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This paper d ization as a

for improving the flexibility and comprehensibility of a
system while allowing the shortening of its development
time. The effectiveness of a ‘‘modularization’’ is
dependent upon the criteria used in dividing the system
into modules. A system design problem is presented and
both a conventional and unconventional decomposition
are descrlbed It is shown that the unconventional

positions have distinct advantages for the goals
outlined. The criteria used in arriving at the decom-
positions are discussed. The unconventional decomposi-
tion, if implemented with the conventional assumption
that a module consists of one or more subroutines, will
be less efficient in most cases. An alternative approach
to implementation which does not have this effect is

m sketched.

Introducti

A lucid statement of the philosophy of modular
programming can be found in a 1970 textbook on the
design of system programs by Gouthier and Pont [1,
910.23], which we quote below:*

A well-defined segmentation of the project effort ensures
system modularity. Each task forms a separate, distinct program
module. At implementation time each module and its inputs and
outputs are well-defined, there is no confusion in the intended
interface with other system modules. At checkout time the in-
tegrity of the module is tested independently; there are few sche-
duling problems in synchronizing the completion of several tasks
before checkout can begin. Finally, the system is maintained in
modular fashion; system errors and deficiencies can be traced to
specific system modules, thus limiting the scope of detailed error
searching.

Usually nothing is said about the criteria to be used
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Machine learning — the ability of Gomputers to understand data, manage results and infer insights

from uncertain information — ks the force behind many recent revolutions in computing. Email
spanm filters, smartphone personal assistants and self-driving vehicles are all based on research
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Major features

» BNT supports many types of conditional probability distributions (nodes), and it
1s easy to add more.
o Tabular (multinomial)
o Gaussian
o Softmax (logistic/ sigmoid)
o Multi-layer perceptron (neural network)
o Noisy-or
o Deterministic

* BNT supports decision and utility nodes, as well as chance nodes, i.e., influence
diagrams as well as Bayes nets.

+ BNT supports static and dynamic BNs (useful for modelling dynamical systems and
sequence data).

» BNT supports many different inference algorithms, and it is easy to add more.
o Exact inference for static BNs:
= junction tree
= variable elimination
m = brute force enumeration (for discrete nets)
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Sorting analogy

Ordering + Sorting technique = Sorting procedure
» Numeric » Merge sort

» Alphabetical » Quick sort

» Case folding » Insertion sort

> Reverse » Radix sort

> | 2

Distribution + Inference technique = Inference procedure



Beam Sampling for the Infinite Hidden Markov Model

parametric Bayesian extension of the HMM with an
infinite number of hidden states. Exact Bayesian in-
ference for the iIHMM is intractable. Specifically, given
a particular setting of the parameters the forward-
backward algorithm cannot be applied since the num-
ber of states K is infinite, while with the parameters
marginalized out all hidden state variables will be cou-
pled and the forward-backward algorithm cannot be
applied either. Currently the only approximate in-
ference algorithm available is Gibbs sampling, where
individual hidden state variables are resampled condi-
tioned on all other variables (Teh et al., 2006). Unfor-

tely convergence of s sampling is note i
e HMM ¢ “he strong
& ftr
e, PN L¢eTS
and 7. . solution, w ~not have

strong belie. .wout the hyperpara. .ers, is to use
gamma hyperpriors: « ~ Gamma(aa,b,) and v ~
Gamma(a,,by). (Teh et al., 2006) describe how these
hyperparameters can be sampled efficiently, and we
will use this in the experiments to follow.

3. The Gibbs Sampler

The Gibbs sampler was the first sampling algorithm
for the iHMM that converges to the true posterior.
One proposal builds on the direct assignment sampling
scheme for the HDP in (Teh et al., 2006) by marginal-
izing out the hidden variables 7, ¢ from (2), (3) and
ignoring the ordering of states implicit in 3. Thus we
onlv need to camble the hidden traiectorv s the hase

2. The Infinite Hidden Markov Model

We start this section by describing the finite HMM,
then taking the infinite limit to obtain an intuition
for the infinite HMM, followed by a more precise def-
inition. A finite HMM consists of a hidden state se-
quence s = (s1,82,...,s7) and a corresponding ob-
servation sequence y = (y1,¥2,...,yr). Each state
variable s; can take on a finite number of states, say
1...K. Transitions between states are governed by
Markov dynamics parameterized by the transition ma-
trix 7, where m;; = p(s; = j|s;—1 = i), while the ini-
tial state prok< lities are mp; = p(s» ). For each
state s; & there is a s which

aram “ion )7 “tate:

Me AV
cause large a1 s to be

v « now introduce ts «m sampler which
not suffer from this slow mixing behavior by sampling
the whole sequence s in one go.

4. The Beam Sampler

The forward-backward algorithm does not apply to
the iHMM because the number of states, and hence
the number of potential state trajectories, are infinite.
The idea of beam sampling is to introduce auxiliary
variables u such that conditioned on w the number
of trajectories with positive probability is finite. Now
dynamic programming can be used to compute the
conditional probabilities of each of these trajectories
and thus sample whole trajectories efficiently. These 8



Hakaru: meaningful and reusable, from clear to fast

Model FLOPS 2016 system description paper
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. . NIPS 2015 workshop poster
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Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

A — 12 B+ 1/2f : M Disease
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Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease « A — 1/2,B > 1/2(;
symptom «- case disease of
A= 11—132+ 133173
B — 11— Y2212

return (symptom, disease) } : M (Symptom x Disease)
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Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease « A — 1/2,B > 1/2(;
symptom «- case disease of
A= 11—132+ 133173
B — 11— Y2212

return (symptom, disease) } : M (Symptom x Disease)
= ULA) = 1/67 (27A) = 1/67 (37A) = 1/67 A 1/6 1/6 1/6
1 1
4

Asymptom. case symptom of 1 2 3

1 — 1A~ Ve B 1af

2 = A e B> 1/af
3— 1A Vel : Symptom — M Disease



Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.

Disease A causes a symptom chosen uniformly from [0, 3] C R.
Disease B causes a symptom chosen uniformly from [0, 2] C R.

A — 12 B+ 1/2f : M Disease

11



Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] C R.
Disease B causes a symptom chosen uniformly from [0, 2] C R.

do {disease « A — 1/2,B > 1/2(;
symptom « case disease of
A — uniform O 3
B — uniform O 2;
return (symptom, disease) } : M (Symptom x Disease)

11



Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] C R.
Disease B causes a symptom chosen uniformly from [0, 2] C R.

do {disease « A — 1/2,B > 1/2(;
symptom «- case disease of
A — uniform O 3
B — uniform O 2;
return (symptom, disease) } : M (Symptom x Disease)

11



Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] C R.
Disease B causes a symptom chosen uniformly from [0, 2] C R.

do {disease « A — 1/2,B > 1/2(;
symptom «- case disease of
A — uniform O 3
B — uniform O 2;
return (symptom, disease) } : M (Symptom x Disease)

Il A

B
Asymptom. if symptom < 2 0 1 2 3
then A — 1/6,B — 1/4f
else (A — 1/ef : Symptom — M Disease
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Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

uniform 13 : M Disease

12



Disintegration on a zero-probability observation
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Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

do {disease « uniform 1 3;
symptom « uniform O disease;
return (symptom, disease) } : M (Symptom x Disease)
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Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

do {disease « uniform 1 3;

symptom « uniform O disease;

return (symptom, disease) } : M (Symptom x Disease)
3
2

1

Asymptom. do {disease « uniform 1 3;
if 0 < symptom < disease
then [disease — Udisease
else {f} : Symptom — M Disease
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Measure semantics

Ma] = (e—=R)—=R

A — Y2,B — 120](f) = f(2A) N f(ZB)
[return (symptom, disease)](f) = f(symptom,disease)

[uniform 1 3](f) = /(2
[lebesgue](f) = /

[do {x «m; k}](f) = . [K]F)



Measure semantics

Ma] = (e—=R)—=R

A — Y2,B — 120](f) = f(2A) N f(ZB)
[return (symptom, disease)](f) = f(symptom,disease)

[uniform 1 3](f) = (2

[do {x «m; k}](f) = . [K]F)

3 pd
f
/(s’d)dsdd
o 2-d

[
[lebesgue](f) = /
/

do {d « uniform 1 3;
s «~uniform 0 d;|| (f) =

return (s,d)}
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Disintegration specification

ﬂrr]] = [do {s « lebesgue; d «vﬁ; return (s,d)}]
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Disintegration specification

ﬂrr]] = [do {s « lebesgue; d «vﬁ; return (s,d)}]

m = do {d « uniform 1 3; k = do {d « uniform 1 3;
s « uniform 0 d; if0<s<d
return (s,d)} then |d — V/df

else [}
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Disintegration specification

ﬂrr]] = [do {s « lebesgue; d «vﬁ; return (s,d)}]

m = do {d « uniform 1 3; k = do {d « uniform 1 3;
s « uniform 0 d; if0<s<d
return (s,d)} then |d — Y/df

else [}
3.
fO<s<dthenf(d)/delseO
[[k]](f)z/ . Z" (d)/delse O,
1

[do {s « lebesgue; d « k; return (s, d)}](f)
B /°° /3 if 0 < s < d then f(s,d)/d else O

/ 2

ddds

= [m]

14



Useful but unspecified and thus unautomated before

1. Initialise zg,1:5.
2. Fori=0toN -1
- Sample 2{*V ~ pla1[cf”, 2t ..., 2l).
~ Sample af"*") ~ paalaf ™V, 2f,...,2l)).
= Sample ‘,l"(l+ )~ p(z; lz(H—l) a"éﬁl),wﬂh ... ,Zﬂg)).
~ Sample " ~ plaalaftY, 20, o).

Figure 12. Gibbs sampler.

(Borel paradox)
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Determinism requires inversion

do {d « uniform O 1;
s « return (2 - d);
return (s,d)}
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Determinism requires inversion

do {d « uniform O 1;
s « return (2 - d);
return (s,d)} ; S

o]}
do {d; « uniform O 1, 1
dy « (1 12,2 — 1/2§;
s « return dfz;
return (s, (d1,d2))} S
1

(Deterministic observable)
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Radio Yerevan

Question: Is it correct that Grigori Grigorievich Grigoriev won a
luxury car at the All-Union Championship in Moscow?

Answer: In principle, yes.

But first of all it was not Grigori Grigorievich
Grigoriev, but Vassili Vassilievich Vassiliev.

Second, it was not at the All-Union Championship
in Moscow, but at a Collective Farm Sports Festival in
Smolensk.

Third, it was not a car, but a bicycle.

And fourth he didn't win it, but rather it was stolen
from him.

[ 17



Automatic disintegrator

Question: lIs it correct that our disintegrator is a lazy evaluator?
Answer: In principle, yes.

evaluate : [a] — H — (a x H)

18



Automatic disintegrator

Question: lIs it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But first of all it is not an evaluator, but a partial
evaluator.

evaluate : [a] = H — (|a| X H)
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Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But first of all it is not an evaluator, but a partial
evaluator.
Second, it not only evaluates terms, but also
performs random choices.

evaluate: | o] = H — (o] = H — [M~]|) — |[M~|
perform: [Ma] - H— (la] = H— [M~]) — [M~]|
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Automatic disintegrator

Question: lIs it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But first of all it is not an evaluator, but a partial
evaluator.
Second, it not only evaluates terms, but also
performs random choices.
Third, it not only produces outcomes and values,
but also constrains them.

evaluate: | o] = H— (la] > H— [M~|) = [M~]|

perform: [Ma] - H— (la] = H— [M~v]) = [M~]|
constrain-value : [ a] — |a] = H— (H— [M~]) = [M~y|
constrain-outcome : [M a| — |a) = H— (H— [M~]) — [M~]|
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Automatic disintegrator

Question: lIs it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But first of all it is not an evaluator, but a partial
evaluator.
Second, it not only evaluates terms, but also
performs random choices.
Third, it not only produces outcomes and values,
but also constrains them.

evaluate: [ o] = H = (la] = H— [[M~]}) = {|[M~y]
perform: [Ma| - H— (la] = H— {{M~]}) = {[M~]
constrain-value: [ o] — |a] = H— (H— {[M~]}) — {|M~]
constrain-outcome : [M a| — |a] = H— (H— {[M~]}) — {|[M~]|

18



Automatic disintegrator in action

[perform (do {d « uniform 1 3; s « uniform O d; return (s, d)})[]
[d" « uniform 1 3]
perform (do {s « uniform O d’; return (s,d")})

/ H ! H U
perform (return (s', d')) [d" « uniform 1 3; s’ « uniform O d’]

| evaluate (s, d’) = (s/,d')
[constrain-value s’ s
[constrain-outcome (uniform O d’) s
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Automatic disintegrator in action

[perform (do {d « uniform 1 3; s « uniform O d; return (s,d)})

[

[d" « uniform 1 3]
perform (do {s « uniform O d’; return (s,d")})

/ H ! H U
perform (return (s', d')) [d" « uniform 1 3; s’ « uniform O d’]

| evaluate (s, d’) = (s/,d')
[constrain-value s’ s

[constrain-outcome (uniform 0 d') s

[evaluate 0=0 nondeterminism

evaluate d’
[p:rcfjc;rm (uniform 1 3) do {d” « uniform 1 3; (J}
g [let d’ = d”; s’ « uniform O d’]

if 0 <s <d’thendo {() «~ {() — Ya'{; O} else |
[let ' =d”; let s’ =s]

19



Automatic disintegrator in action

[perform (do {d « uniform 1 3; s « uniform O d; return (s, d)})[]
[d" « uniform 1 3]
perform (do {s « uniform O d’; return (s,d")})

/ H ! H U
perform (return (s', d')) [d" « uniform 1 3; s’ « uniform O d’]

| evaluate (s',d’) = (s/,d')
[constrain-value s’ s
[constrain-outcome (uniform 0 d') s
[evaluate 0 = 0
evaluate d’

[perform (uniform 1 3)

= d//
= d//

nondeterminism

[let d’ = d”; s’ « uniform O d’]
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Interim summary

v

Generate observed symptoms from hidden causes

v

First exact inference algorithm for continuous distributions

v

Enable modular composition of inference techniques

v

Lessons for language design and reasoning

v

Ongoing work: arrays
more dominating measures
more deterministic observables
prove correctness

20



Hakaru: meaningful and reusable, from clear to fast

FLOPS 2016 system description paper
“Probabilistic inference by program transformation in Hakaru”

NIPS 2015 workshop poster
LSTITESFIEE “Building blocks for exact and approximate inference”

[disintegrate] [disintegrate]
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Hakaru: meaningful and reusable, from clear to fast

FLOPS 2016 system description paper
“Probabilistic inference by program transformation in Hakaru”

NIPS 2015 workshop poster
“Building blocks for exact and approximate inference”

simplify

simplify simplify
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Simplifying probabilistic programs via semantics

PADL 2016 paper
“Simplifying probabilistic programs

Probabilistic program using computer algebra”

Continuation passing

Abstract integral

Computer algebra

Improved integral

Computer algebra

Simplified program

22



Simplifying a discrete distribution

do {x « uniform O 1; PADL 2016 paper
A “Simplifying probabilistic programs
y « uniform O 1; pliying p prog

if x < y then return true
else return false}

f(true) ifx<y
/ / ) dy dx
f(false) otherwise

lSymboIic integration

- f(true) + % f(false)

I\)\l—l

[true — 1/2, false — 1/2f

using computer algebra”
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Simplifying a continuous distribution

PADL 2016 paper

do {X <~ normal O 1; “Simplifying probabilistic programs
Yy« normal x 1: using computer algebra”
return y}

~

(y—x)

o0 eXp(—X?z) [~ exp(—*57) - f(y) dy dx <
4 —00 \/ﬂ —00 \/ﬂ §
1Symbolic integration :i
o0 _¥ 3
/_oo e);p(\/—) (y) dy &
AAlonomic representation
normal 0 /2
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Simplifying a conditional distribution

PADL 2016 paper

“Simplifying probabilistic programs
do {x « normal 0 1; prvine P pros

[x — density (normal x 1) y{}

i AAonomic representation

y
do {x «~ normal = —;
{ 2 V2
exp(—yz) Use conjugacies (normal, gamma, ...)
= 2.1 ) without pairwise hard-coding

using computer algebra”
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Summary

General strategy:
» represent concepts
» formal, hence executable
» meaningful, hence modular

Meaning-preserving transformations on probabilistic programs!
» disintegrate
> simplify

» etc.

Example modularity payoffs:
» combine exact and approximate techniques without re-coding
» use conjugacies without pairwise hard-coding
» same performance

[ 23



