
1

Modular probabilistic inferenceModular probabilistic inference
by program transformationsby program transformations

Chung-chieh Shan · QAPL, 2–3 April 2016

Programming R. Morr is
Techniques Edi tor

On the Criteria To Be
Used in Decomposing
Systems into Modules
D.L. Parnas
Carnegie-Mellon University

This paper discusses modularization as a mechanism
for improving the flexibility and comprehensibility of a
system while allowing the shortening of its development
time. The effectiveness of a "modularization" is
dependent upon the criteria used in dividing the system
into modules. A system design problem is presented and
both a conventional and unconventional decomposition
are described. It is shown that the unconventional
decompositions have distinct advantages for the goals
outlined. The criteria used in arriving at the decom-
positions are discussed. The unconventional decomposi-
tion, if implemented with the conventional assumption
that a module consists of one or more subroutines, will
be less efficient in most cases. An alternative approach
to implementation which does not have this effect is
sketched.

Key Words and Phrases: software, modules,
modularity, software engineering, KWIC index,
software design

CR Categories: 4.0

Introduction

A lucid s tatement o f the phi losophy of modula r
p rogramming can be found in a 1970 tex tbook on the
design of system programs by Gouth ie r and Pon t [1,
¶I0.23], which we quote below: 1

A well-defined segmentation of the project effort ensures
system modularity. Each task forms a separate, distinct program
module. At implementation time each module and its inputs and
outputs are well-defined, there is no confusion in the intended
interface with other system modules. At checkout time the in-
tegrity of the module is tested independently; there are few sche-
duling problems in synchronizing the completion of several tasks
before checkout can begin. Finally, the system is maintained in
modular fashion; system errors and deficiencies can be traced to
specific system modules, thus limiting the scope of detailed error
searching.

Usual ly nothing is said about the criteria to be used
in dividing the system into modules. This paper will
discuss that issue and, by means o f examples, suggest
some criteria which can be used in decompos ing a
system into modules.

Copyright @ 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

Author's address: Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA 15213.

1053

A Brief Status Report

The ma jo r advancement in the area o f modula r
p rogramming has been the development o f coding
techniques and assemblers which (l) allow one module
to be written with little knowledge o f the code in
another module, and (2) allow modules to be reas-
sembled and replaced wi thout reassembly o f the whole
system. This facility is extremely valuable for the
product ion o f large pieces o f code, but the systems mos t
often used as examples o f problem systems are highly-
modular ized programs and make use o f the techniques
ment ioned above.

1 Reprinted by permission of Prentice-Hall, Englewood
Cliffs, N.J.

Communications December 1972
of Volume 15
the ACM Number 12

2

Robinson projection;
Pseudocylindrical;
Neither Conformal or Equal-area;
A. H. Robinson; 1963

Robinson projection;
Pseudocylindrical;
Neither Conformal or Equal-area;
A. H. Robinson; 1963

3

http://www.csiss.org/map-projections/

4

http://www.gcmap.com/mapui?P=TPE-AMS-BOS-AAR-NYC-BZO-ITH-TYO-SFO-IND&R=&PM_q=*&PM=*&MS=wls2&MP=&MC=&PC=&PW=&PT=&RC=&RW=&RS=&DU=mi&DM=&SG=&SU=mph&EV=&EU=kts

5

http://www.darpa.mil/program/probabilistic-programming-for-advancing-machine-Learning

6

http://bnt.googlecode.com/svn-history/r27/trunk/docs/bnt_pre_sf.html

7

Sorting analogy

Ordering + Sorting technique = Sorting procedure
I Numeric
I Alphabetical
I Case folding
I Reverse
I …

I Merge sort
I Quick sort
I Insertion sort
I Radix sort
I …

Distribution + Inference technique = Inference procedure
Generative story Interpreter/compiler Probabilistic programming

Beam Sampling for the Infinite Hidden Markov Model

parametric Bayesian extension of the HMM with an
infinite number of hidden states. Exact Bayesian in-
ference for the iHMM is intractable. Specifically, given
a particular setting of the parameters the forward-
backward algorithm cannot be applied since the num-
ber of states K is infinite, while with the parameters
marginalized out all hidden state variables will be cou-
pled and the forward-backward algorithm cannot be
applied either. Currently the only approximate in-
ference algorithm available is Gibbs sampling, where
individual hidden state variables are resampled condi-
tioned on all other variables (Teh et al., 2006). Unfor-
tunately convergence of Gibbs sampling is notoriously
slow in the HMM setting due to the strong dependen-
cies between consecutive time steps often exhibited by
time series data (Scott, 2002).

In this paper we propose a new sampler for the iHMM
called beam sampling. Beam sampling combines two
ideas—slice sampling and dynamic programming—to
sample whole state trajectories efficiently. Our ap-
plication of slice sampling (Neal, 2003) is inspired
by (Walker, 2007), who used it to limit the number
of clusters considered when sampling assignment vari-
ables in DP mixtures to a finite number. We apply
slice sampling to limit to a finite number the states
considered in each time step of the iHMM, so that dy-
namic programming can be used to sample whole state
trajectories efficiently. We call our proposal beam
sampling due to its similarity to beam search, a heuris-
tic procedure for finding the maximum a posteriori
trajectory given observations in non-linear dynamical
systems. The underlying idea in both is to limit the
search to a small number of states so that a good tra-
jectory can be found using reasonable computational
resources. However, ours is a MCMC sampling method
with guaranteed convergence to the true posterior.

We first present a self-contained description of the
iHMM using the Hierarchical Dirichlet process (HDP)
formalism (Teh et al., 2006) in Section 2, followed
by a discussion of Gibbs sampling in Section 3. We
introduce beam sampling in Section 4 and compare
it against Gibbs sampling on both artificial and real
datasets in Section 5. We find that beam sampling
is (1) at least as fast if not faster than Gibbs sam-
pling; (2) more robust than Gibbs sampling as its
performance is not as dependent on initialization and
hyperparameter choice; (3) handles non-conjugacy in
the model more naturally; (4) straightforward to im-
plement. We conclude in Section 6 with a discus-
sion and suggestions for other cases in which beam
sampling might prove useful. All software is avail-
able from http://mlg.eng.cam.ac.uk/jurgen to encour-
age more widespread adoption of the iHMM and the
beam sampler.

2. The Infinite Hidden Markov Model

We start this section by describing the finite HMM,
then taking the infinite limit to obtain an intuition
for the infinite HMM, followed by a more precise def-
inition. A finite HMM consists of a hidden state se-
quence s = (s1, s2, . . . , sT) and a corresponding ob-
servation sequence y = (y1, y2, . . . , yT). Each state
variable st can take on a finite number of states, say
1 . . .K. Transitions between states are governed by
Markov dynamics parameterized by the transition ma-
trix π, where πij = p(st = j|st−1 = i), while the ini-
tial state probabilities are π0i = p(s1 = i). For each
state st ∈ {1 . . .K} there is a parameter φst which
parametrizes the observation likelihood for that state:
yt|st ∼ F (φst). Given the parameters {π0,π,φ,K} of
the HMM, the joint distribution over hidden states s
and observations y can be written (with s0 = 0):

p(s,y|π0,π,φ,K) =

T∏

t=1

p(st|st−1)p(yt|st)

We complete the Bayesian description by specifying
the priors. Let the observation parameters φ be iid
drawn from a prior distribution H. With no fur-
ther prior knowledge on the state sequence, the typical
prior for the transition (and initial) probabilities are
symmetric Dirichlet distributions.

A näıve way to obtain a nonparametric HMM with an
infinite number of states might be to use symmetric
Dirichlet priors over the transition probabilities with
parameter α/K and take K → ∞. Such an approach
has been successfully used to derive DP mixture mod-
els (Rasmussen, 2000) but unfortunately does not work
in the HMM context. The subtle reason is that there
is no coupling across transitions out of different states
since the transition probabilities are given indepen-
dent priors (Beal et al., 2002). To introduce coupling
across transitions, one may use a hierarchical Bayesian
formalism where the Dirichlet priors have shared pa-
rameters and given a higher level prior, e.g.

πk ∼ Dirichlet (αβ) ,

β ∼ Dirichlet (γ/K . . . γ/K) (1)

where πk are transition probabilities out of state k and
β are the shared prior parameters. As K →∞, the hi-
erarchical prior (1) approaches (with some alterations)
a hierarchical Dirichlet process (Teh et al., 2006).

A hierarchical Dirichlet process (HDP) is a set of
Dirichlet processes (DPs) coupled through a shared
random base measure which is itself drawn from a
DP (Teh et al., 2006). Specifically, each Gk ∼
DP(α,G0) with shared base measure G0, which can
be understood as the mean of Gk, and concentration
parameter α > 0, which governs variability around G0,

1089

Beam Sampling for the Infinite Hidden Markov Model

Figure 1. iHMM Graphical Model

with small α implying greater variability. The shared
base measure is itself given a DP prior: G0 ∼ DP(γ,H)
with H a global base measure. The stick-breaking con-
struction for HDPs shows that the random measures
can be expressed as follows: G0 =

∑∞
k′=1 βk′δφk′ and

Gk =
∑∞
k′=1 πkk′δφk′ , where β ∼ GEM(γ) is the stick-

breaking construction for DPs (Sethuraman, 1994),
πk ∼ DP(α,β), and each φk′ ∼ H independently.

Identifying each Gk as describing both the transition
probabilities πkk′ from state k to k′ and the emis-
sion distributions parametrized by φk′ , we can now
formally define the iHMM as follows:

β ∼ GEM(γ), πk|β ∼ DP(α,β), φk ∼ H, (2)

st|st−1 ∼ Multinomial(πst−1
), yt|st ∼ F (φst). (3)

The graphical model corresponding to this hierarchical
model is shown in figure 1. Thus βk′ is the prior mean
for transition probabilities leading into state k′, and α
governs the variability around the prior mean. If we fix
β = (1

K . . . 1
K , 0, 0 . . .) where the first K entries are 1

K
and the remaining are 0, then transition probabilities
into state k′ will be non-zero only if k′ ∈ {1 . . .K}, and
we recover the Bayesian HMM of (MacKay, 1997).

Finally we place priors over the hyperparameters α
and γ. A common solution, when we do not have
strong beliefs about the hyperparameters, is to use
gamma hyperpriors: α ∼ Gamma(aα, bα) and γ ∼
Gamma(aγ , bγ). (Teh et al., 2006) describe how these
hyperparameters can be sampled efficiently, and we
will use this in the experiments to follow.

3. The Gibbs Sampler

The Gibbs sampler was the first sampling algorithm
for the iHMM that converges to the true posterior.
One proposal builds on the direct assignment sampling
scheme for the HDP in (Teh et al., 2006) by marginal-
izing out the hidden variables π,φ from (2), (3) and
ignoring the ordering of states implicit in β. Thus we
only need to sample the hidden trajectory s, the base
DP parameters β and the hyperparameters α, γ. Sam-
pling β, α, γ is exactly the same as for the HDP so we
refer to (Teh et al., 2006) for details.

In order to resample st, we need to compute the prob-
ability p(st|s−t,β,y, α,H) ∝ p(yt|st, s−t,y−t, H) ·
p(st|s−t,β, α). The first factor is the con-
ditional likelihood of yt given s, y and H:∫
p(yt|st,φst)p(φst |s−t,y−t, H)dφst . This is easy to

compute when the base distribution H and likelihood
F from equations (2) and (3) are conjugate. For
the second factor we can use the fact that the hid-
den state sequence is Markov. Let nij be the number
of transitions from state i to state j excluding time
steps t − 1 and t. Let n·i, ni· be the number of tran-
sitions in and out of state i. Finally, let K be the
number of distinct states in s−t. Then we have that1

p(st = k|s−t,β, α) ∝

(nst−1,k + αβk)
nk,st+1

+αβst+1

nk·+α
if k ≤ K, k 6= st−1

(nst−1,k + αβk)
nk,st+1

+1+αβst+1

nk·+1+α if k = st−1 = st+1

(nst−1,k + αβk)
nk,st+1

+αβst+1

nk·+1+α if k = st−1 6= st+1

αβkβst+1
if k = K + 1.

For each 1 ≤ t ≤ T we need to compute O(K)
probabilities, hence the Gibbs sampler has an O(TK)
computational complexity. Non-conjugate models can
be handled using more sophisticated sampling tech-
niques. In our experiments below, we used algorithm
8 from (Neal, 2000).

The Gibbs sampler’s success is due to its straightfor-
ward implementation. However, it suffers from one
major drawback: sequential and time series data are
likely to be strongly correlated. For example, if we
know the value of a stock at time t then we can be
reasonably sure that it will be similar at time t+1. As
is well known, this is a situation which is far from ideal
for the Gibbs sampler: strong correlations in the hid-
den states will make it unlikely that individual updates
to st can cause large blocks within s to be changed.
We will now introduce the beam sampler which does
not suffer from this slow mixing behavior by sampling
the whole sequence s in one go.

4. The Beam Sampler

The forward-backward algorithm does not apply to
the iHMM because the number of states, and hence
the number of potential state trajectories, are infinite.
The idea of beam sampling is to introduce auxiliary
variables u such that conditioned on u the number
of trajectories with positive probability is finite. Now
dynamic programming can be used to compute the
conditional probabilities of each of these trajectories
and thus sample whole trajectories efficiently. These

1Recall that we ignored the ordering of states in β. In
this representation the K distinct states in s are labeled
1 . . .K and K + 1 denotes a new state.

1090

8

9

Hakaru: meaningful and reusable, from clear to fast

Model

disintegrate

Posterior

simplify

expect

Simpli�ed posterior

mh sampling

disintegrate

expect

Transition kernel

simplify

expect

Simpli�ed kernel

gibbs sampling

disintegrate

expect

Transition kernel

simplify

expect

Simpli�ed kernel

1321 ms

1078 ms

267 ms

207 ms

Idiomatic WebPPL

Handwritten Hakaru

FLOPS 2016 system description paper
“Probabilistic inference by program transformation in Hakaru”

NIPS 2015 workshop poster
“Building blocks for exact and approximate inference”

9

Hakaru: meaningful and reusable, from clear to fast

Model

disintegrate

Posterior

simplify

expect

Simpli�ed posterior

mh sampling

disintegrate

expect

Transition kernel

simplify

expect

Simpli�ed kernel

gibbs sampling

disintegrate

expect

Transition kernel

simplify

expect

Simpli�ed kernel

1321 ms

1078 ms

267 ms

207 ms

Idiomatic WebPPL

Handwritten Hakaru

FLOPS 2016 system description paper
“Probabilistic inference by program transformation in Hakaru”

NIPS 2015 workshop poster
“Building blocks for exact and approximate inference”

9

Hakaru: meaningful and reusable, from clear to fast

Model

disintegrate

Posterior

simplify

expect

Simpli�ed posterior

mh sampling

disintegrate

expect

Transition kernel

simplify

expect

Simpli�ed kernel

gibbs sampling

disintegrate

expect

Transition kernel

simplify

expect

Simpli�ed kernel

1321 ms

1078 ms

267 ms

207 ms

Idiomatic WebPPL

Handwritten Hakaru

FLOPS 2016 system description paper
“Probabilistic inference by program transformation in Hakaru”

NIPS 2015 workshop poster
“Building blocks for exact and approximate inference”

10

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease¢ *A 7→ 1/2,B 7→ 1/2+ : M Disease;

symptom¢ case disease of
A→ *1 7→ 1/3, 2 7→ 1/3, 3 7→ 1/3+
B→ *1 7→ 1/2, 2 7→ 1/2+;

return (symptom, disease)} : M (Symptom× Disease)

= *(1,A) 7→ 1/6, (2,A) 7→ 1/6, (3,A) 7→ 1/6,
(1,B) 7→ 1/4, (2,B) 7→ 1/4+

model
posterior

λsymptom. case symptom of
1 → *A 7→ 1/6,B 7→ 1/4+
2 → *A 7→ 1/6,B 7→ 1/4+
3→ *A 7→ 1/6+ : Symptom→M Disease

A 1/6 1/6 1/6

B 1/4 1/4 0

1 2 3

10

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease¢ *A 7→ 1/2,B 7→ 1/2+;
symptom¢ case disease of

A→ *1 7→ 1/3, 2 7→ 1/3, 3 7→ 1/3+
B→ *1 7→ 1/2, 2 7→ 1/2+;

return (symptom, disease)} : M (Symptom× Disease)

= *(1,A) 7→ 1/6, (2,A) 7→ 1/6, (3,A) 7→ 1/6,
(1,B) 7→ 1/4, (2,B) 7→ 1/4+

model
posterior

λsymptom. case symptom of
1 → *A 7→ 1/6,B 7→ 1/4+
2 → *A 7→ 1/6,B 7→ 1/4+
3→ *A 7→ 1/6+ : Symptom→M Disease

A 1/6 1/6 1/6

B 1/4 1/4 0

1 2 3

10

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease¢ *A 7→ 1/2,B 7→ 1/2+;
symptom¢ case disease of

A→ *1 7→ 1/3, 2 7→ 1/3, 3 7→ 1/3+
B→ *1 7→ 1/2, 2 7→ 1/2+;

return (symptom, disease)} : M (Symptom× Disease)

= *(1,A) 7→ 1/6, (2,A) 7→ 1/6, (3,A) 7→ 1/6,
(1,B) 7→ 1/4, (2,B) 7→ 1/4+

model
posterior

λsymptom. case symptom of
1 → *A 7→ 1/6,B 7→ 1/4+
2 → *A 7→ 1/6,B 7→ 1/4+
3→ *A 7→ 1/6+ : Symptom→M Disease

A 1/6 1/6 1/6

B 1/4 1/4 0

1 2 3

10

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease¢ *A 7→ 1/2,B 7→ 1/2+;
symptom¢ case disease of

A→ *1 7→ 1/3, 2 7→ 1/3, 3 7→ 1/3+
B→ *1 7→ 1/2, 2 7→ 1/2+;

return (symptom, disease)} : M (Symptom× Disease)

= *(1,A) 7→ 1/6, (2,A) 7→ 1/6, (3,A) 7→ 1/6,
(1,B) 7→ 1/4, (2,B) 7→ 1/4+

model
posterior

λsymptom. case symptom of
1 → *A 7→ 1/6,B 7→ 1/4+
2 → *A 7→ 1/6,B 7→ 1/4+
3→ *A 7→ 1/6+ : Symptom→M Disease

A 1/6 1/6 1/6

B 1/4 1/4 0

1 2 3

11

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] ⊂ R.
Disease B causes a symptom chosen uniformly from [0, 2] ⊂ R.

do {disease¢ *A 7→ 1/2,B 7→ 1/2+ : M Disease;

symptom¢ case disease of
A→ uniform 0 3
B→ uniform 0 2;

return (symptom, disease)} : M (Symptom× Disease)

model
posterior

λsymptom. if symptom ≤ 2
then *A 7→ 1/6,B 7→ 1/4+
else *A 7→ 1/6+ : Symptom→M Disease

0 1 2 3

B

A

11

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] ⊂ R.
Disease B causes a symptom chosen uniformly from [0, 2] ⊂ R.

do {disease¢ *A 7→ 1/2,B 7→ 1/2+;
symptom¢ case disease of

A→ uniform 0 3
B→ uniform 0 2;

return (symptom, disease)} : M (Symptom× Disease)

model
posterior

λsymptom. if symptom ≤ 2
then *A 7→ 1/6,B 7→ 1/4+
else *A 7→ 1/6+ : Symptom→M Disease

0 1 2 3

B

A

11

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] ⊂ R.
Disease B causes a symptom chosen uniformly from [0, 2] ⊂ R.

do {disease¢ *A 7→ 1/2,B 7→ 1/2+;
symptom¢ case disease of

A→ uniform 0 3
B→ uniform 0 2;

return (symptom, disease)} : M (Symptom× Disease)

model
posterior

λsymptom. if symptom ≤ 2
then *A 7→ 1/6,B 7→ 1/4+
else *A 7→ 1/6+ : Symptom→M Disease

0 1 2 3

B

A

11

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] ⊂ R.
Disease B causes a symptom chosen uniformly from [0, 2] ⊂ R.

do {disease¢ *A 7→ 1/2,B 7→ 1/2+;
symptom¢ case disease of

A→ uniform 0 3
B→ uniform 0 2;

return (symptom, disease)} : M (Symptom× Disease)

model
posterior

λsymptom. if symptom ≤ 2
then *A 7→ 1/6,B 7→ 1/4+
else *A 7→ 1/6+ : Symptom→M Disease

0 1 2 3

B

A

12

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] ⊂ R.
Choose symptom uniformly from [0, disease] ⊂ R.

do {disease¢ uniform 1 3 : M Disease;

symptom¢ uniform 0 disease;
return (symptom, disease)} : M (Symptom× Disease)

model
posterior

λsymptom.do {disease¢ uniform 1 3;
if 0 ≤ symptom ≤ disease

then *disease 7→ 1/disease+
else *+} : Symptom→M Disease

0 1 2 3

1

2

3

12

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] ⊂ R.
Choose symptom uniformly from [0, disease] ⊂ R.

do {disease¢ uniform 1 3;
symptom¢ uniform 0 disease;
return (symptom, disease)} : M (Symptom× Disease)

model
posterior

λsymptom.do {disease¢ uniform 1 3;
if 0 ≤ symptom ≤ disease

then *disease 7→ 1/disease+
else *+} : Symptom→M Disease

0 1 2 3

1

2

3

12

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] ⊂ R.
Choose symptom uniformly from [0, disease] ⊂ R.

do {disease¢ uniform 1 3;
symptom¢ uniform 0 disease;
return (symptom, disease)} : M (Symptom× Disease)

model
posterior

λsymptom.do {disease¢ uniform 1 3;
if 0 ≤ symptom ≤ disease

then *disease 7→ 1/disease+
else *+} : Symptom→M Disease

0 1 2 3

1

2

3

12

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] ⊂ R.
Choose symptom uniformly from [0, disease] ⊂ R.

do {disease¢ uniform 1 3;
symptom¢ uniform 0 disease;
return (symptom, disease)} : M (Symptom× Disease)

model
posterior

λsymptom.do {disease¢ uniform 1 3;
if 0 ≤ symptom ≤ disease

then *disease 7→ 1/disease+
else *+} : Symptom→M Disease

0 1 2 3

1

2

3

13

Measure semantics

JM αK = (α→ R)→ R

J*A 7→ 1/2,B 7→ 1/2+K(f) =
f(A)

2
+

f(B)
2

Jreturn (symptom, disease)K(f) = f(symptom, disease)

Juniform 1 3K(f) =

∫ 3

1

f(x)
2

dx

JlebesgueK(f) =

∫ ∞

−∞
f(x) dx

Jdo {x¢m; k}K(f) = JmK(λx. JkKf)
u

v
do {d¢ uniform 1 3;

s¢ uniform 0 d;
return (s, d)}

}

~ (f) =

∫ 3

1

∫ d

0

f(s, d)
2 · d ds dd

︸ ︷︷ ︸
Patently linear in f

13

Measure semantics

JM αK = (α→ R)→ R

J*A 7→ 1/2,B 7→ 1/2+K(f) =
f(A)

2
+

f(B)
2

Jreturn (symptom, disease)K(f) = f(symptom, disease)

Juniform 1 3K(f) =

∫ 3

1

f(x)
2

dx

JlebesgueK(f) =

∫ ∞

−∞
f(x) dx

Jdo {x¢m; k}K(f) = JmK(λx. JkKf)

u

v
do {d¢ uniform 1 3;

s¢ uniform 0 d;
return (s, d)}

}

~ (f) =

∫ 3

1

∫ d

0

f(s, d)
2 · d ds dd

︸ ︷︷ ︸
Patently linear in f

13

Measure semantics

JM αK = (α→ R)→ R

J*A 7→ 1/2,B 7→ 1/2+K(f) =
f(A)

2
+

f(B)
2

Jreturn (symptom, disease)K(f) = f(symptom, disease)

Juniform 1 3K(f) =

∫ 3

1

f(x)
2

dx

JlebesgueK(f) =

∫ ∞

−∞
f(x) dx

Jdo {x¢m; k}K(f) = JmK(λx. JkKf)
u

v
do {d¢ uniform 1 3;

s¢ uniform 0 d;
return (s, d)}

}

~ (f) =

∫ 3

1

∫ d

0

f(s, d)
2 · d ds dd

︸ ︷︷ ︸
Patently linear in f

14

Disintegration speci�cation

JmK = Jdo {s¢ lebesgue; d¢ k; return (s, d)}K
model posterior

m = do {d¢ uniform 1 3;
s¢ uniform 0 d;
return (s, d)}

k = do {d¢ uniform 1 3;
if 0 ≤ s ≤ d

then *d 7→ 1/d+
else *+}

JkK(f) =
∫ 3

1

if 0 ≤ s ≤ d then f(d)/d else 0
2

dd

Jdo {s¢ lebesgue; d¢ k; return (s, d)}K(f)

=

∫ ∞

−∞

∫ 3

1

if 0 ≤ s ≤ d then f(s, d)/d else 0
2

dd ds

=

∫ 3

1

∫ d

0

f(s, d)
2 · d ds dd = JmK

14

Disintegration speci�cation

JmK = Jdo {s¢ lebesgue; d¢ k; return (s, d)}K
model posterior

m = do {d¢ uniform 1 3;
s¢ uniform 0 d;
return (s, d)}

k = do {d¢ uniform 1 3;
if 0 ≤ s ≤ d

then *d 7→ 1/d+
else *+}

JkK(f) =
∫ 3

1

if 0 ≤ s ≤ d then f(d)/d else 0
2

dd

Jdo {s¢ lebesgue; d¢ k; return (s, d)}K(f)

=

∫ ∞

−∞

∫ 3

1

if 0 ≤ s ≤ d then f(s, d)/d else 0
2

dd ds

=

∫ 3

1

∫ d

0

f(s, d)
2 · d ds dd = JmK

14

Disintegration speci�cation

JmK = Jdo {s¢ lebesgue; d¢ k; return (s, d)}K
model posterior

m = do {d¢ uniform 1 3;
s¢ uniform 0 d;
return (s, d)}

k = do {d¢ uniform 1 3;
if 0 ≤ s ≤ d

then *d 7→ 1/d+
else *+}

JkK(f) =
∫ 3

1

if 0 ≤ s ≤ d then f(d)/d else 0
2

dd

Jdo {s¢ lebesgue; d¢ k; return (s, d)}K(f)

=

∫ ∞

−∞

∫ 3

1

if 0 ≤ s ≤ d then f(s, d)/d else 0
2

dd ds

=

∫ 3

1

∫ d

0

f(s, d)
2 · d ds dd = JmK

15

Useful but unspeci�ed and thus unautomated before

22 C. ANDRIEU ET AL.

proposal distribution for j = 1, . . . , n

q
(

x⋆
∣

∣ x (i)) =
{

p
(

x⋆
j

∣

∣ x (i)
− j

)

If x⋆
− j = x (i)

− j

0 Otherwise.

The corresponding acceptance probability is:

A
(

x (i), x⋆
)

= min

{

1,
p(x⋆)q

(

x (i)
∣

∣ x⋆
)

p
(

x (i)
)

q
(

x⋆|x (i)
)

}

= min

{

1,
p(x⋆)p

(

x (i)
j

∣

∣ x (i)
− j

)

p
(

x (i)
)

p(x⋆
j |x⋆

− j)

}

= min

{

1,
p
(

x⋆
− j

)

p
(

x (i)
− j

)

}

= 1.

That is, the acceptance probability for each proposal is one and, hence, the deterministic
scan Gibbs sampler algorithm is often presented as shown in figure 12.

Since the Gibbs sampler can be viewed as a special case of the MH algorithm, it is
possible to introduce MH steps into the Gibbs sampler. That is, when the full conditionals
are available and belong to the family of standard distributions (Gamma, Gaussian, etc.),
we will draw the new samples directly. Otherwise, we can draw samples with MH steps
embedded within the Gibbs algorithm. For n = 2, the Gibbs sampler is also known as the
data augmentation algorithm, which is closely related to the expectation maximisation (EM)
algorithm (Dempster, Laird, & Rubin, 1977; Tanner & Wong, 1987).

Directed acyclic graphs (DAGS) are one of the best known application areas for Gibbs
sampling (Pearl, 1987). Here, a large-dimensional joint distribution is factored into a directed
graph that encodes the conditional independencies in the model. In particular, if x pa(j)

Figure 12. Gibbs sampler.

(Borel paradox)

16

Determinism requires inversion

do {d¢ uniform 0 1;
s¢ return (2 · d);
return (s, d)}

1 2

1

s

d

do {d1 ¢ uniform 0 1;
d2 ¢ *1 7→ 1/2, 2 7→ 1/2+;
s¢ return dd2

1 ;
return (s, (d1, d2))}

1

1

s

d1

(Deterministic observable)

16

Determinism requires inversion

do {d¢ uniform 0 1;
s¢ return (2 · d);
return (s, d)}

1 2

1

s

d

do {d1 ¢ uniform 0 1;
d2 ¢ *1 7→ 1/2, 2 7→ 1/2+;
s¢ return dd2

1 ;
return (s, (d1, d2))}

1

1

s

d1

(Deterministic observable)

17

Radio Yerevan

Question: Is it correct that Grigori Grigorievich Grigoriev won a
luxury car at the All-Union Championship in Moscow?

Answer: In principle, yes.
But �rst of all it was not Grigori Grigorievich

Grigoriev, but Vassili Vassilievich Vassiliev.
Second, it was not at the All-Union Championship

in Moscow, but at a Collective Farm Sports Festival in
Smolensk.

Third, it was not a car, but a bicycle.
And fourth he didn’t win it, but rather it was stolen

from him.

18

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.

But �rst of all it is not an evaluator, but a partial
evaluator.

Second, it not only evaluates terms, but also
performs random choices.

Third, it not only produces outcomes and values,
but also constrains them.

And fourth it doesn’t produce one term, but
searches for a random variable to constrain.

evaluate : dαe → H→ (α× H)

perform : dM αe → H→ (bαc → H→ bM γc)→ bM γc
constrain-value : dαe → bαc → H→ (H→ bM γc)→ bM γc

constrain-outcome : dM αe → bαc → H→ (H→ bM γc)→ bM γc

18

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But �rst of all it is not an evaluator, but a partial

evaluator.

Second, it not only evaluates terms, but also
performs random choices.

Third, it not only produces outcomes and values,
but also constrains them.

And fourth it doesn’t produce one term, but
searches for a random variable to constrain.

evaluate : dαe → H→ (bαc × H)

perform : dM αe → H→ (bαc → H→ bM γc)→ bM γc
constrain-value : dαe → bαc → H→ (H→ bM γc)→ bM γc

constrain-outcome : dM αe → bαc → H→ (H→ bM γc)→ bM γc

18

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But �rst of all it is not an evaluator, but a partial

evaluator.
Second, it not only evaluates terms, but also

performs random choices.

Third, it not only produces outcomes and values,
but also constrains them.

And fourth it doesn’t produce one term, but
searches for a random variable to constrain.

evaluate : d αe → H→ (bαc → H→ bM γc)→ bM γc
perform : dM αe → H→ (bαc → H→ bM γc)→ bM γc

constrain-value : d αe → bαc → H→ (H→ bM γc)→ bM γc
constrain-outcome : dM αe → bαc → H→ (H→ bM γc)→ bM γc

18

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But �rst of all it is not an evaluator, but a partial

evaluator.
Second, it not only evaluates terms, but also

performs random choices.
Third, it not only produces outcomes and values,

but also constrains them.

And fourth it doesn’t produce one term, but
searches for a random variable to constrain.

evaluate : d αe → H→ (bαc → H→ bM γc)→ bM γc
perform : dM αe → H→ (bαc → H→ bM γc)→ bM γc

constrain-value : d αe → bαc → H→ (H→ bM γc)→ bM γc
constrain-outcome : dM αe → bαc → H→ (H→ bM γc)→ bM γc

18

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But �rst of all it is not an evaluator, but a partial

evaluator.
Second, it not only evaluates terms, but also

performs random choices.
Third, it not only produces outcomes and values,

but also constrains them.
And fourth it doesn’t produce one term, but

searches for a random variable to constrain.

evaluate : d αe → H→ (bαc → H→ {bM γc})→ {bM γc}
perform : dM αe → H→ (bαc → H→ {bM γc})→ {bM γc}

constrain-value : d αe → bαc → H→ (H→ {bM γc})→ {bM γc}
constrain-outcome : dM αe → bαc → H→ (H→ {bM γc})→ {bM γc}

19

Automatic disintegrator in action

[]
perform (do {d¢ uniform 1 3; s¢ uniform 0 d; return (s, d)})

[d′ ¢ uniform 1 3]
perform (do {s¢ uniform 0 d′; return (s, d′)})

[d′ ¢ uniform 1 3; s′ ¢ uniform 0 d′]
perform (return (s′, d′))
evaluate (s′, d′)⇒ (s′, d′)

constrain-value s′ s
constrain-outcome (uniform 0 d′) s

nondeterminism
evaluate 0⇒ 0
evaluate d′

perform (uniform 1 3)
do {d′′ ¢ uniform 1 3; �}⇒ d′′

[let d′ = d′′; s′ ¢ uniform 0 d′]⇒ d′′
if 0 ≤ s ≤ d′′ then do {()¢ *() 7→ 1/d′′+; �} else *+

[let d′ = d′′; let s′ = s]

19

Automatic disintegrator in action

[]
perform (do {d¢ uniform 1 3; s¢ uniform 0 d; return (s, d)})

[d′ ¢ uniform 1 3]
perform (do {s¢ uniform 0 d′; return (s, d′)})

[d′ ¢ uniform 1 3; s′ ¢ uniform 0 d′]
perform (return (s′, d′))
evaluate (s′, d′)⇒ (s′, d′)

constrain-value s′ s
constrain-outcome (uniform 0 d′) s

nondeterminism
evaluate 0⇒ 0
evaluate d′

perform (uniform 1 3)
do {d′′ ¢ uniform 1 3; �}⇒ d′′

[let d′ = d′′; s′ ¢ uniform 0 d′]⇒ d′′
if 0 ≤ s ≤ d′′ then do {()¢ *() 7→ 1/d′′+; �} else *+

[let d′ = d′′; let s′ = s]

19

Automatic disintegrator in action

[]
perform (do {d¢ uniform 1 3; s¢ uniform 0 d; return (s, d)})

[d′ ¢ uniform 1 3]
perform (do {s¢ uniform 0 d′; return (s, d′)})

[d′ ¢ uniform 1 3; s′ ¢ uniform 0 d′]
perform (return (s′, d′))
evaluate (s′, d′)⇒ (s′, d′)

constrain-value s′ s
constrain-outcome (uniform 0 d′) s

nondeterminism
evaluate 0⇒ 0
evaluate d′

perform (uniform 1 3)
do {d′′ ¢ uniform 1 3; �}⇒ d′′

[let d′ = d′′; s′ ¢ uniform 0 d′]⇒ d′′
if 0 ≤ s ≤ d′′ then do {()¢ *() 7→ 1/d′′+; �} else *+

[let d′ = d′′; let s′ = s]

20

Interim summary

I Generate observed symptoms from hidden causes

I First exact inference algorithm for continuous distributions

I Enable modular composition of inference techniques

I Lessons for language design and reasoning

I Ongoing work: arrays
more dominating measures
more deterministic observables
prove correctness

21

Hakaru: meaningful and reusable, from clear to fast

Model

disintegrate

Posterior

simplify

expect

Simpli�ed posterior

mh sampling

disintegrate

expect

Transition kernel

simplify

expect

Simpli�ed kernel

gibbs sampling

disintegrate

expect

Transition kernel

simplify

expect

Simpli�ed kernel

1321 ms

1078 ms

267 ms

207 ms

Idiomatic WebPPL

Handwritten Hakaru

FLOPS 2016 system description paper
“Probabilistic inference by program transformation in Hakaru”

NIPS 2015 workshop poster
“Building blocks for exact and approximate inference”

21

Hakaru: meaningful and reusable, from clear to fast

Model

disintegrate

Posterior

simplify

expect

Simpli�ed posterior

mh sampling

disintegrate

expect

Transition kernel

simplify

expect

Simpli�ed kernel

gibbs sampling

disintegrate

expect

Transition kernel

simplify

expect

Simpli�ed kernel

1321 ms

1078 ms

267 ms

207 ms

Idiomatic WebPPL

Handwritten Hakaru

FLOPS 2016 system description paper
“Probabilistic inference by program transformation in Hakaru”

NIPS 2015 workshop poster
“Building blocks for exact and approximate inference”

22

Simplifying probabilistic programs via semantics

Pa
te
nt
ly

lin
ea

r





PADL 2016 paper
“Simplifying probabilistic programs

using computer algebra”Probabilistic program

Abstract integral

Improved integral

Simpli�ed program

Continuation passing

Computer algebra

Computer algebra

Use conjugacies (normal, gamma, …)
without pairwise hard-coding

22

Simplifying a discrete distribution

Pa
te
nt
ly

lin
ea

r
in

f





PADL 2016 paper
“Simplifying probabilistic programs

using computer algebra”

x

y

do {x¢ uniform 0 1;
y¢ uniform 0 1;
if x < y then return true

else return false}

∫ 1

0

∫ 1

0

({
f(true) if x < y

f(false) otherwise

)
dy dx

1
2
· f(true) +

1
2
· f(false)

*true 7→ 1/2, false 7→ 1/2+

Symbolic integration

Use conjugacies (normal, gamma, …)
without pairwise hard-coding

22

Simplifying a continuous distribution

Pa
te
nt
ly

lin
ea

r
in

f





PADL 2016 paper
“Simplifying probabilistic programs

using computer algebra”

x

y

do {x¢ normal 0 1;
y¢ normal x 1;
return y}

∫ ∞

−∞

exp
(
− x2

2

)
√

2 · π
·
∫ ∞

−∞

exp
(
− (y−x)2

2

)
√

2 · π
· f(y) dy dx

∫ ∞

−∞

exp
(
− y2

4

)

2 · √π · f(y) dy

normal 0
√

2

Symbolic integration

Holonomic representation

Use conjugacies (normal, gamma, …)
without pairwise hard-coding

22

Simplifying a conditional distribution

Pa
te
nt
ly

lin
ea

r
in

f





PADL 2016 paper
“Simplifying probabilistic programs

using computer algebra”

x

y

do {x¢ normal 0 1;
*x 7→ density (normal x 1) y+}

∫ ∞

−∞

exp
(
− x2

2

)
√

2 · π
· exp

(
− (y−x)2

2

)
√

2 · π
· f(x) dx

"

do {x¢ normal
y
2

1√
2
;

*x 7→ exp
(
− y2

4

)

2 · √π +}

Holonomic representation

Use conjugacies (normal, gamma, …)
without pairwise hard-coding

23

Summary

General strategy:

I represent concepts

I formal, hence executable
I meaningful, hence modular

Meaning-preserving transformations on probabilistic programs!

I disintegrate

I simplify

I etc.

Example modularity payo�s:

I combine exact and approximate techniques without re-coding

I use conjugacies without pairwise hard-coding

I same performance

