may generate an ill-typed
pipeline description, and type errors are only detected when
the pipeline description is type checked right before its de-
ployment. In MetaGTLC, type errors are detected either stat-
ically or during metaevaluation, preventing ill-typed object
programs from being generated at all, as is illustrated in
Figure 2 (up). The programmers of the AI data engineering

team can then invest time and effort in adding type annota-
tions to the code, making errors appear even earlier during
meta evaluation. For example, if the metaprogram and the
libraries that it uses are fully statically typed, type errors
may appear when Alice type checks the code of Library
A. Provided that Alice has fixed Library A, and the entire
metaprogram becomes well-typed and runs correctly, the
metaprogram is guaranteed to generate a well-typed data
pipeline description. As is illustrated in Figure 2 (down), the
pipeline description now correctly compiles and is ready for
deployment, so everyone is smiling.

Blame tracking. MetaGTLC supports blame tracking [Find-
ler and Felleisen 2002], thereby enabling modular runtime
error messages. Consider the situation where Carol runs the
metaprogram written in MetaGTLC and gets an error during
metaevaluation. The blame label in the error message refer-
ences the code fragment that is responsible for the error. In
Figure 2 (up), the blame label points to a source code location
inside Library A, so Carol is confident that neither her code
nor Bob’s Library B is responsibility for the error. Carol could
kindly ask Alice to fix Library A. Imagine another situation
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where Carol calls a function in Alice’s library with the wrong
type. In that case, the blame goes to Carol, so Carol will have
to fix her own code.

1.3 Gradual Metaprogramming to Improve Data
Pipeline Generation

Gradual metaprogramming supports a seamless transition
from dynamic to static, so it is backward compatible with
existing code of a dynamically-typed DSL that generates
data pipelines, while facilitating the migration towards static
typing by enabling the incremental addition of type anno-
tations. Furthermore, gradual metaprogramming is a first
step towards accommodating richer typing disciplines in the
future, such as information-flow control (IFC) for privacy-
preserving machine learning.

Migration and backward compatibility. MetaGTLC
enables a seamless migration from dynamic metaprograms
to static metaprograms through gradual typing. Gradual
typing embeds dynamic typing, so existing dynamically-
typed metaprograms and libraries will continue to run on
MetaGTLC. The programmers can then incrementally add
type annotations. Ideally, all libraries and metaprograms will
eventually become statically typed (Figure 2, down).

High development efficiency. Programmers will not sac-
rifice development efficiency if theymake the transition from
a dynamically-typed DSL (such as the language of Ma et al.
[2024]) to MetaGTLC because type annotations are optional
in MetaGTLC. Even if the programmers leave out type anno-
tations and make the metaprogram fully dynamically typed,
MetaGTLC still performs checking during metaevaluation
so that ill-typed data pipelines will not be generated.

A Step Towards Privacy-Preserving AI.. MetaGTLC is a
first step towards combining metaprogramming with a grad-
ual security type system for privacy-preserving machine
learning. Recently, Chen and Siek [2024] design a gradual
IFC calculus called 𝜆★IFC, which satisfies both noninterference
(the security guarantee) and the gradual guarantee. In 𝜆★IFC,
the programmer is free to choose when it is appropriate to
increase the precision of type annotations and put in the ef-
fort to pass the static checks for higher performance, versus
when it is appropriate to reduce the precision of type anno-
tations, thereby deferring the enforcement to runtime for
lower development cost. Similar to 𝜆★IFC, MetaGTLC also uses
coercions [Henglein 1994] to represent runtime checking. In
future, we plan to extend MetaGTLC with IFC following the
approach of 𝜆★IFC.

1.4 Related Work
MetaGTLC is novel in the realm of metaprogramming lan-
guages because it fits in the less-explored design space of
generating statically-typed object code using a gradually-
typed metalanguage.

Table 1. Typing paradigms of metaprogramming languages

Object
language

Metalanguage

Static Dynamic Gradual

Static MetaML/MetaOCaml C++ Templates Miao & Siek
Template Haskell Ma et al. MetaGTLC

Dynamic - Lisp/Racket -
Gradual - - -

MetaML [Moggi et al. 1999; Sheard 1998; Taha and Sheard
2000]/MetaOCaml [Taha et al. 2004], TemplateHaskell [Sheard
and Peyton Jones 2002], C++ Templates [Abrahams and Gur-
tovoy 2004; Vandevoorde and Josuttis 2002; Veldhuizen 1995],
Lisp [Steele 1990]/Racket [Flatt and PLT 2010], the language
of Ma et al. [2024], and the calculus of Miao and Siek [2010]
(which is adapted from the reflective metaprogramming cal-
culus of Garcia and Lumsdaine [2009]) all provide multiple
stages of computation, where the code of earlier stages can
generate or manipulate code of later stages. We categorize
these metaprogramming languages in Table 1 by the typ-
ing paradigms of their meta- and object languages. MetaM-
L/MetaOCaml and Template Haskell both generate code in
a statically-typed object language using a statically-typed
metalanguage. Lisp/Racket generates dynamically-typed ob-
ject code using a dynamically-typed metalanguage. The lan-
guage of Ma et al. [2024], on the other hand, is similar to C++
Templates because it generates statically-typed code using a
dynamically-typed metalanguage.
MetaGTLC falls in the category of generating statically-

typed object language code using a gradually-typed metalan-
guage. The only other language that falls into this category
is the calculus of Miao and Siek [2010]. Similar to the cal-
culus of Miao and Siek [2010], MetaGTLC incrementally
type checks the code fragments as they are spliced together
during metaevaluation. Different from the calculus of Miao
and Siek [2010], MetaGTLC takes a more standard approach
to gradual metaprogramming. Like the original Gradually
Typed Lambda Calculus (GTLC) of Siek and Taha [Siek and
Taha 2006], there is an explicit unknown type (here written
★) and runtime type checking happens at the boundaries
of statically- and dynamically-typed code fragments during
metaevaluation.

1.5 Technical Contributions
We have motivated how gradual metaprogramming could
be useful for data pipeline generation by enabling earlier
and more precise error detection while maintaining high
development efficiency. The rest of the paper makes the
following technical contributions:

• We design MetaGTLC, the first calculus for gradual
metaprogramming using the standard approach to
gradual typing.
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• WedefineMetaCC, a cast calculus for gradualmetapro-
gramming.

• We prove type safety for MetaGTLC, so a successful
run of metaevaluation always generates well-typed
object language code.

• WemechanizeMetaGTLC,MetaCC, and the type safety
proof in the Agda proof assistant.

Our Agda development is at the following link:
https://github.com/cty12/MetaGTLC

2 Gradual Metaprogramming in Action
In this section, we demonstrate that gradual metaprogram-
ming enhances the debugging experience for data pipeline
construction because it (1) supports early error detection as
metaevaluation happens (Section 2.1) and (2) enables pin-
pointing the source of the error through blame tracking
(Section 2.2). In the examples, we generate statically typed
database queries with SQL syntax using a gradually-typed
metalanguage. Omitted type annotations on 𝜆-abstractions,
functions, and let-bindings of the metalanguage default to
the statically-unknown type (★).

2.1 Early Error Detection
MetaGTLC incrementally type-checks code fragments as
they are spliced together. As a result, a programmer does not
have to wait until data pipeline generation is completed for a
type error to be detected. Instead, the error will be reported
during the generation of the data pipeline. We shall discuss
a simple example and contrast how errors would be caught
by MetaGTLC versus in the language of Ma et al. [2024].
Consider the following program, which reads a number

from a file and then uses that number to build a query that
fetches records of people from the tperson table:

Example 2.1 (Dynamically typed). The type error is de-
tected during metaevaluation in MetaGTLC.

1 let r = read_and_quote "input.txt" in

2 ≺ SELECT * FROM tperson

3 WHERE age < (∼r) + work ≻

The metaprogram is dynamically typed, and the object code
between the opening quote (≺) and closing quote (≻) is stati-
cally typed. The splice operator (∼) embeds metalanguage
computation within object code. The read_and_quote func-
tion takes a filename and returns a quoted object language
string. For example, if the file input.txt contains 42, the
function call (read_and_quote “input.txt”) will return
≺ “42” ≻.

The programmer intends that the program should evaluate
to a query that fetches people whose age is less than the sum
of the number in the file and the number of years the person
has worked at a job. However, there is a type mismatch.
When run in the language of Ma et al. [2024], the error is not

detected until after the metaprogram is finished, producing
the following query:
SELECT * FROM tperson

WHERE age < "42" ✗ + work

This query does not typecheck because “42” is a string not
an integer. The programmer discovers the type error only
after the query is generated.

Gradual metaprogramming is able to detect the error ear-
lier, during the generation of the query. The result of calling
read_and_quote is bound to the variable 𝑟 without a type an-
notation, which means that 𝑟 is of the unknown type (★). The
unknown type is consistent with the type (Code String)
returned by read_and_quote. The variable 𝑟 is then spliced
into an object language database query. The spliced term
has type Int because 𝑥 is an argument of integer addition.
For the program to type check, 𝑟 is expected to be of type
(Code Int), which is also consistent with its type ★. Even
though the program type-checks because the typechecker
permits values flowing from (Code String) to ★ and then
to (Code Int), the program errors during metaevaluation.
MetaGTLC adds casts between types that are consistent,
and the casts get checked during metaevaluation. In the ex-
ample, there is a cast from (Code String) to ★ when the
return value of read_c is bound to 𝑟 , which is followed by
another cast from ★ to (Code Int) when 𝑟 is spliced into
the quote. During metaevaluation, these two casts collide
because String and Int are different types. In MetaGTLC,
this type mismatch is detected during metaevaluation, thus
preventing the ill-typed query from being generated.
We can detect the type mismatch even earlier by going

fully static and annotating 𝑟 with (Code Int):
Example 2.2 (Statically typed). The type error is detected
even earlier (when type-checking the metaprogram) if we
add a type annotation (highlighted) on the let-binding.

1 let r: Code Int = read_and_quote "input.txt" in

2 ≺ SELECT * FROM tperson

3 WHERE age < (∼r) + work ≻

MetaGTLC detects the type mismatch when type-checking
the metaprogram before metaevaluation starts. The type-
checker rejects the program because read_and_quote re-
turns (Code String) but the annotation expects (Code Int):
let r: Code Int = read_and_quote "input.txt" ✗ in

2.2 Blame Tracking for Pinpointing Errors
MetaGTLC improves the debugging efficiency of data pipeline
construction because it is able to pinpoint the cause of a type
error that happens during metaevaluation through blame
tracking. Blame tracking is especially useful when themetapro-
gram consists of multiple modules written by different pro-
grammers, because the mistake may be in the source code
of module A even though module B raises the error.

https://github.com/cty12/MetaGTLC
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We consider a scenario where Carol is training a machine
learning model that predicts whether a student would like to
learn interactive theorem proving in Agda. She uses the num-
ber of lines of Haskell code and the number of lines of proofs
that the student wrote in the past to compute the input to
her model. Carol writes a metaprogram in MetaGTLC using
the function compose from Alice’s Library A and the func-
tion sqr from Bob’s Library B. The metaprogram constructs
database queries to the tstudent table. The student col-
umn of the table contains a string for the name of a student.
The haskell and proof columns contain integers for the
number of lines of Haskell code and proofs that the student
wrote in the past, respectively.

The compose function from Alice’s Library A accepts two
functions, 𝑓 and 𝑔, as arguments and returns their composi-
tion in the object language:

1 /* Alice 's Library A

2 compose has a static type signature */

3 compose : (Code Int -> Code Int)

4 -> (Code Int -> Code Int)

5 -> Code (Int -> Int)

6 compose f g = ≺ 𝜆x. ∼(f (g ≺ x ≻)) ≻

The sqr function from Bob’s Library B builds an expres-
sion in the object language that calculates the square of 𝑥 :

1 /* Bob 's Library B

2 sqr also has a static type signature */

3 sqr : Code Int -> Code Int

4 sqr x = ≺ (∼x) * (∼x) ≻

Both compose and sqr are annotated with fully static type
signatures. The type signature of a function serves as the
function’s specification. If the library functions are invoked
by a user with the wrong types, which violates the specifica-
tion, the blame should go to the user instead of the library.
Carol’s metaprogram constructs a database query that

computes the input to the machine learning algorithm based
on the number of lines of Haskell and proofs:

Example 2.3 (Blame tracking). MetaGTLC correctly assigns
blame to Carol’s code instead of Alice’s or Bob’s library.

1 /* Carol 's program , which uses Library A, B

2 scale is dynamically typed */

3 scale x =

4 let r = int (read "input.txt") in

5 if r > 0 then ≺ false ≻
6 else ≺ 3 * (∼x) ≻
7
8 ≺ SELECT

9 ((∼(compose sqr scale)) (haskell + proof))

10 FROM tstudent ≻

The program first defines a dynamically-typed scale func-
tion, which takes an argument𝑥 . The scale function branches
on an integer parsed from the file input.txt and returns

quoted terms of different types: if the integer is positive,
scale returns quoted false (which is a bool); otherwise, it
returns a quoted term of multiplying 𝑥 by 3 (which is an inte-
ger). Then, the program builds a database query that selects
the value of applying the composition of sqr and scale to
the sum of the number of lines of Haskell and proofs for
every students in the table tstudent. We assume that the
file input.txt contains 42.

In the language of Ma et al. [2024], metaevaluating Carol’s
program generates the following ill-typed query:

SELECT

((𝜆x. false * false ✗) (haskell + proof))

FROM tstudent

The typechecker rejects the query because multiplication
expects integers not false. On seeing the type error, Carol
has little clue about the root cause of the problem: themistake
can be in either Carol’s own code or code of the libraries.
The error reporting of Ma et al. [2024] does not connect type
errors in the generated query with source code locations in
the metaprogram or the libraries that the metaprogram uses.

Through blame tracking, MetaGTLC is able to expose the
root cause of the type error. The error message tells Carol
that something is wrong with the function application on
line 9 of her program (not Library A or Library B):

((∼ (compose sqr scale) ✗) (haskell + proof))

The error message says that compose expects the return
type of scale to be (Code Int), but scale returns a value
of (Code Bool) during metaevaluation.

Under the hood, MetaGTLC automatically adds blame la-
bels (source code location identifiers) to the runtime casts
that it inserts during compilation. Later, when an error is
raised, its blame label can point back to the correspond-
ing source code location. In line 9 of Carol’s code, compose
expects the second argument to be of the function type
(Code Int → Code Int), but scale is of the unknown
type (★), so a cast in inserted at that location. At runtime
this cast wraps scale in a proxy that checks whether the
arguments and return values match the expected type. So
when the function compose makes a function call to scale
and scale returns ≺ false ≻, the proxy signals an error
and blames the function application of compose on line 9 of
Carol’s code.

MetaGTLC enablesmodular error reasoning through blame
tracking. A type signature serves as the specification, and a
blame label identifies the code location to blame. In the exam-
ple, even though the error is raised in the body of compose,
a function in Library A by Alice, MetaGTLC tracks down the
error and blames the correct location in Carol’s code.

3 Definition of MetaGTLC
In this section, we present the formal definition ofMetaGTLC.
We first define the types ofMetaGTLC in Section 3.1.We then
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Types and typing contexts

base types 𝜄 ∈ {Nat, Int, Bool, Unit}
atomic types 𝑎 ∈ {★, 𝜄}
ground types 𝐺,𝐻 ∈ {𝜄,★→ ★, Code★}

object language types 𝑆,𝑇 ::= 𝜄 | 𝑆 → 𝑇

metalanguage types 𝐴, 𝐵 ::= 𝜄 | 𝐴 → 𝐵

| ★ | Code★ | Code 𝑇
typing contexts Γ ::= ∅

| Γ, 𝑥 :otype 𝑇
| Γ, 𝑥 :mtype 𝐴

𝐴 ∼ 𝐵

★ ∼ 𝐴 𝐴 ∼ ★ 𝜄 ∼ 𝜄
𝐴 ∼ 𝐴′ 𝐵 ∼ 𝐵′

(𝐴 → 𝐵) ∼ (𝐴′ → 𝐵′)

Code 𝑇 ∼ Code 𝑇 Code★ ∼ Code★

Code★ ∼ Code 𝑇 Code 𝑇 ∼ Code★

Figure 3. Types of MetaGTLC. Consistency between meta-
language types

define the syntax and the type system of MetaGTLC in Sec-
tion 3.2. Finally, we define the metaevaluation of MetaGTLC
in Section 3.3.

3.1 Types of MetaGTLC
We define the types of MetaGTLC in Figure 3. The object
language is statically typed, so a type of the object language
(𝑇 ) can be either a base type (Nat, Int, Bool, or Unit) or a
function type. The metalanguage is gradually typed, so types
of the metalanguage (𝐴) include the statically-unknown type
★ (highlighted). The metalanguage also includes two types
for quoted object code (highlighted): if the code is typed at
T, the quoted code is of (Code 𝑇 ). If the quoted code goes
through casts, its type may become Code★, which means
that the term represents some quoted code, but the type of
the code is unknown. Ground types are types that are not ★
but can be cast into or out of★, which include any base type
(𝜄), the simplest form of a function type that has unknown
in its parameter and return type (★→ ★), and the type for
code of unknown type (Code★). Atomic types only include
base types and ★. (Atomic types are used when we define
identity coercions in Section 4.1.) A typing context (Γ) is an
association list that maps variables to their types. Each type
is associated with a tag: if the type is of the object language,
it has tag otype; otherwise if the type is of the metalanguage,
it has tag mtype. The type consistency relation𝐴 ∼ 𝐵 is used
in the typing rules of MetaGTLC. Two types are consistent
when they are equal except for the places where either type
contains unknown type information.

Syntax of MetaGTLC

object terms 𝑀𝑠 ::= 𝑥 | 𝑘 | 𝜆𝑥 .𝑀𝑠 | 𝑀𝑠 𝑀𝑠 | 𝑀𝑠 : 𝑇
code terms 𝑀𝑜 ::= 𝑥 | 𝑘 | 𝜆𝑥 .𝑀𝑜 | 𝑀𝑜 𝑀𝑜 | 𝑀𝑜 : 𝑇

| ∼ℓ 𝑀𝑚

metaterms 𝑀𝑚 ::= 𝑥 | 𝑘 | 𝜆𝑥 :𝐴.𝑀𝑚 | (𝑀𝑚 𝑀𝑚)ℓ
| ≺ 𝑀𝑜 ≻

Γ ⊢𝑜 𝑀𝑜 ⇒ 𝑇

⊢𝑜 -const 𝑘 : 𝜄
Γ ⊢𝑜 𝑘 ⇒ 𝜄

⊢𝑜 -var
Γ(𝑥) = otype 𝑇

Γ ⊢𝑜 𝑥 ⇒ 𝑇

⊢𝑜 -app
Γ ⊢𝑜 𝐿𝑜 ⇒ (𝑆 → 𝑇 ) Γ ⊢𝑜 𝑀𝑜 ⇐ 𝑆

Γ ⊢𝑜 𝐿𝑜 𝑀𝑜 ⇒ 𝑇

⊢𝑜 -ann Γ ⊢𝑜 𝑀𝑜 ⇐ 𝑇

Γ ⊢𝑜 𝑀𝑜 : 𝑇 ⇒ 𝑇

Γ ⊢𝑜 𝑀𝑜 ⇐ 𝑇

⊢𝑜 -lam
(Γ, 𝑥 :otype 𝑆) ⊢𝑜 𝑀𝑜 ⇐ 𝑇

Γ ⊢𝑜 𝜆𝑥. 𝑀𝑜 ⇐ (𝑆 → 𝑇 )

⊢𝑜 -check-infer Γ ⊢𝑜 𝑀𝑜 ⇒ 𝑇

Γ ⊢𝑜 𝑀𝑜 ⇐ 𝑇

⊢𝑜 -splice Γ ⊢𝑚 𝑀𝑚 : 𝐴 𝐴 ∼ Code 𝑇

Γ ⊢𝑜∼ℓ 𝑀𝑚 ⇐ 𝑇

Γ ⊢𝑚 𝑀𝑚 : 𝐴

⊢𝑚-const 𝑘 : 𝜄
Γ ⊢𝑚 𝑘 : 𝜄

⊢𝑚-var
Γ(𝑥) = mtype 𝐴

Γ ⊢𝑚 𝑥 : 𝐴

⊢𝑚-lam
(Γ, 𝑥 :mtype 𝐴) ⊢𝑚 𝑀𝑚 : 𝐵
Γ ⊢𝑚 𝜆𝑥 :𝐴.𝑀𝑚 : (𝐴 → 𝐵)

⊢𝑚-app
Γ ⊢𝑚 𝐿𝑚 : (𝐴1 → 𝐴2) Γ ⊢𝑚 𝑀𝑚 : 𝐵 𝐴1 ∼ 𝐵

Γ ⊢𝑚 (𝐿𝑚 𝑀𝑚)ℓ : 𝐴2

⊢𝑚-app★ Γ ⊢𝑚 𝐿𝑚 : ★ Γ ⊢𝑚 𝑀𝑚 : 𝐴
Γ ⊢𝑚 (𝐿𝑚 𝑀𝑚)ℓ : ★

⊢𝑚-quote Γ ⊢𝑜 𝑀𝑜 ⇒ 𝑇

Γ ⊢𝑚≺ 𝑀𝑜 ≻: Code 𝑇

Figure 4. Syntax and typing of the gradual metaprogram-
ming calculus MetaGTLC

3.2 Syntax and Type System of MetaGTLC
The syntax for MetaGTLC is defined in Figure 4. The object
language is the simply-typed lambda calculus (STLC) with
constants (𝑘). The annotation term is to facilitate bidirec-
tional type checking [Dunfield and Krishnaswami 2021] (we
discuss the need for bidirectional typing later in this section).
The code language is the object language (STLC) extended
with splice (highlighted), which escapes to the computation
of the metalanguage. The metalanguage is the gradually-
typed lambda calculus (GTLC) extended with quote (high-
lighted), which produces a piece of code in the object lan-
guage. If the type annotation on ametalanguage 𝜆-abstraction
is omitted, it defaults to ★. The term for splice in the object
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language and the term of function application in the meta-
language both carry blame labels (ℓ). Those terms incur casts
that may trigger cast errors during metaevaluation. When a
cast error (blame) is reported, its blame label references the
source code location responsible for that error.

The type system of MetaGTLC is also defined in Figure 4.
The typing context Γ maps a variable to its type, and we
distinguish a variable in the metalanguage from one in the
object language by looking at the type’s tag (mtype or otype).
The typing of the metalanguage takes the form Γ ⊢𝑚 𝑀𝑚 : 𝐴.
The typing rules extend the type system of GTLC with a rule
for quote: rule ⊢𝑚-quote (highlighted) lifts the type of the
quoted object code (𝑇 ) to Code 𝑇 .

The typing of the object language is bidirectional, taking
the forms Γ ⊢𝑜 𝑀𝑜 ⇒ 𝑇 (synthesis mode) and Γ ⊢𝑜 𝑀𝑜 ⇐
𝑇 (checking mode). The bidirectional typing rules extend
those for STLC with one rule for splice (highlighted). We use
bidirectional typing because it is a mechanism for inferring
types that are needed during cast insertion. Consider the
example:

Example 3.1 (Splicing code of unknown type).
𝜆x.≺ 1 + ∼x ≻

The variable 𝑥 has type ★ but we can only splice fully-typed
code into the object language (STLC). So MetaGTLC needs
to insert a cast 𝑐 :
𝜆x.≺ 1 + ∼ (x⟨ 𝑐 ⟩) ≻

But what should be the target type of the cast? Bidirectional
typing provide a mechanism for inferring that type from
the code that surrounds the splice. In this case, the addition
operator expects an argument of type Int, so the target type
of 𝑐 should be (Code Int). In general, Bidirectional typing
uses two modes: (1) the normal synthesis mode in which the
type of a term is determined by inspecting the term itself, and
(2) checking mode, in which the context of a term specifies
an expected type. This example shows that the typing for
splice must be in checking mode so that the target type of the
cast is provided by the context. (We show full cast insertion
rules in Section 5.)

3.3 Metaevaluation of MetaGTLC
The metaevaluation of MetaGTLC is defined by the total
function meta-eval. Metaevaluation may either result in an
STLC term or a blame, or diverge, or get stuck:

results 𝑟 ::= 𝑀𝑠 | blame ℓ | diverge | stuck

The stuck case is for the proof of type safety: we prove that
metaevaluation never gets stuck in Theorem 6.6.

The meta-eval function takes a well-typed metalanguage
term (𝑀𝑚). The metaevaluation function first compiles 𝑀𝑚

into the cast calculus (intermediate representation) term
𝑀𝑐 . The function then reduces 𝑀𝑐 using the reduction of
MetaCC and reports the result of reduction. We define the

Syntax of coercions (cast representation)

coercions 𝑐 ::= id 𝑎 | 𝐺! | 𝐺?ℓ | 𝑐 → 𝑑 | 𝑐 ;𝑑
| code-id★ | code-id 𝑇

| code! 𝑇 | code?ℓ 𝑇

⊢ 𝑐 : 𝐴 ⇒ 𝐵

⊢-id
⊢ id 𝑎 : 𝑎 ⇒ 𝑎

⊢-inj
⊢ 𝐺! : 𝐺 ⇒ ★

⊢-proj
⊢ 𝐺?ℓ : ★⇒ 𝐺

⊢-fun ⊢ 𝑐 : 𝐵 ⇒ 𝐴 ⊢ 𝑑 : 𝐴′ ⇒ 𝐵′

⊢ 𝑐 → 𝑑 : (𝐴 → 𝐴′) ⇒ (𝐵 → 𝐵′)

⊢-seq ⊢ 𝑐 : 𝐴 ⇒ 𝐵 ⊢ 𝑑 : 𝐵 ⇒ 𝐶

⊢ 𝑐;𝑑 : 𝐴 ⇒ 𝐶

⊢-code-id★
⊢ code-id★ : Code★⇒ Code★

⊢-code-idT
⊢ code-id 𝑇 : Code 𝑇 ⇒ Code 𝑇

⊢-code-inj
⊢ code! 𝑇 : Code 𝑇 ⇒ Code★

⊢-code-proj
⊢ code?ℓ 𝑇 : Code★⇒ Code 𝑇

Figure 5. Syntax and typing of coercions

cast calculus MetaCC in the next section and the compilation
from MetaGTLC to MetaCC in Section 5.

Definition 3.2 (Metaevaluation of MetaGTLC). Let𝑀𝑚 be
a well-typed MetaGTLC term and suppose𝑀𝑚 is compiled
into the MetaCC term 𝑀𝑐 : ∅ ⊢𝑚 𝑀𝑚 : Code 𝑇 { 𝑀𝑐 . The
metaevaluation of𝑀𝑚 is defined as:

meta-eval 𝑀𝑚 ≜ 𝑀𝑠 if𝑀𝑐 −→∗≺ 𝑀𝑠 ≻
meta-eval 𝑀𝑚 ≜ blame ℓ if𝑀𝑐 −→∗ blame ℓ

meta-eval 𝑀𝑚 ≜ diverge if ∀𝐿.𝑀𝑐 −→∗ 𝐿

and 𝐿 −→ 𝑁 for some 𝑁
meta-eval 𝑀𝑚 ≜ stuck otherwise

4 Definition of the Cast Calculus MetaCC
In this section, we define a cast calculus for gradual metapro-
gramming called MetaCC, which extends the 𝜆C calculus
of Siek et al. [2021] with quote and splice. A cast calculus
(CC) is an intermediate representation where all casts are
made explicit. We represent casts in MetaCC by defining
coercions in Section 4.1. We then present the syntax and the
type system of MetaCC in Section 4.2. Finally, we define the
small-step operational semantics for MetaCC in Section 4.3.
In the next section, we define a type-preserving compila-
tion from MetaGTLC to MetaCC, so that the semantics of
MetaGTLC is given by MetaCC.
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4.1 Cast Representation Using Coercions
We present the syntax and typing of coercions in Figure 5.
Coercions are combinators that specify the conversion be-
tween two types: ⊢ 𝑐 : 𝐴 ⇒ 𝐵. The syntax and typing of
identity, injection, projection, function, and sequence coer-
cions are standard: an identity coercion (id 𝑎) goes from
an atomic type (𝑎, which is base or ★) to the same atomic
type. An injection (𝐺!) converts from a ground type (𝐺) to
★, and a projection (𝐺?ℓ ) goes in the other direction, from
★ to a ground type. Projections are responsible for blame, so
a projection carries a blame label (ℓ). A function coercion
(𝑐 → 𝑑) consists of two sub-coercions: 𝑐 is responsible for
casting the parameter type, and 𝑑 casts the return type. A
sequence coercion (𝑐 ;𝑑) connects the sub-coercion 𝑐 , which
casts from 𝐴 to 𝐵, with the sub-coercion 𝑑 , which casts from
𝐵 to 𝐶 , and forms a coercion from 𝐴 to 𝐶 .

Compared with 𝜆C, we introduce four new coercions be-
tween code types (highlighted in Figure 5). There are two
identity coercions between code types: code-id★ goes from
Code★ to Code★, and code-id 𝑇 goes from Code 𝑇 to Code 𝑇 .
A code injection coercion is similar to a regular injection,
except that the former is between code types and goes from
Code 𝑇 to Code★. A code projection coercion goes in the op-
posite direction, from Code★ to Code 𝑇 . Similar to a regular
projection, a code projection is responsible for blame, so it
also carries a blame label.

4.2 Syntax and Type System of MetaCC
The syntax and the type system of MetaCC are presented
in Figure 6. All casts are made explicit in MetaCC. There
is an explicit form for casts: 𝑀𝑐 ⟨𝑐⟩ (highlighted), where 𝑐
is the coercion to be applied to the MetaCC term𝑀𝑐 . If𝑀𝑐

is typed at 𝐴 and the coercion 𝑐 goes from 𝐴 to 𝐵, then
𝑀𝑐 ⟨𝑐⟩ is typed at 𝐵 (rule ⊢𝑐 -cast). In addition, we have a
term blame ℓ (highlighted) for cast errors that may arise
during metaevaluation. Each blame carries a blame label that
identifies the source location of the error. A blame can have
any type (rule ⊢𝑐 -blame.)
Unlike MetaGTLC, terms for function application and

splice in MetaCC no longer carry blame labels. During cast
insertion, the blame labels go from the source code locations
in MetaGTLC terms into coercions (specifically, projections
and code projections) in MetaCC terms.

Compared with the bidirectional typing of the code terms
in MetaGTLC, the typing for code terms is uni-directional in
MetaCC. This is because all types are already recorded inside
coercions in MetaCC. Also, type consistency in MetaGTLC
turns into type equality in MetaCC, because all implicit type
conversions are made explicit after cast insertion.

4.3 Operational Semantics of MetaCC
We define the small-step operational semantics for the cast
calculus MetaCC in Figure 7. The semantics of MetaCC is

Syntax of MetaCC

CC code terms 𝑀𝑜𝑐 ::= 𝑥 | 𝑘 | 𝜆𝑥 . 𝑀𝑜𝑐 | 𝑀𝑜𝑐 𝑀𝑜𝑐

| 𝑀𝑜𝑐 : 𝑇 | ∼ 𝑀𝑐

CC metaterms 𝑀𝑐 ::= 𝑥 | 𝑘 | 𝜆𝑥 :𝐴.𝑀𝑐 | 𝑀𝑐 𝑀𝑐

| ≺ 𝑀𝑜𝑐 ≻
| 𝑀𝑐 ⟨𝑐⟩ | blame ℓ

Γ ⊢𝑜𝑐 𝑀𝑜𝑐 : 𝑇

⊢𝑜𝑐 -const 𝑘 : 𝜄
Γ ⊢𝑜𝑐 𝑘 : 𝜄

⊢𝑜𝑐 -var
Γ(𝑥) = otype 𝑇

Γ ⊢𝑜𝑐 𝑥 : 𝑇

⊢𝑜𝑐 -lam
(Γ, 𝑥 :otype 𝑆) ⊢𝑜𝑐 𝑀𝑜𝑐 : 𝑇
Γ ⊢𝑜𝑐 𝜆𝑥. 𝑀𝑜𝑐 : (𝑆 → 𝑇 )

⊢𝑜𝑐 -app
Γ ⊢𝑜𝑐 𝐿𝑜𝑐 : (𝑆 → 𝑇 ) Γ ⊢𝑜𝑐 𝑀𝑜𝑐 : 𝑆

Γ ⊢𝑜𝑐 𝐿𝑜𝑐 𝑀𝑜𝑐 : 𝑇

⊢𝑜𝑐 -ann Γ ⊢𝑜𝑐 𝑀𝑜𝑐 : 𝑇
Γ ⊢𝑜𝑐 (𝑀𝑜𝑐 : 𝑇 ) : 𝑇

⊢𝑜𝑐 -splice Γ ⊢𝑐 𝑀𝑐 : Code 𝑇
Γ ⊢𝑜𝑐∼ 𝑀𝑐 : 𝑇

Γ ⊢𝑐 𝑀𝑐 : 𝐴

⊢𝑐 -const 𝑘 : 𝜄
Γ ⊢𝑐 𝑘 : 𝜄

⊢𝑐 -var
Γ(𝑥) = mtype 𝐴

Γ ⊢𝑐 𝑥 : 𝐴

⊢𝑐 -lam
(Γ, 𝑥 :mtype 𝐴) ⊢𝑐 𝑀𝑐 : 𝐵
Γ ⊢𝑐 𝜆𝑥 :𝐴.𝑀𝑐 : (𝐴 → 𝐵)

⊢𝑐 -app
Γ ⊢𝑐 𝐿𝑐 : (𝐴 → 𝐵) Γ ⊢𝑐 𝑀𝑐 : 𝐴

Γ ⊢𝑐 𝐿𝑐 𝑀𝑐 : 𝐵

⊢𝑐 -quote Γ ⊢𝑜𝑐 𝑀𝑜𝑐 : 𝑇
Γ ⊢𝑐≺ 𝑀𝑜𝑐 ≻: Code 𝑇

⊢𝑐 -cast Γ ⊢𝑐 𝑀𝑐 : 𝐴 ⊢ 𝑐 : 𝐴 ⇒ 𝐵

Γ ⊢𝑐 𝑀𝑐 ⟨𝑐⟩ : 𝐵

⊢𝑐 -blame
Γ ⊢𝑐 blame ℓ : 𝐴

Figure 6. Syntax and typing of the cast calculus MetaCC

based on that of 𝜆C, but augmented with quote and splice
for metaprogramming.
Similar to 𝜆C, values in MetaCC include constants, 𝜆-

abstractions, and values wrapped with inert (value-forming)
coercions. In addition, quoted STLC terms (that is, there is
no splice inside) are also values. MetaCC is a call-by-value
calculus, and the order of evaluation is from left to right.

The reduction of the cast calculus contains two relations:
the metalanguage reduction takes the form 𝑀𝑐 −→ 𝑁 𝑐 ,
where 𝑀𝑐 , 𝑁 𝑐 are metaterms of the cast calculus, and the
code language reduction takes the form 𝑀𝑜𝑐 −→𝑜 𝑁𝑜𝑐 ,
where 𝑀𝑜𝑐 , 𝑁𝑜𝑐 are code terms of the cast calculus. When
reducing a quoted code term, the metalanguage reduction
resorts to the code language reduction (rule 𝜉-quote). On the
other hand, when reducing a spliced term, the code language
reduction turns to the metalanguage reduction (rule 𝜉-splice).
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Values and evaluation contexts (frames)

values 𝑉 ,𝑊 ::= 𝑘 | 𝜆𝑥 :𝐴.𝑀𝑐 | 𝑉 ⟨𝑐⟩, if Inert 𝑐
| ≺ 𝑀𝑠 ≻

code frames 𝐹𝑜 ::= □ 𝑀𝑜𝑐 | 𝑀𝑠 □ | □ : 𝑇 | 𝜆𝑥.□
frames 𝐹 ::= □ 𝑀𝑐 | 𝑉 □ | □⟨𝑐⟩

Inert 𝑐

Inert 𝐺! Inert (𝑐 → 𝑑) Inert (code! 𝑇 )

plugo 𝑀𝑜𝑐 𝐹𝑜 = 𝑁𝑜𝑐

plugo 𝐿𝑜𝑐 (□ 𝑀𝑜𝑐 ) = 𝐿𝑜𝑐 𝑀𝑜𝑐

plugo 𝑀𝑜𝑐 (𝐿𝑠 □) = 𝐿𝑠 𝑀𝑜𝑐

plugo 𝑀𝑜𝑐 (□ : 𝑇 ) =𝑀𝑜𝑐 : 𝑇
plugo 𝑀𝑜𝑐 (𝜆𝑥.□) = 𝜆𝑥. 𝑀𝑜𝑐

plug 𝑀𝑐 𝐹 = 𝑁 𝑐

plug 𝐿𝑐 (□ 𝑀𝑐 ) = 𝐿𝑐 𝑀𝑐

plug 𝑀𝑐 (𝑉 □) =𝑉 𝑀𝑐

plug 𝑀𝑐 (□⟨𝑐⟩) =𝑀𝑐 ⟨𝑐⟩

𝑀𝑜𝑐 −→𝑜 𝑁𝑜𝑐

𝜉
𝑀𝑜𝑐 −→𝑜 𝑁𝑜𝑐

plugo 𝑀𝑜𝑐 𝐹𝑜 −→𝑜 plugo 𝑁𝑜𝑐 𝐹𝑜

𝜉-splice-blame
plugo (∼ (blame ℓ)) 𝐹𝑜 −→𝑜 ∼ (blame ℓ)

𝜉-splice 𝑀𝑐 −→ 𝑁 𝑐

∼ 𝑀𝑐 −→𝑜 ∼ 𝑁 𝑐
splice

∼ (≺ 𝑀𝑠 ≻) −→𝑜 𝑀𝑠

𝑀𝑐 −→ 𝑁 𝑐

𝜉
𝑀𝑐 −→ 𝑁 𝑐

plug 𝑀𝑐 𝐹 −→ plug 𝑁 𝑐 𝐹

𝜉-blame
plug (blame ℓ) 𝐹 −→ blame ℓ

𝜉-quote
𝑀𝑜𝑐 −→𝑜 𝑁𝑜𝑐

≺ 𝑀𝑜𝑐 ≻ −→ ≺ 𝑁𝑜𝑐 ≻
𝛽

(𝜆𝑥 :𝐴.𝑀𝑐 ) 𝑉 −→ 𝑀𝑐 [𝑥 :=𝑉 ]
fun-cast

(𝑉 ⟨𝑐 → 𝑑⟩)𝑊 −→ (𝑉 (𝑊 ⟨𝑐⟩))⟨𝑑⟩
id

𝑉 ⟨id 𝑎⟩ −→ 𝑉
seq

𝑉 ⟨𝑐 ;𝑑⟩ −→ 𝑉 ⟨𝑐⟩⟨𝑑⟩
proj

𝑉 ⟨𝐺!⟩⟨𝐺?ℓ ⟩ −→ 𝑉

proj-blame
𝐺 ≠ 𝐻

𝑉 ⟨𝐺!⟩⟨𝐻?ℓ ⟩ −→ blame ℓ

code-id★
𝑉 ⟨code-id★⟩ −→ 𝑉

code-idT
𝑉 ⟨code-id 𝑇 ⟩ −→ 𝑉

code-proj
𝑉 ⟨code! 𝑇 ⟩⟨code?ℓ 𝑇 ⟩ −→ 𝑉

code-proj-blame
𝑆 ≠ 𝑇

𝑉 ⟨code! 𝑆⟩⟨code?ℓ 𝑇 ⟩ −→ blame ℓ

quote-splice-blame
≺ ∼ (blame ℓ) ≻ −→ blame ℓ

Figure 7. Small-step operational semantics of MetaCC

A frame is a non-recursive evaluation context. Reduction
under frames is grouped in the congruence (𝜉) rules, where
if the inner term takes a step, the term produced by plugging
the inner term into a frame also takes a step.

Many metalanguage reduction rules are standard and mir-
ror those in the 𝜆C calculus. The 𝛽 rule is standard for a
call-by-value calculus. The fun-cast rule distributes a func-
tion coercion onto its argument and return value. An identity
coercion simply goes away (rule id). A sequence coercion
is split into two consecutive coercions (rule seq). A pair of
injection and projection goes away if the source of the in-
jection is identical to the target of the projection (rule proj);
otherwise, a cast error is signaled, blaming the projection
(rule proj-blame).

MetaCC includes four rules that handle coercions between
code types (highlighted). The rules for identity coercions
between code types, code-id★ and code-idT, are analogous to
rule id: the identity coercions on Code★ or Code 𝑇 simply go
away. Rules code-proj and code-proj-blame are analogous to
proj and proj-blame but for code types: if source and target
types are the same, the pair of injection and projection goes
away; otherwise, the code projection is blamed.

The splice rule follows the splice rule of the metaprogram-
ming calculus of Garcia and Lumsdaine [2009]: the quoted
object language term (which no longer contains splice) is
spliced in.

There are three rules that propagate blames during metae-
valuation: 𝜉-blame, quote-splice-blame, and 𝜉-splice-blame
(highlighted). Rule 𝜉-blame propagates a blame through a
frame of the metalanguage. Rules quote-splice-blame and
𝜉-splice-blame work in conjunction: metaevaluation inside a
splice may error, so 𝜉-splice-blame lifts a spliced blame out
of a code language frame; when the spliced blame reaches a
quote, the pair of splice and quote goes away, and it reduces
to just a blame by rule quote-splice-blame.
As usual, the multi-step reduction of MetaCC is defined

as the reflexive transitive closure of single-step reduction:

𝑀𝑐 −→∗ 𝑀𝑐

𝐿𝑐 −→ 𝑀𝑐 𝑀𝑐 −→∗ 𝑁 𝑐

𝐿𝑐 −→∗ 𝑁 𝑐

5 Compilation From MetaGTLC to MetaCC
In this section, we define the compilation from the gradual
metaprogramming language MetaGTLC to its cast calculus
MetaCC by inserting casts.



Gradual Metaprogramming

ground 𝐴 =𝐺

ground 𝜄 = 𝜄

ground (𝐴 → 𝐵) =★→ ★

ground (Code 𝑇 ) = Code★

ground Code★ = Code★

coerce 𝐴 𝐵 ℓ = 𝑐

coerce 𝜄 𝜄 ℓ = id 𝜄

coerce ★ ★ ℓ = id ★

coerce ★ 𝐺 ℓ =𝐺?ℓ

coerce 𝐺 ★ ℓ =𝐺!
coerce ★ 𝐴 ℓ = (coerce ★ 𝐺 ℓ); (coerce 𝐺 𝐴 ℓ)

where 𝐺 = ground 𝐴

coerce 𝐴 ★ ℓ = (coerce 𝐴 𝐺 ℓ); (coerce 𝐺 ★ ℓ)
where 𝐺 = ground 𝐴

coerce (𝐴 → 𝐵) (𝐶 → 𝐷) ℓ = (coerce 𝐶 𝐴 ℓ) → (coerce 𝐵 𝐷 ℓ)
coerce (Code 𝑇 ) (Code 𝑇 ) ℓ = code-id 𝑇

coerce Code★ Code★ ℓ = code-id★

coerce Code★ (Code 𝑇 ) ℓ = code?ℓ 𝑇
coerce (Code 𝑇 ) Code★ ℓ = code! 𝑇

Figure 8. The “coerce” function that generates coercions
between types

We first define the coerce function that takes two types
that are consistent (𝐴 ∼ 𝐵) as well as a blame label and
generate a coercion that casts from 𝐴 to 𝐵 (Figure 8). A cast
from ★ to a type that is not ★ (or the other way around) will
always route through the corresponding ground type. We
define a helper function ground, which takes a type 𝐴 that is
not ★ and returns the corresponding ground type 𝐺 that is
consistent with 𝐴.

The compilation fromMetaGTLC toMetaCC is type-directed
(Figure 9). Most rules are straightforward and recursively
compile the sub-terms. We discuss the interesting rules for
function application and splicing.

Function application. If the function is typed at (𝐴1 →
𝐴2), we insert one coercion on the argument that goes from
that argument’s type (𝐵) to the argument of the function
(𝐴1) after we recursively compile the function and its argu-
ment (rule{𝑚-app). Otherwise, if the type of the function
is unknown (★), in addition to the cast on the argument that
goes from that argument’s type to ★, we insert another cast
from ★ to the ground function type on the function being
applied (rule{𝑚-app★). In both cases, the blame labels on
the inserted casts come from the function application.

Splicing. In rule{𝑜 -splice, we first recursively compile
the metalanguage subterm 𝑀𝑚 . We need to insert a coer-
cion from the type of𝑀𝑚 (which is 𝐴) to Code 𝑇 . The type

𝑇 comes from type checking the splice. Recall that in Sec-
tion 3.2, we demonstrated using an example that bidirectional
typing is required so that splice is always in checking mode
to provide the target type of the inserted cast. The blame
label of the inserted coercion comes from the syntax of splice.
Finally, we splice the compiled sub-term with the inserted
coercion.

6 Type Safety for MetaGTLC
In this section, we prove that successful metaevaluation in
MetaGTLC always produces well-typed object code in STLC
(Theorem 6.6). The proof depends on “progress” (Lemma 6.1)
and “preservation” (Lemma 6.2) of the cast calculus MetaCC.

We define a predicate Emptym Γ, which says that there is
no metalanguage variable in the typing context Γ:

Emptym ∅
Emptym Γ

Emptym (Γ, 𝑥 :otype 𝑇 )
“Progress” says that a well-typed MetaCC term is either a

value or a blame, or can take one step forward:

Lemma 6.1 (Progress of MetaCC). If MetaCC term 𝑀𝑐 is
well-typed: Γ ⊢𝑐 𝑀𝑐 : 𝐴 and Emptym Γ, then
(1)𝑀𝑐 is a value or
(2)𝑀𝑐 is a blame:𝑀𝑐 = blame ℓ or
(3)𝑀𝑐 can take a reduction step:𝑀𝑐 −→ 𝑁 𝑐 for some 𝑁 𝑐

Proof. The proof is fully mechanized in Progress.agda. □

We then prove the small-step reduction of MetaCC pre-
serves types:

Lemma 6.2 (Preservation of MetaCC). If MetaCC term 𝑀𝑐

is well-typed: Γ ⊢𝑐 𝑀𝑐 : 𝐴 and takes one reduction step to 𝑁 𝑐 :
𝑀𝑐 −→ 𝑁 𝑐 , then 𝑁 𝑐 is also well-typed: Γ ⊢𝑐 𝑁 𝑐 : 𝐴.

Proof. The proof is fullymechanized in Preservation.agda.
□

Multi-step reduction of MetaCC also preserves types:

Lemma6.3 (Multi-step reduction ofMetaCC preserves types).
If MetaCC term𝑀𝑐 is well-typed: Γ ⊢𝑐 𝑀𝑐 : 𝐴 and takes zero
or more steps to 𝑁 𝑐 :𝑀𝑐 −→∗ 𝑁 𝑐 , then 𝑁 𝑐 is also well-typed:
Γ ⊢𝑐 𝑁 𝑐 : 𝐴.

Proof. By induction on the multi-step reduction𝑀𝑐 −→∗ 𝑁 𝑐 .
If it takes zero step, then𝑀𝑐 is already well-typed. If it takes
at least one step:𝑀𝑐 −→ 𝐿𝑐 and 𝐿𝑐 −→∗ 𝑁 𝑐 for some 𝐿𝑐 , we
apply Lemma 6.2 (“single step reduction preserves types”)
and then use the induction hypothesis. □

Our goal is to prove type safety for MetaGTLC. To connect
MetaCCwithMetaGTLC,we prove that the compilation from
MetaGTLC to MetaCC preserves types:

Lemma 6.4 (Compilation preserves types). If MetaGTLC
term𝑀𝑚 is well-typed:

Γ ⊢𝑚 𝑀𝑚 : 𝐴
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Γ ⊢𝑜 𝑀𝑜 ⇒ 𝑇 { 𝑀𝑜𝑐

{𝑜 -const 𝑘 : 𝜄
Γ ⊢𝑜 𝑘 ⇒ 𝜄 { 𝑘

{𝑜 -var
Γ(𝑥) = otype 𝑇

Γ ⊢𝑜 𝑥 ⇒ 𝑇 { 𝑥

{𝑜 -app
Γ ⊢𝑜 𝐿𝑜 ⇒ (𝑆 → 𝑇 ) { 𝐿𝑜𝑐 Γ ⊢𝑜 𝑀𝑜 ⇐ 𝑆 { 𝑀𝑜𝑐

Γ ⊢𝑜 𝐿𝑜 𝑀𝑜 ⇒ 𝑇 { 𝐿𝑜𝑐 𝑀𝑜𝑐

{𝑜 -ann Γ ⊢𝑜 𝑀𝑜 ⇐ 𝑇 { 𝑀𝑜𝑐

Γ ⊢𝑜 𝑀𝑜 : 𝑇 ⇒ 𝑇 { (𝑀𝑜𝑐 : 𝑇 )

Γ ⊢𝑜 𝑀𝑜 ⇐ 𝑇 { 𝑀𝑜𝑐

{𝑜 -lam
(Γ, 𝑥 :otype 𝑆) ⊢𝑜 𝑀𝑜 ⇐ 𝑇 { 𝑀𝑜𝑐

Γ ⊢𝑜 𝜆𝑥. 𝑀𝑜 ⇐ (𝑆 → 𝑇 ) { 𝜆𝑥 .𝑀𝑜𝑐

{𝑜 -check-infer Γ ⊢𝑜 𝑀𝑜 ⇒ 𝑇 { 𝑀𝑜𝑐

Γ ⊢𝑜 𝑀𝑜 ⇐ 𝑇 { 𝑀𝑜𝑐

{𝑜 -splice Γ ⊢𝑚 𝑀𝑚 : 𝐴 { 𝑀𝑐

Γ ⊢𝑜∼ℓ 𝑀𝑚 ⇐ 𝑇 { ∼ (𝑀𝑐 ⟨coerce 𝐴 (Code 𝑇 ) ℓ⟩)
Γ ⊢𝑚 𝑀𝑚 : 𝐴 { 𝑀𝑐

{𝑚-const 𝑘 : 𝜄
Γ ⊢𝑚 𝑘 : 𝜄 { 𝑘

{𝑚-var
Γ(𝑥) = mtype 𝐴

Γ ⊢𝑚 𝑥 : 𝐴 { 𝑥

{𝑚-lam
(Γ, 𝑥 :mtype 𝐴) ⊢𝑚 𝑀𝑚 : 𝐵 { 𝑀𝑐

Γ ⊢𝑚 𝜆𝑥 :𝐴.𝑀𝑚 : (𝐴 → 𝐵) { 𝜆𝑥 :𝐴.𝑀𝑐
{𝑚-app

Γ ⊢𝑚 𝐿𝑚 : (𝐴1 → 𝐴2) { 𝐿𝑐

Γ ⊢𝑚 𝑀𝑚 : 𝐵 { 𝑀𝑐 𝐴1 ∼ 𝐵

Γ ⊢𝑚 (𝐿𝑚 𝑀𝑚)ℓ : 𝐴2 { 𝐿𝑐 (𝑀𝑐 ⟨coerce 𝐵 𝐴1 ℓ⟩)

{𝑚-app★ Γ ⊢𝑚 𝐿𝑚 : ★{ 𝐿𝑐 Γ ⊢𝑚 𝑀𝑚 : 𝐴 { 𝑀𝑐

Γ ⊢𝑚 (𝐿𝑚 𝑀𝑚)ℓ : ★{ (𝐿𝑐 ⟨coerce ★ (★→ ★) ℓ⟩) (𝑀𝑐 ⟨coerce 𝐴 ★ ℓ⟩)
{𝑚-quote Γ ⊢𝑜 𝑀𝑜 ⇒ 𝑇 { 𝑀𝑜𝑐

Γ ⊢𝑚≺ 𝑀𝑜 ≻: Code 𝑇 {≺ 𝑀𝑜𝑐 ≻

Figure 9. Compilation rules from MetaGTLC to MetaCC

then the MetaCC term𝑀𝑐 after compilation is also well-typed:

Γ ⊢𝑚 𝑀𝑚 : 𝐴 { 𝑀𝑐 and Γ ⊢𝑐 𝑀𝑐 : 𝐴

Proof. The proof is fully mechanized in CompilePres.agda.
□

We note that a value of type (Code 𝑇 ) must be some
quoted object language (STLC) code:

Lemma 6.5 (Canonical form of quoted object code). If Γ ⊢𝑐
𝑉 : Code 𝑇 , then 𝑉 =≺ 𝑀𝑠 ≻ for some STLC term𝑀𝑠 .

Proof. By inversion on the fact that 𝑉 is a value. Rule out
other cases than the one for quote (𝑉 =≺ 𝑀𝑠 ≻) by inversion
on Γ ⊢𝑐 𝑉 : Code 𝑇 . □

⊢ 𝑟 : 𝑇

WT-STLC ∅ ⊢𝑜𝑐 𝑀𝑠 : 𝑇
⊢ 𝑀𝑠 : 𝑇

WT-blame
⊢ blame ℓ : 𝑇

WT-diverge
⊢ diverge : 𝑇

Figure 10.Well-typed metaevaluation results

We define well-typed metaevaluation results in Figure 10,
which rule out stuck. Finally, we prove that metaevaluation
always generates a well-typed result, which is a corollary of
Lemma 6.3 and “compilation preserves types” (Lemma 6.4):

Theorem 6.6 (Metaevaluation is type safe). If MetaGTLC
term𝑀𝑚 is well-typed:

∅ ⊢𝑚 𝑀𝑚 : Code 𝑇
then the metaevaluation of𝑀𝑚 generates a well-typed result:

⊢ meta-eval 𝑀𝑚 : 𝑇

Proof. By Lemma 6.4, we have ∅ ⊢𝑚 𝑀𝑚 : Code 𝑇 { 𝑀𝑐

and ∅ ⊢𝑐 𝑀𝑐 : Code 𝑇 . By law of excluded middle, there are
four cases: (1) 𝑀𝑐 reduces to a value, (2) 𝑀𝑐 reduces to a
blame, (3)𝑀𝑐 diverges, or (4)𝑀𝑐 gets stuck.
(1) If 𝑀𝑐 reduces to some value 𝑉 : 𝑀𝑐 −→∗ 𝑉 . Multi-step
reduction preserves types (Lemma 6.3), so ∅ ⊢𝑐 𝑉 : Code 𝑇 .
By the canonical form of quoted object code (Lemma 6.5),
𝑉 =≺ 𝑀𝑠 ≻, so meta-eval 𝑀𝑚 = 𝑀𝑠 and ⊢ 𝑀𝑠 : 𝑇 (by rule
WT-STLC).
(2) If 𝑀𝑐 reduces to a blame: 𝑀𝑐 −→∗ blame ℓ . The lemma
is trivially true by ruleWT-blame.
(3) If𝑀𝑐 diverges: Trivially true by ruleWT-diverge.
(4) Otherwise, 𝑀𝑐 gets stuck: 𝑀𝑐 −→∗ 𝐿𝑐 . 𝐿𝑐 is neither a
value nor a blame, and there is no 𝑁 𝑐 such that 𝐿𝑐 −→ 𝑁 𝑐 ,
but that contradicts Lemma 6.1 (“progress”). □

7 Conclusion
In this paper, we proposed an improvement to the error de-
tection of dynamically-typed DSLs that generate statically-
typed data pipeline descriptions. We introduced gradual
metaprogramming, which incrementally type checks code
fragments as they are spliced together and reports the source
location of the problem when type checking fails. Gradual
metaprogramming provides three main benefits: first, it pro-
vides a migration path toward statically-typed DSLs. Sec-
ond, it enables earlier error detection. Last but not the least,
it pinpoints the source code location responsible for the
type error in the metaprogram. We defined MetaGTLC, a
metaprogramming calculus in which a gradually-typed meta-
language manipulates a statically-typed object language. We
proved type safety for MetaGTLC, which says that successful
metaevaluation always generates well-typed object code. We
mechanized MetaGTLC and the type safety proof in Agda.
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