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Abstract. We transform probabilistic programs to run more efficiently
and read more easily, by composing three semantics-preserving transfor-
mations: (1) apply the denotational semantics; (2) improve the resulting
integral; then (3) invert the denotational semantics. Whereas step 1 is
a straightforward transformation from monadic to continuation-passing
style, the rest builds on computer algebra: step 2 reorders and performs
integrals, and step 3 represents density functions as differential operators.
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1 Introduction

The success of machine learning has made it clear that computing with proba-
bility distributions is very useful. Given a distribution, we might want a simpler
representation of it or to generate random samples from it. These two computa-
tions go hand in hand: If we are lucky, we can find a simple representation, maybe
even an exact one, that renders all further calculation trivial. If not, we would
likely want to generate random samples, a process that can be made dramatically
more efficient and accurate by any simplification we manage to perform.

1.1 Contributions

We introduce a way to simplify probabilistic programs: starting with a monadic
representation of a distribution (Section 2), we transform it to an integral (Sec-
tion 4), improve the integral by controlled use of computer algebra (Section 6),
then transform back (Section 5). Whereas the denotational semantics that maps
probabilistic programs to integrals is straightforward and well known (Section 3),
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we put it to work and show how to turn integrals into simpler programs. In
particular, we identify necessary transformations on mathematical and integral
expressions that direct an existing computer algebra system (CAS) to simplify
the kind of multidimensional integrals that probabilistic programs tend to mean.
We also apply computer algebra to convert integrals back to programs robustly.
The CAS we use is Maple, but other systems such as Mathematica are similar.

1.2 Three examples

We showcase our approach using three natural (if small) examples.

A discrete distribution Start with the following sampling procedure: choose two
real numbers x, y independently from the uniform distribution between 0 and 1,
then return whether x < y. The corresponding term in our language

Bind(Uniform(0, 1), x,Bind(Uniform(0, 1), y, If(x < y,Ret(true),Ret(false)))) (1)

denotes a measure over Booleans (B). As explained in Section 3, a measure is
equivalent to a linear operator. This equivalence means that we can integrate
with respect to this distribution an arbitrary function h : B→ R+, and the result
completely determines the denotation of the term (1). That result is the number∫ 1

0

∫ 1

0

({
h(true) if x < y

h(false) otherwise

)
dy dx. (2)

Off the shelf, a CAS like Maple can simplify this integral expression to 1
2 ·h(true)+

1
2 · h(false). From this integral, we read off the simpler term in our language

Msum
(
Weight(1/2,Ret(true)),Weight(1/2,Ret(false))

)
. (3)

This term expresses a linear combination of measures, namely the average of the
two measures Ret(true) and Ret(false). So this term denotes the same measure
as (1), but it is more efficient as a sampling procedure: instead of drawing two
numbers from a uniform distribution, just flip one fair coin and return either true
or false accordingly. This term is also easier for humans to understand. Indeed,
this representation amounts to a compact table that lists the outcomes (true and
false) alongside their exact probabilities (1/2 each). Nothing could be better.

A continuous distribution Let us take two steps on a one-dimensional random
walk: first choose x from the Gaussian distribution with mean 0 and standard
deviation 1, then choose y from the Gaussian distribution with mean x and stan-
dard deviation 1. If we only care about the final point y, then the corresponding
term

Bind(Gaussian(0, 1), x,Bind(Gaussian(x, 1), y,Ret(y))) (4)

denotes a measure over R. In other words, we can integrate with respect to this
distribution any function h from R to R+. The result is the number∫ ∞

−∞

exp
(
−x

2

2

)
√

2 · π
·
∫ ∞
−∞

exp
(
− (y−x)2

2

)
√

2 · π
· h(y) dy dx. (5)
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With Maple’s help, we can simplify this integral expression to∫ ∞
−∞

exp
(
−y

2

4

)
2 ·
√
π
· h(y) dy. (6)

From this, we read off the much simpler term in our language Gaussian(0,
√

2),
which expresses the fact that taking two steps on a random walk with standard
deviation 1 is equivalent to taking one step on a random walk with standard
deviation

√
2. This term denotes the same measure over R as (4), but it is more

efficient as a sampling procedure: instead of drawing two numbers from Gaussian
distributions, just draw one number from a third Gaussian. This term is also
easier for humans to understand (for instance, easier to visualize as a bell curve).

A conditional distribution What if, instead of caring about the second step y
and throwing away x, we observe y from an actual walk and want to use that
information to infer the first step x? One way to express the observation is to
replace the random choice of y in (4) by a probability density D:

Bind(Gaussian(0, 1), x,Weight(D(Gaussian(x, 1), y),Ret(x))) (7)

This term denotes a measure over R. As a sampling procedure, it means to draw
x from Gaussian(0, 1) then return x with the weight D(Gaussian(x, 1), y). This
weight, defined in Table 1, is a positive real number that reaches its maximum
when x = y and decreases as x moves farther from y.

The integral of h with respect to the distribution (7) is similar to (5),∫ ∞
−∞

exp
(
−x

2

2

)
√

2 · π
·

exp
(
− (y−x)2

2

)
√

2 · π
· h(x) dx. (8)

From this integral, we read off the term

Weight

(
exp
(
−y

2

4

)
2 ·
√
π

,Gaussian
(y

2
,

1√
2

))
(9)

for the conditional distribution of x given the observation y. This term tells us
that this distribution is proportional to a Gaussian with mean y/2 and standard
deviation 1/

√
2. It denotes the same measure over R as (7), but it is more

efficient as a sampling procedure because every sample of x is returned with
the same weight, depending only on y. Statisticians call the equivalence between
(7) and (9) a conjugacy between the two Gaussians in (7). This simplification
underpins the popular Kalman filter (Maybeck 1979).

2 Adding measures to a mathematical language

Instead of building our own language from scratch, we start with a CAS whose
language already expresses integral calculus. For example, Maple represents the
integral (2) internally as the term

Int
(
Int
(
If(x < y, h(true), h(false)), y = 0..1

)
, x = 0..1

)
(10)
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a : R b : R
Uniform(a, b) : MR

µ : R σ : R+

Gaussian(µ, σ) : MR
µ : R γ : R+

Cauchy(µ, γ) : MR

ν : R µ : R γ : R+

StudentT(ν, µ, γ) : MR
α : R+ β : R+

Beta(α, β) : MR+

k : R+ θ : R+

Gamma(k, θ) : MR+

e : A

Ret(e) : MA
m : MA

[x : A]
···

m′ : MB
Bind(m,x,m′) : MB

∀i ≤ n, mi : MA
Msum(m1, . . . ,mn) : MA

e : R+ m : MA
Weight(e,m) : MA

e : B m : MA m′ : MA
If(e,m,m′) : MA

[h̄ : A→ R+]
···

g : R+

LO(h̄, g) : MA

Fig. 1. Informal typing rules for how we represent measures

using the syntax constructors Int If true false < = .. (the last three of which are
written infix) and the variables x y and h.

We add to this language a handful of constructors that amount to an abstract
data type of measures. These constructors are summarized in Figure 1, using
informal “typing rules” even though Maple is not statically typed. If A is a type,
then MA is our informal type of measures over A. In particular, the top two
rows of Figure 1 show several primitive measures of types MR and MR+, where
R is the type of reals and R+ is the type of non-negative reals (including +∞).

Moving on in Figure 1, the constructors Ret and Bind represent the unit and
bind operations of the measure monad. In Bind(m,x,m′), the variable x takes
scope over the measure term m′. Here we write x as a metavariable that ranges
over variables in the syntax; whereas for terms we use a variety of metavariables,
including e, a, b, k, α, β, γ, µ, ν, σ, θ, and especially m for a measure term, and g
for an integral term.

The next two constructors express non-negative linear combinations of mea-
sures. The term Msum(m1, . . . ,mn) represents the sum of n measures, so Msum()
is the zero measure. The term Weight(e,m) represents multiplying a measure m
by a non-negative scalar factor e.

We use the conditional If in measure terms as well as in ordinary expres-
sions denoting numbers. Thus If(x < y,Ret(true),Ret(false)) is a measure term,
whereas the expression If(x<y, h(true), h(false)) denotes a number. In our Maple
implementation, we actually handle the multiway conditional construct piece-
wise (Carette 2007), but we describe only if-then-else in this paper to keep the
notation simple.

The last constructor is LO, short for “linear operator”. In LO(h̄, g), the
metavariable h̄ stands for an integrand variable, like h in equation (2). As the
typing rule indicates, h̄ takes scope over g. We use LO to name a measure by
specifying how it integrates a function: LO(h̄, g) means the measure m such that
the integral of a measurable non-negative function h̄ with respect to m is g.
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An operational way to interpret a measure term is to run it as an importance
sampler, which generates a random outcome along with a weight. Interpreted
thus, Gaussian means to draw a number from a Gaussian distribution, Ret means
to produce the given outcome, and Bind means to sequence two importance sam-
plers. As equation (3) exemplifies, a non-negative linear combination of measures

Msum
(
Weight(e1,m1), . . . ,Weight(en,mn)

)
(11)

is an n-way random choice: we choose one of the subterms mi with probability
proportional to ei, and at the same time multiply the current weight (which
starts at 1) by

∑n
i=1 ei. In particular, if m1 = · · · = mn = 1/n then we choose

mi uniformly and leave the weight unaffected. If an immediate subterm mi of
Msum(m1, . . . ,mn) is not built with Weight, then we treat mi like Weight(1,mi).
And if the term Weight(e,m) occurs in isolation, then its sampling interpretation
is as with Msum(Weight(e,m)): scale the weight by e and continue with m.

We can also interpret each measure term denotationally—as a measure. To
do this, we specify the integral of a function with respect to the measure. Our
approach to simplification starts with this definition, so we turn to it next.

3 Connecting abstract and concrete integration

A fundamental result of measure theory is that measures can be viewed in two
equivalent ways (Theorems 〈12〉 and 〈13〉 in Pollard 2001).

On one hand, we can view a measure as a function that maps sets to their
sizes in R+, by measuring the sets’ length or volume.

On this view, the uniform distribution on the unit interval (Uniform(0, 1) in
our language) is a function that maps the interval [2/3, 2] to the number 1/3,
because [0, 1] ∩ [2/3, 2] has length 1/3. In other words, the probability is 1/3 for
a point randomly drawn from Uniform(0, 1) to lie in [2/3, 2]. The same function
maps the singleton set {1/2} to the number 0, which is the probability for a
point randomly drawn from Uniform(0, 1) to be exactly 1/2. Similarly, the Dirac
distribution at 1/2 (which we write Ret(1/2)) is a function that maps each set S
to 1 if 1/2 ∈ S, and to 0 otherwise. So it maps the interval [2/3, 1] to 0 and the
singleton {1/2} to 1. After all, if we draw the point 1/2 deterministically, then
the probability that the point lies in [2/3, 1] is 0, and the probability that the
point is exactly 1/2 is 1.

On the other hand, we can view a measure as a function that maps func-
tions to their integrals in R+, with higher-order type (· · · → R+) → R+, so
mathematicians call it an operator. On this view, Uniform(0, 1) is a function that

maps h to
∫ 1

0
h(x) dx. For example, it maps λx. x to

∫ 1

0
x dx = 1/2. In other

words, the expected value of a random draw from Uniform(0, 1) is 1/2. We can
view the Dirac distribution Ret(1/2) as a function as well. It maps h to the
number h(1/2). And lo and behold, the expected value of drawing the number
1/2 deterministically is 1/2.

It may seem strange to call the application h(1/2) an integral of h, but it
satisfies the important properties of integration that we use. To start with, if
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h is non-negative, then so is h(1/2), just like the integral
∫ 1

0
h(x) dx. Moreover,

application is linear : for example, we have(
λx. a · h(x) + b · k(x)

)
(1/2) = a · h(1/2) + b · k(1/2) (12)

for any functions h, k : R→ R+ and weights a, b : R+. Thus the application of a
measure m as a linear operator to a function h is called the (abstract) integral
of the integrand h with respect to m. We represent it by integrate(m,h).

These two views are equivalent, as mentioned above. Specifically, the size of
a set S with respect to a measure m is the integral integrate(m, qS) of its char-
acteristic function qS , defined by qS(x) = 1 if x ∈ S and qS(x) = 0 otherwise.

Despite this correspondence, we need to view a measure as an integrator, for
three reasons. First, abstract integration is required to define the Bind operation
of the measure monad (Giry 1982; Ramsey and Pfeffer 2002), and Bind is essential
in the probabilistic programs we seek to simplify. Second, existing CASes can
handle concrete integrals, as demonstrated in the introduction. Third, existing
CASes are weak at representing and measuring sets.

The ability to compute integrals is useful to us in the common cases where
abstract integration involves concrete integration, like with Uniform and Gaussian.
But to take advantage of this ability, we need to relate concrete integration to ab-
stract integration, which CASes off the shelf do not even represent. For example,
Maple has plenty of facilities we covet for simplifying and transforming concrete
integrals

∫
, sums

∑
, function applications, and their iterated combinations, but

the facilities for integration, for summation, and for function application are
separate, and there is no single way to represent, say, a product measure.

Hence, our plan is to simplify measure terms in three steps:

1. View the given measure term as a linear operator, which specifies the abstract
integral of an arbitrary integrand.

2. Improve the integral using computer algebra, keeping the integrand arbitrary.
3. Read off a new measure term from the improved linear operator.

A major contribution of this paper is to automate not only step 1 (Section 4)
but also step 3 (Section 5), so that the task of simplifying probabilistic programs
reduces to the task of improving integrals. This reduction leads to another major
contribution of this paper, namely to improve integrals using the building blocks
provided by an existing CAS (Section 6).

4 From measure term to linear operator

Step 1 is to convert a given measure term m to a term of the form LO(h̄, g).
Recall that the h̄ in LO(h̄, g) represents an arbitrary function to be integrated,
so we set h̄ to a fresh name. Then, to preserve the meaning of m, the g in
LO(h̄, g) should be the abstract integral of h̄ with respect to m, so we set g to
integrate(m, h̄), defined in Figure 2.

Figure 2 defines integrate(m,h) by structural induction on measure termm, so
our definition serves as a compositional denotational semantics of measure terms,
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integrate
(
m, h

)
=
∫ U(m)

L(m)
D(m,x) · h(x) dx

where m is a primitive measure term and x is fresh

integrate
(
Ret(e), h

)
= h(e)

integrate
(
Bind(m,x,m′), h

)
= integrate

(
m,λx. integrate(m′, h)

)
integrate

(
Msum(m, . . . ), h

)
= integrate(m,h) + · · ·

integrate
(
Weight(e,m), h

)
= e · integrate(m,h)

integrate
(
If(e,m,m′), h

)
= If

(
e, integrate(m,h), integrate(m′, h)

)
integrate

(
LO(h̄, g), h

)
= g{h̄ 7→ h}

integrate
(
m, h

)
= Integrate(m,h) otherwise

Fig. 2. Translating a measure term m to a linear operator LO(h̄, integrate(m, h̄)), where
h̄ is fresh

and a standard one at that. The integrand h is an accumulator argument that
may not just be a name h̄, as can be seen in the right-hand side of the Bind case.
Actually, h amounts to a continuation, so step 1 amounts to a one-pass transform
from monadic to continuation-passing style (CPS) (Hatcliff and Danvy 1994)
(more precisely, to continuation-composing style (Danvy and Filinski 1990)).

Whenm is primitive, integrate produces a concrete integral using the standard
properties of m listed in Table 1. In this paper, all primitive measures range over
real intervals. The properties we use from Table 1 are

– L(m), the lower bound of the interval, possibly −∞;
– U(m), the upper bound of the interval, possibly +∞; and
– D(m,x), the density of m with respect to the Lebesgue measure.

Many more measures could be added to Table 1, but some measures cannot be
so represented, such as Ret(0) and the logistic distribution.

The last line in Figure 2 handles the case where m is a free variable repre-
senting an unknown measure. The result is a residual term Integrate(m,h).

For the example (1), step 1 produces the term

LO

(
h,

∫ 1

0

1

1− 0
·
∫ 1

0

1

1− 0
·

({
h(true) if x < y

h(false) otherwise

)
dy dx

)
, (13)

in which we notate the conditional If with a curly left brace. Maple immediately
removes the factor 1

1−0 , yielding equation (2).
As equation (13) illustrates, the output of this integrate step is patently a

linear operator. In other words, just by examining the integral produced syntac-
tically, without any deep reasoning, we can tell that it is linear in the integrand h̄.
Formally, we say that g is patently linear in h̄ iff g is generated by the grammar

g ::= h̄(e)
∣∣ g1 + · · ·+ gn

∣∣ ∫ b
a
g dx

∣∣ e · g ∣∣ If(e, g, g′) ∣∣ Integrate(m,λx. g) (14)

where a, b, e,m do not contain h̄ free, and x 6= h̄. (For simplicity, this grammar

omits
∑b
a g dx, and this paper omits measures over Z.)



8 Jacques Carette (B) and Chung-chieh Shan

Table 1. Defining properties of primitive measures

Measure term Bounds Density Holonomic representation

m L(m) U(m) D(m,x)
p0(x)

p1(x)
= −

d
dx
D(m,x)

D(m,x)

Uniform(a, b) a b
1

b− a 0

Gaussian(µ, σ) −∞ +∞
exp
(
− 1

2
· (x−µ

σ
)2
)

√
2 · π · σ

x− µ
σ2

Cauchy(µ, γ) −∞ +∞
(
1 + (x−µ

γ
)2
)−1

π · γ
2 · (x− µ)

(x− µ)2 + γ2

StudentT(ν, µ, γ) −∞ +∞
(
1 + (x−µ

γ
)2ν
)−(ν+1)/2

Γ(ν/2)
Γ((ν+1)/2)

·
√
π · ν · γ

(ν + 1) · (x− µ)

(x− µ)2 + γ2 · ν

Beta(α, β) 0 1
xα−1 · (1− x)β−1

B(α, β)

(α+ β − 2) · x− (α− 1)

x · (1− x)

Gamma(k, θ) 0 +∞
xk−1 · exp(−x

θ
)

Γ(k) · θk
x
θ

+ 1− k
x

Of course, patent linearity entails linearity, but the converse is not the case.
For example, the term sin(h(a))2 + cos(h(a))2 − 1 is linear in h (because it is
zero) but not patently linear. Still, the right-hand sides in Figure 2 all maintain
patent linearity, so step 1 produces a patently linear integral, which we then
subject to algebraic manipulations in step 2. As long as our manipulations of
the integral preserve patent linearity, the result can be turned back to a measure
term. That is the job of step 3, which we present next.

5 From linear operator back to measure term

Figure 3 defines unintegrate(h̄, g, c), whose goal is to find a measure term m
(built without LO) such that integrate(m, h̄) = g. If we think of step 1 above as
a transform from monadic style to CPS, then step 3 inverts this.

Like integrate, unintegrate proceeds by structural induction on the input term.
Most lines of this definition just handle a case in the grammar (14) by inverting
a corresponding line defining integrate in Figure 2. The main deviations from
this pattern are three, described in the three subsections below.

5.1 Peephole optimizations

As unintegrate builds a measure term, it invokes the smart constructors bind and
weight, defined in Figure 3. They are semantically equivalent to Bind and Weight
but perform peephole optimizations using algebraic laws: bind uses the right and
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unintegrate
(
h̄,
∫ b
a
g dx, c

)
= weight

(
e1, bind(m,x,weight(e2,m

′))
)

where x 6= h̄ and (e,m′) = unweight
(
unintegrate(h̄, g, c ∧ a < x < b)

)
(m, e′) = recognize(e, x, a, b, c)

e1 · e2 = e′ where e1 does not contain x free

unintegrate
(
h̄, h̄(e), c

)
= Ret(e)

unintegrate
(
h̄, g + · · · , c

)
= Msum

(
unintegrate(h̄, g, c), . . .

)
unintegrate

(
h̄, e · g, c

)
= weight

(
e, unintegrate(h̄, g, c)

)
where e does not contain h̄ free

unintegrate
(
h̄, If(e, g, g′), c

)
= If

(
e, unintegrate(h̄, g, c∧e), unintegrate(h̄, g′, c∧¬e)

)
unintegrate

(
h̄, Integrate(m,h), c

)
= bind

(
m,x, unintegrate(h̄, h(x), c)

)
where x is fresh

unintegrate
(
h̄, g, c

)
= LO(h̄, g) otherwise

bind(m, x,Ret(x)) = m

bind(Ret(e), x,m) = m{x 7→ e}
bind(m, x,m′) = Bind(m,x,m′)

otherwise

weight(1,m) = m

weight(0,m) = Msum()

weight(e,Weight(e′,m)) = weight(e · e′,m)

weight(e, m) = Weight(e,m)

otherwise
unweight

(
Weight(e,m)

)
=
(
e,m

)
unweight

(
Msum(m1, . . . ,mn)

)
=
(
e,Msum(weight( 1

e
,m1), . . . ,weight( 1

e
,mn))

)
where e = e1 + · · ·+ en and (ei, ) = unweight(mi)

unweight
(
m
)

=
(
1,m

)
otherwise

Fig. 3. Translating a linear operator LO(h̄, g) to a measure term unintegrate(h̄, g, true)

left monad identity laws to eliminate Bind, and weight uses linearity to eliminate
Weight. We wait until step 3 to perform these optimizations, so that they apply
to terms produced by density recognition (Section 5.3).

5.2 Assumption context

As unintegrate traverses the input integral g, it maintains a context of assump-
tions about the variables in g.

For example, when unintegrate processes If(e, g, g′), it conjoins the condition e
onto the current context c while processing the then-case g, and it conjoins ¬e
onto c while processing the else-case g′. So if e is the condition x > 0, then the
recursive call to unintegrate(h̄, g, c ∧ e) can simplify any occurrence of

√
x2 to x,

and sgnx to 1. These simplifications are performed by the call to recognize and
benefit later calls to recognize, as explained near the end of Section 5.3 below.

Similarly, when unintegrate processes
∫ b
a
g dx, it conjoins a < x < b onto the

current context c. (Actually, that recursive call to unintegrate(h̄, g, c∧a<x<b) is
free to ignore any countable number of points in the interval [a, b], but unintegrate
does not currently exercise that freedom.)
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5.3 Density recognition

When unintegrate processes
∫ b
a
g dx, it tries to recognize a concrete integral that

belongs to a primitive measure. For example, when unintegrate processes the con-

crete integral in equation (2), it recognizes
∫ 1

0
. . . dx as belonging to Uniform(0, 1)

and so produces a term of the form Bind(Uniform(0, 1), x, . . . ). This requires non-
trivial computer algebra because there is a gulf between the body of that integral,

namely the integral
∫ 1

0

({ h(true) if x < y
h(false) otherwise

)
dy, and D(m,x) · h(x) at the top of Fi-

gure 2, namely the product 1
b−a · h(x). These terms do not unify syntactically.

For recognizing primitive measures other than Uniform, the gulf is even wider,
and syntactic matching is even more futile. For example, how can an algorithm
recognize that the density in (8) is proportional to a certain Gaussian distribution
and read off the measure term (9)? When unintegrate processes the integral (8),
the recursive call to unintegrate(h̄, g, c′) returns the measure term

Weight

(
exp
(
−x

2

2

)
√

2 · π
·

exp
(
− (y−x)2

2

)
√

2 · π
, Ret(x)

)
, (15)

and the call to unweight (defined in Figure 3) decomposes this term into its two
subterms, the weight

f(x) =
exp
(
−x

2

2

)
√

2 · π
·

exp
(
− (y−x)2

2

)
√

2 · π
(16)

and the measure Ret(x). The weight is a function in the integration variable x.
We call this function the target density. We need an algorithm to recognize that
it is proportional to D

(
Gaussian(µ, σ)

)
and not, say, D

(
Cauchy(µ, γ)

)
.

Holonomic representation We solve this density recognition problem in one
fell swoop for all our primitive measures, by treating the target density f as
a holonomic3 expression (Wilf and Zeilberger 1992; Chyzak and Salvy 1998).
A good tutorial on holonomicity is provided by Kauers (2013). In short, it means
we find a homogeneous linear differential equation

pn(x) · f (n)(x) + · · ·+ p1(x) · f ′(x) + p0(x) · f(x) = 0 (17)

that defines f(x) up to a constant factor, in which each pi(x) is a polynomial
in x. For example, the density (16) is defined up to a constant factor by

1 · f ′(x) + (2 · x− y) · f(x) = 0, (18)

so n = 1, p1(x) = 1, and p0(x) = 2 · x− y.
The general algorithm for finding a differential equation (17) from a closed-

form expression f(x) is well established and efficiently implemented by the Maple

3 More precisely, a D-finite expression. We speak of holonomicity, which encompasses
D-finite functions and P-recursive sequences, because we foresee recognizing dis-
crete measures using P-recursive equations. Those are almost as effective as D-finite
equations, modulo the issue of accurate summation (Abramov and Petkovšek 2005).
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function gfun[holexprtodiffeq]4 (Salvy and Zimmermann 1994). Such diffe-
rential equations are only determined up to scaling by a polynomial in x. For
example, scaling (18) by x yields another differential equation

x · f ′(x) + (2 · x2 − y · x) · f(x) = 0, (19)

which is also satisfied by (16), as well as by some new but singular solutions
(which can be found by Laplace-transform methods). To reduce this degree of
freedom and eliminate such spurious solutions, we divide the differential equation
by the leading coefficient pn(x), so that the coefficients become the rational func-
tions 1, pn−1(x)/pn(x), . . . , p0(x)/pn(x). We then use the non-leading coefficients
to identify the primitive measure.

For all our primitive measures (listed in Table 1), it turns out that n = 1, so
we have to consider just one ratio p0(x)/p1(x), which is 2·x−y for the density (16).
In general, when n = 1, this ratio is equal to −f ′(x)/f(x), but the algorithm that
computes this ratio is completely different from differentiating f then dividing
by f and hoping that the factors that do not form a rational function cancel out.
Rather, the algorithm achieves efficiency and robustness by performing linear
algebra on Ore algebra elements, which represent linear differential operators
and enjoy many closure properties that are efficiently computable (Salvy 2005).

Rational-function matching Thanks to existing efficient algorithms for normal-
izing rational functions (such as Euclid’s algorithm), we can easily and robustly
match rational functions against each other, and thus recognize all our prim-
itive measures in the same way. For example, given that n = 1 and the ratio
p0(x)/p1(x) = 2·x−y is linear in x for our target density (16), we look through the
rightmost column of Table 1 for a rational function whose numerator’s degree in x
is one higher than its denominator’s.5 The only candidate is m = Gaussian(µ, σ),
and its integration bounds match those of (8), so we equate corresponding coef-
ficients (2 = 1/σ2 and −y = −µ/σ2) and solve to get µ = y/2 and σ = 1/

√
2.

This solving step can be done by calling Maple’s solve or by designing a custom
matcher for each primitive measure. We prefer the latter as it is more efficient.

The recognize algorithm In general, unintegrate in Figure 3 tries to recognize a
target density e by invoking recognize(e, x, a, b, c). Here the density expression e
may contain the integration variable x free, a and b are the bounds on x, and c
is the context. The goal of recognize is to robustly satisfy the equation

recognize
(
D(m,x) · e′, x,L(m),U(m), c

)
= (m, e′), (20)

where m is a primitive measure term and e′ does not contain x free. To do so,
recognize proceeds through four steps:

4 The version of gfun shipped with Maple has several important bugs, fixed in the ver-
sion at http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/

5 We only consider the difference between the two degrees, because the numerator and
denominator may not be relatively prime, like for Beta(1, β) and Beta(α, 1).

http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/
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1. Convert e as a function of x to a holonomic representation.
2. Find the primitive measure m by rational-function matching under the as-

sumption context c. Thus new measures can be added by extending Table 1.
3. Solve for the constant factor e′, by equating the target e and the matched
D(m,x) · e′ at certain points x. To choose x, either use initial conditions
returned by gfun[holexprtodiffeq], if any, or default to x ∈ {0, 1/2, 1}.

4. Simplify e′ using the assumption context c. Often the e′ returned by one call
to (m, e′) = recognize(e, x, a, b, c) is then passed to the next call as part of e,
so it helps if we can eliminate tricky constructs such as sgn from e′.

If any step above fails, then recognize resorts to the following:

– if −∞ < a < b <∞, then return
(
Uniform(a, b), e1 · (b− a)

)
;

– otherwise, return
(
LO(h̄′,

∫ b
a
h̄′(x) dx), e1

)
, where h̄′ is fresh;

even though e1 may contain x free. Returning LO is our unobtrusive way to admit
failure, which is also done in the the catch-all case at the bottom of Figure 3
when g is not patently linear.

This approach to density recognition is general and modular enough so that
it took one of us only a couple of hours to add each primitive measure in Table 1,
once we had implemented the general infrastructure.

6 Improving linear operators algebraically

The previous two sections established a two-way bridge between measure terms
and patently linear expressions. Patently linear expressions are real-valued ex-
pressions, and computer algebra gives us many more tools for these than for
measure terms. We now put these tools to work.

6.1 What automatic simplification can and cannot do

To start with, every CAS incessantly performs so-called automatic simplification
on every expression, using linear-time algorithms that are much faster than naive
rewrite rules. Automatic simplification ensures that

– addition + and multiplication · are commutative and associative, with iden-
tities 0 and 1, so for example e1 · (1 · e2 · g) is equivalent to (e1 · e2) · g;

– repeated terms are collected, so for example g1 +(g1 +g2) becomes 2 ·g1 +g2;
– arithmetic on rational numbers happens, so the factor 1

1−0 in (13) disappears.

Our language of patently linear expressions take advantage of automatic simpli-
fication pervasively. In particular, in Figures 3 and 4, we pattern-match against
+ and · using commutativity and associativity. Hence just by composing steps 1
and 3 (Figures 2 and 3), we already simplify the measure term

Weight(e1,Weight(1,Weight(e2,Msum(m1,Msum(m1,m2))))) (21)

to Weight(e1 · e2,Msum(Weight(2,m1),m2)).
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This immediate success of automatic simplification might embolden us to feed
patently linear expressions to Maple functions such as value, which triggers sym-
bolic integration, and simplify, whose behaviour is not precisely defined (Moses
1971; Carette 2004). But such optimism would be misplaced. First, CASes tend
to be ineffective at multidimensional integrals, which are typical of probabilistic
programs. For example, Maple’s value can only simplify the double integral (5)
(to (6)) if we reverse the order of integration between x and y. On the other
hand, even though there is no hope to improve a nested integral of the form∫∫∫

exp(x · y · z) · h(x, y, z) dz dy dx (22)

because h is arbitrary, the amount of time Maple’s value takes to return the
integral unimproved explodes as the nesting depth increases.

Second, the nebulous notion of simplification that CASes use can wreck havoc
on patently linear expressions. For example, consider this probabilistic program,
which draws a number from a Gaussian then returns its absolute value:

Bind(Gaussian(0, 1), x, If(x < 0,Ret(−x),Ret(x))) (23)

In step 1, we compute the corresponding linear operator

LO

(
h,

∫ ∞
−∞

exp
(
−x

2

2

)
√

2 · π
·

({
h(−x) if x < 0

h(x) otherwise

)
dx

)
. (24)

If we feed this linear operator straight to step 3, then we recover the measure
term (23) unchanged. But if we feed it to Maple’s simplify or value, the Gaus-
sian density becomes duplicated and unrecognized: we get the linear operators

LO

h,∫ ∞
−∞


exp(− x2

2 )√
2·π · h(−x) if x < 0

exp(− x2

2 )√
2·π · h(x) otherwise

 dx

 (25)

LO

(
h,

∫ 0

−∞

exp
(
−x

2

2

)
√

2 · π
· h(−x) dx+

∫ ∞
0

exp
(
−x

2

2

)
√

2 · π
· h(x) dx

)
, (26)

which step 3 cannot express as measure terms without LO. Therefore, trying to
improve a patently linear expression by feeding it willy-nilly to symbolic integra-
tion or simplification can be not only ineffective but even counter-productive.

6.2 Following the grammar of patently linear expressions

We achieve effective improvement by controlled application of symbolic integra-
tion and algebraic simplification. Informally, our idea is to apply these CAS facili-
ties throughout a patently linear expression except where the grammar (14) calls
for a patently linear subexpression. Intuitively, these places form the control-flow
tree of a probabilistic program. For example, in (24) we withhold the conditional
If subexpression from CAS facilities, and in (5) we withhold h(y).
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reduce
(
h̄,
∫ b
a
g dx, c

)
=



reduce(h̄, g′, c)

if no argument to h̄ in g contains x free

h̄′ is fresh

g′ = banish
(
LO(h̄′,

∫ b
a
h̄′(x) dx), x, h̄, g

)
g′ contains fewer

∫
signs than

∫ b
a
g dx does

0 if c′ is inconsistent

if
(
c′1, ·

∫ b′
a′ if(c

′
2, g
′, 0) dx, 0

)
if c′1 ∧ c′2 ∧ a′ < x < b′ is equivalent to c′

c′1 does not contain x free

where x 6= h̄ and Indicator(c1) · · · · · Indicator(cn) · g′ = reduce(h̄, g, c ∧ a < x < b)

c′ = c1 ∧ · · · ∧ cn ∧ a < x < b

reduce
(
h̄, g + · · · , c

)
= reduce(h̄, g, c) + · · ·

reduce
(
h̄, e · g, c

)
= simplifyIf

(
simplify(e, c)

)
· reduce(h̄, g, c)

where e does not contain h̄ free

reduce
(
h̄, If(e, g, g′), c

)
= if

(
simplify(e, c), reduce(h̄, g, c ∧ e), reduce(h̄, g′, c ∧ ¬e)

)
reduce

(
h̄, Integrate(m,h), c

)
= Integrate

(
m,λx. reduce(h̄, h(x), c)

)
where x is fresh

reduce
(
h̄, g, c

)
= simplify(g, c) otherwise

banish
(
m,x, h̄, g

)
=
(
do the integral in integrate(m,λx. 1)

)
· g

if g does not contain x free

banish
(
m,x, h̄,

∫ b
a
g dy

)
=
∫ b
a
banish(m,x, h̄, g) dy

if a, b do not contain x, h̄ free and x 6= h̄
where m does not contain y free and x 6= y

banish
(
m,x, h̄, g + · · ·

)
= banish(m,x, h̄, g) + · · ·

banish
(
m,x, h̄, e · g

)
= banish

(
Bind(m,x,Weight(e,Ret(x))), x, h̄, g

)
where e does not contain h̄ free

banish
(
m,x, h̄, If(e, g, g′)

)
=



banish
(
Bind(m,x, If(e,Ret(x),Msum())), x, h̄, g

)
+

banish
(
Bind(m,x, If(e,Msum(),Ret(x))), x, h̄, g′

)
if e contains x free

If
(
e, banish(m,x, h̄, g),

banish(m,x, h̄, g′)
)

otherwise

banish
(
m,x, h̄, Integrate(n, h)

)
= Integrate

(
n, λy. banish(m,x, h̄, h(y))

)
if n does not contain x free
where m does not contain h̄ free and y is fresh

simplifyIf(If(c, e, e′)) = if(c, simplifyIf(e), simplifyIf(e′))

simplifyIf(e) = e otherwise

if
(
c, e, 0

)
= Indicator(c) · e

if
(
c, e, e′

)
= If(c, e, e′) otherwise

Fig. 4. Improving a linear operator LO(h̄, g) to LO(h̄, reduce(h̄, g, true)). Some cases of
banish and if are relegated to Figure 5 in our technical report (Carette and Shan 2015).
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Our workhorse is the reduce function defined in Figure 4. Starting with a
linear operator LO(h̄, g), the goal of reduce(h̄, g, c) is to improve g under the
assumption context c (initially true, as in Section 5.2). The reduce function
exercises control over CAS facilities by following the grammar (14). To start with,
reduce only invokes simplify(e, c) in three places, namely where the grammar (14)
calls for a general e rather than some patently linear g. The call simplify(e, c)
means to simplify the expression e under the context c (using Maple’s simplify).

When reduce encounters an integral
∫ b
a
g dx, it first checks if the integration

variable x is used in any call to the arbitrary integrand h̄ (in other words, if x
is used to Return any outcome). If not, then the variable x could be eliminated
(Dechter 1998) or integrated out. An example is the variable x in (5). To perform
the integral over x, we push it in past the integral over y, to form the expression∫ ∞

−∞

(∫ ∞
−∞

exp
(
−x

2

2

)
√

2 · π
·

exp
(
− (y−x)2

2

)
√

2 · π
dx

)
· h(y) dy, (27)

then ask Maple to do just the inner integral over x, which no longer contains
any call to h. In general, we push the integral to be eliminated all the way in,
so that it becomes the innermost integral and does not contain any call to h̄,
then ask Maple to do just that integral. This pushing and symbolic integration is
performed by banish. The specification of banish is that LO(h̄, banish(m,x, h̄, g))
should mean the same measure as Bind(m,x, LO(h̄, g)) but integrate over x in-
nermost rather than outermost. Achieving this specification requires doubling
the work when g is an If. The upshot of this improvement is that we manage to
simplify the measure term (4) to Gaussian(0,

√
2).

If the integral
∫ b
a
g dx cannot be eliminated altogether, then reduce tries to

shrink the integral’s bounds a, b by checking g to see if it looks like If(a′<x<b′,
g′, 0) or If(a′ < x < b′, 1, 0) · g′. If it does, then the recursive call to reduce(h̄, g,
c∧ a<x< b) would return a product like Indicator(a′<x< b′) · g′. The meaning
of Indicator(. . .) is same as If(. . . , 1, 0), but we introduce a separate constructor
Indicator for this particular use of If to encode a domain restriction that reduce
should incorporate into the integration bounds. The constructor Indicator is called
in the appropriate cases by the smart constructor if. Any domain restriction so
gathered is then used by reduce to shrink the integration bounds. The upshot of
this improvement is that we manage to simplify the measure terms

Bind(Uniform(0, 1), x, If(0< x < 1/2,Ret(x),Msum())) (28)

Bind(Uniform(0, 1), x,Weight(If(0< x < 1/2, 1, 0),Ret(x))) (29)

both to Weight(1/2,Uniform(0, 1/2)).
Besides these improvements that constitute reduce, we have found two other

operations on patently linear expressions to be sometimes useful: pushing an in-
tegral inward but not all the way in; and reparameterizing an integral so that the
integration variable is what’s passed to the arbitrary integrand h̄. These opera-
tions are not always beneficial, so reduce does not perform them automatically;
rather, human or heuristic guidance is required to invoke them for now.
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7 Evaluation

Through our work on probabilistic programming, we have assembled a test suite
with 66 input-output pairs of measure terms, including probabilistic models and
inference procedures that arise in practice. Our simplifier passes all of these tests.
A referee asked if some heuristics had crept in; they had, in droves, in a previous
simplifier. We present a rational reconstruction, where the only heuristics are
the ones documented in Section 5.

Many tests have the same input and output, because our simplifier should not
degrade any term, especially one that is already as simple as can be. As explained
in Section 6, this requirement—although basic—is not trivial to satisfy. Indeed,
if we only apply step 1 followed by step 3, 42 of our tests still pass.

Our test suite can be seen online6 alongside our implementation.7 The follow-
ing ablation results give a sense of our tests’ coverage and variety. If we remove
banish, 14 tests fail. If we remove assumption contexts, 8 tests fail. If we remove
calls to Maple’s simplify, 8 tests fail. If we remove shrinking integration bounds,
9 tests fail. If we remove density recognition from step 3, fully 53 tests fail.

8 Related work

Statisticians have long used CASes to analyze the expected values, densities,
moments, and other properties of particular distributions (Andrews and Stafford
2000). For modularity, however, we need to express distributions by composing
building blocks, especially using monadic Bind. Researchers handling such distri-
butions have long acknowledged that tasks like exact inference (Dechter 1998),
lifted inference (de Salvo Braz et al. 2005), and sampler code generation (Tristan
et al. 2014) amount to computer algebra. By bringing an off-the-shelf CAS to
bear on these tasks, and by producing output in the same language as the input,
we hope to have laid the groundwork for more robustness and reuse. For example,
once we defined the densities and density recognition for Gaussian and Gamma,
the handful of conjugacies among those distributions all fall out from the CAS.

Compared to our earlier (unpublished) attempts at simplifying probabilistic
programs using a CAS, this version is quite compact: 775 lines of Maple code
(including comments and testing infrastructure). More importantly, the design of
this version can be explained. Especially effective and robust are our conversion
between measure terms and linear operators, and our use of differential equations
for density recognition. These techniques pave the way for two pressing tasks:

– Add arrays. This will let us express many more distributions in wide use.
However, it is a wide-open problem how to deal with product measures and
their linear-operator counterparts, especially when their length is symbolic.

– Recover domain restrictions from more advanced uses of If, such as multivari-
ate conditions. Potential solutions include SMT solvers and methods based
on normal forms for inequalities.

6 https://github.com/hakaru-dev/hakaru/blob/master/maple/NewSLOTests.mpl
7 https://github.com/hakaru-dev/hakaru/blob/master/maple/NewSLO.mpl

https://github.com/hakaru-dev/hakaru/blob/master/maple/NewSLOTests.mpl
https://github.com/hakaru-dev/hakaru/blob/master/maple/NewSLO.mpl


Simplifying Probabilistic Programs Using Computer Algebra 17

References
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