
1/14

Bounded-rational theory of mind
for conversational implicature

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@rutgers.edu

Logical Methods for Discourse
December 15, 2009

2/14

Layers, stages
Continuations when?
I A: I’ll be Wild Bill.

B: And I’ll be Calamity Jane.
A: Look, Calamity Jane, I’ve found a gold nugget.
B: We’re rich.
A: Your dad is here now, so I guess you have to go.

I A: What kind of Scope does your mom use?
B: What kind of soap?
A: No, mouthwash; what kind of Scope?
B: Oh, the regular kind.

I Bush complained about the ‘utterly [inaudible] loudspeakers’
in the room.

I

Alice Bob Carol

Bob

? | ~

3/14

http://xkcd.com/248/

4/14

Game-theoretic pragmatics

0

‘no’

0

$0

1

�$1

‘some’

0

$0

1

�$1

20
%

1

‘no’

0

�$10

1

$0

‘some’

0

�$10

1

$0

80%

Nature

Hearer

Speaker

Nature

Game collaborative task processing effort

Solution concept perfect rationality bounded rationality

Strategy literal meaning scalar implicature . . .

(Solving online? . . . offline?)

4/14

Game-theoretic pragmatics

0

‘no’

0

$0

1

�$1

‘some’

0

$0

1

�$1

20
%

1

‘no’

0

�$10

1

$0

‘some’

0

�$10

1

$0

80%

Nature

Hearer

Speaker

Nature

Game collaborative task processing effort

Solution concept perfect rationality bounded rationality

Strategy literal meaning scalar implicature . . .

(Solving online? . . . offline?)

4/14

Game-theoretic pragmatics

0

‘no’

0

$0

1

�$1

‘some’

0

$0

1

�$1

20
%

1

‘no’

0

�$10

1

$0

‘some’

0

�$10

1

$0

80%

Nature

Hearer

Speaker

Nature

Game collaborative task processing effort

Solution concept perfect rationality bounded rationality

Strategy literal meaning scalar implicature . . .

(Solving online? . . . offline?)

4/14

Game-theoretic pragmatics

0

‘no’

0

$0

1

�$1

‘some’

0

$0

1

�$1

20
%

1

‘no’

0

�$10

1

$0

‘some’

0

�$10

1

$0

80%

Nature

Hearer

Speaker

Nature

Game collaborative task risk of misinterpretation

processing effort

Solution concept perfect rationality bounded rationality

Strategy literal meaning scalar implicature . . .

(Solving online? . . . offline?)

5/14

The good soldier Švejk

6/14

The good soldier Švejk

“The engine that you are to take off to the depot in Lysá nad
Labem is no. 4268. Now pay careful attention. The first figure is
four, the second is two, which means that you have to
remember 42. That’s twice two. That means that in the order of
the figures 4 comes first. 4 divided by 2 makes 2 and so again
you’ve got next to each other 4 and 2. Now, don’t be afraid!
What’s twice 4? 8, isn’t it? Well, then, get it into your head that 8 is
the last in the series of figures in 4268. And now, when you’ve
already got in your head that the first figure is 4, the second 2 and
the fourth 8, all that’s to be done is to be clever and remember
the 6 which comes before the 8. And that’s frightfully simple. The
first figure is 4, the second is 2, and 4 and 2 are 6. So now you’ve
got it: the second from the end is 6 and now we shall never forget
the order of figures. You now have indelibly fixed in your mind the
number 4268. But of course you can also reach the same result
by an even simpler method . . . ”

7/14

Grice and Marr

probabilistic model
(e.g., grammar)

7/14

Grice and Marr

approximate inference
(e.g., comprehension)

approximate inference
(e.g., comprehension)

probabilistic model
(e.g., grammar)

7/14

Grice and Marr

probabilistic model
(e.g., task)

probabilistic model
(e.g., task)

probabilistic model
(e.g., task)

approximate inference
(e.g., comprehension)

probabilistic model
(e.g., grammar)

7/14

Grice and Marr
approximate inference

(e.g., production)
approximate inference

(e.g., production)
approximate inference

(e.g., production)
approximate inference

(e.g., production)

probabilistic model
(e.g., task)

approximate inference
(e.g., comprehension)

probabilistic model
(e.g., grammar)

7/14

Grice and Marr
approximate inference

(e.g., production)

probabilistic model
(e.g., task)

approximate inference
(e.g., comprehension)

probabilistic model
(e.g., grammar)

Probabilistic models invoke inference.
Random choices manipulate continuations.

Multiple layers track who thinks what.

8/14

Roadmap

Probabilistic models invoke inference.
Random choices manipulate continuations.

Multiple layers track who thinks what.

I Probabilistic models
I Inference algorithms
I The hearer’s program
I The speaker’s program

We have a hammer. (Nails: anaphora? vagueness? . . .)

http://okmij.org/ftp/kakuritu/

http://okmij.org/ftp/kakuritu/incite.ml

http://okmij.org/ftp/kakuritu/
http://okmij.org/ftp/kakuritu/incite.ml

9/14

Probabilistic models
Program Type Denotation Operation

flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

fork server

+ n! n! n �x: �y: x+ y primitive

flip + flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

50
%

c(1)(g)
50
%

c(2)(g)

50%

50%

Lower A! treeA �m:m(�v: �g: v)(;) new thread

Lower(flip + flip)

treen
0
50
%

1

50%

50
%

1
50
%

2

50%

50%

ExactExpect treen! n enumerate tree leaves

A
def
= (A! assignment! tree)! assignment! tree

9/14

Probabilistic models
Program Type Denotation Operation

flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

fork server

+ n! n! n �x: �y: x+ y primitive

flip + flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

50
%

c(1)(g)
50
%

c(2)(g)

50%

50%

Lower A! treeA �m:m(�v: �g: v)(;) new thread

Lower(flip + flip)

treen
0
50
%

1

50%

50
%

1
50
%

2

50%

50%

ExactExpect treen! n enumerate tree leaves

A
def
= (A! assignment! tree)! assignment! tree

9/14

Probabilistic models
Program Type Denotation Operation

flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

fork server

+ n! n! n �x: �y: x+ y primitive

flip + flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

50
%

c(1)(g)
50
%

c(2)(g)

50%

50%

Lower A! treeA �m:m(�v: �g: v)(;) new thread

Lower(flip + flip)

treen
0
50
%

1

50%

50
%

1
50
%

2

50%

50%

ExactExpect treen! n enumerate tree leaves

A
def
= (A! assignment! tree)! assignment! tree

9/14

Probabilistic models
Program Type Denotation Operation

flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

fork server

+ n! n! n �x: �y: x+ y primitive

flip + flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

50
%

c(1)(g)
50
%

c(2)(g)

50%

50%

Lower A! treeA �m:m(�v: �g: v)(;) new thread

Lower(flip + flip)

treen
0
50
%

1

50%

50
%

1
50
%

2

50%

50%

ExactExpect treen! n enumerate tree leaves

A
def
= (A! assignment! tree)! assignment! tree

9/14

Probabilistic models
Program Type Denotation Operation

flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

fork server

+ n! n! n �x: �y: x+ y primitive

flip + flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

50
%

c(1)(g)
50
%

c(2)(g)

50%

50%

Lower A! treeA �m:m(�v: �g: v)(;) new thread

Lower(flip + flip)

treen
0
50
%

1

50%

50
%

1
50
%

2

50%

50%

ExactExpect treen! n enumerate tree leaves

A
def
= (A! assignment! tree)! assignment! tree

9/14

Probabilistic models
Program Type Denotation Operation

flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

fork server

+ n! n! n �x: �y: x+ y primitive

flip + flip n �c: �g: c(0)(g)
50
%

c(1)(g)

50%

50
%

c(1)(g)
50
%

c(2)(g)

50%

50%

Lower A! treeA �m:m(�v: �g: v)(;) new thread

Lower(flip + flip)

treen
0
50
%

1

50%

50
%

1
50
%

2

50%

50%

ExactExpect treen! n enumerate tree leaves

A
def
= (A! assignment! tree)! assignment! tree

10/14

Perceptual observations
Program Type Denotation Operation

fail A �c: �g: empty tree exit server

x n �c: �g: c(g(x))(g) get var

x := flip; A! A �m:�c: �g:

m(c)(g[0=x])
50
%

m(c)(g[1=x])

50%
set var

Lower
(x := flip; y := flip;
if x _ y then x
else fail) treen

50
%

0

50%

50
%

1
50
%

1

50%

50%

Lower
(w := ...;
if w � u
then a := act; U(a j w)
else fail) treeu

$7 �$5

$10 $0

$3 �$8

A
def
= (A! assignment! tree)! assignment! tree

10/14

Perceptual observations
Program Type Denotation Operation

fail A �c: �g: empty tree exit server

x n �c: �g: c(g(x))(g) get var

x := flip; A! A �m:�c: �g:

m(c)(g[0=x])
50
%

m(c)(g[1=x])

50%
set var

Lower
(x := flip; y := flip;
if x _ y then x
else fail) treen

50
%

0

50%

50
%

1
50
%

1

50%

50%

Lower
(w := ...;
if w � u
then a := act; U(a j w)
else fail) treeu

$7 �$5

$10 $0

$3 �$8

A
def
= (A! assignment! tree)! assignment! tree

10/14

Perceptual observations
Program Type Denotation Operation

fail A �c: �g: empty tree exit server

x n �c: �g: c(g(x))(g) get var

x := flip; A! A �m:�c: �g:

m(c)(g[0=x])
50
%

m(c)(g[1=x])

50%
set var

Lower
(x := flip; y := flip;
if x _ y then x
else fail) treen

50
%

0

50%

50
%

1
50
%

1

50%

50%

Lower
(w := ...;
if w � u
then a := act; U(a j w)
else fail) treeu

$7 �$5

$10 $0

$3 �$8

A
def
= (A! assignment! tree)! assignment! tree

10/14

Perceptual observations
Program Type Denotation Operation

fail A �c: �g: empty tree exit server

x n �c: �g: c(g(x))(g) get var

x := flip; A! A �m:�c: �g:

m(c)(g[0=x])
50
%

m(c)(g[1=x])

50%
set var

Lower
(x := flip; y := flip;
if x _ y then x
else fail) treen

50
%

0

50%

50
%

1
50
%

1

50%

50%

Lower
(w := ...;
if w � u
then a := act; U(a j w)
else fail) treeu

$7 �$5

$10 $0

$3 �$8

A
def
= (A! assignment! tree)! assignment! tree

11/14

More tractable inference

Program Type Denotation Operation

Lower
(x := flip; y := flip;
if x _ y then x
else fail) treen

50
%

0

50%

50
%

1
50
%

1

50%

50%

50
%

0

50%

50
%

1

50% lazy evaluation
(branching

heuristic)

ExactExpect treen! n enumerate tree leaves

ApproxExpect treen! n sample tree leaves

A
def
= (A! assignment! tree)! assignment! tree

11/14

More tractable inference

Program Type Denotation Operation

Lower
(x := flip; y := flip;
if x _ y then x
else fail) treen

50
%

0

50%

50
%

1
50
%

1

50%

50%

50
%

0

50%

50
%

1

50% lazy evaluation
(branching

heuristic)

ExactExpect treen! n enumerate tree leaves

ApproxExpect treen! n sample tree leaves

A
def
= (A! assignment! tree)! assignment! tree

12/14

The bounded-rational hearer’s program

ApproxExpect

(Lower(count := 2 * flip + flip;

conjunction := flip;

if count,conjunction � some,not_all

then a := act; U(a j count)
else fail))

‘’

0

0

$0

1

�
$1

2

�
$2

3

�
$3

50
%

1

0�
$10

1
$0

2

�
$1

3

�
$2

50%

50%

2

0�
$20

1�
$10

2

$0

3

�
$1

50
%

3

0�
$30

1�
$20

2�
$10

3

$0

50%

50%

12/14

The bounded-rational hearer’s program

ApproxExpect

(Lower(count := 2 * flip + flip;

conjunction := flip;

if ((some ^ not_all)! conjunction)

^ (some! count > 0) ^ (not_all! count < 3)

then a := act; U(a j count)
else fail))

‘’

0

0

$0

1

�
$1

2

�
$2

3

�
$3

50
%

1

0�
$10

1
$0

2

�
$1

3

�
$2

50%

50%

2

0�
$20

1�
$10

2

$0

3

�
$1

50
%

3

0�
$30

1�
$20

2�
$10

3

$0

50%

50%

12/14

The bounded-rational hearer’s program

ApproxExpect

(Lower(count := 2 * flip + flip;

conjunction := flip;

if ((some ^ not_all)! conjunction)

^ (some! count > 0) ^ (not_all! count < 3)

then a := act; U(a j count)
else fail))

‘’

0

0

$0

1

�
$1

2

�
$2

3

�
$3

50
%

1

0�
$10

1
$0

2

�
$1

3

�
$2

50%

50%

2

0�
$20

1�
$10

2

$0

3

�
$1

50
%

3

0�
$30

1�
$20

2�
$10

3

$0

50%

50%

12/14

The bounded-rational hearer’s program

ApproxExpect

(Lower(count := 2 * flip + flip;

conjunction := flip;

if ((some ^ not_all)! conjunction)

^ (some! count > 0) ^ (not_all! count < 3)

then a := act; U(a j count)
else fail))

‘some’

0

0

$0

1

�
$1

2

�
$2

3

�
$3

50
%

1

0�
$10

1
$0

2

�
$1

3

�
$2

50%

50%

2

0�
$20

1�
$10

2

$0

3

�
$1

50
%

3

0�
$30

1�
$20

2�
$10

3

$0

50%

50%

12/14

The bounded-rational hearer’s program

ApproxExpect

(Lower(count := 2 * flip + flip;

conjunction := flip;

if ((some ^ not_all)! conjunction)

^ (some! count > 0) ^ (not_all! count < 3)

then a := act; U(a j count)
else fail))

‘not all’

0

0

$0

1

�
$1

2

�
$2

3

�
$3

50
%

1

0�
$10

1
$0

2

�
$1

3

�
$2

50%

50%

2

0�
$20

1�
$10

2

$0

3

�
$1

50
%

3

0�
$30

1�
$20

2�
$10

3

$0

50%

50%

12/14

The bounded-rational hearer’s program

ApproxExpect

(Lower(count := 2 * flip + flip;

conjunction := flip;

if ((some ^ not_all)! conjunction)

^ (some! count > 0) ^ (not_all! count < 3)

then a := act; U(a j count)
else fail))

‘some but not all’

50%

0

0

$0

1

�
$1

2

�
$2

3

�
$3

50
%

1

0�
$10

1
$0

2

�
$1

3

�
$2

50%

50%

2

0�
$20

1�
$10

2

$0

3

�
$1

50
%

3

0�
$30

1�
$20

2�
$10

3

$0

50%

50%

50%

13/14

Going meta
The hearer
I believes utterance is grammatical and true

(constrains unobserved random variables)
I desires to maximize expected utility
I processes complex utterances less accurately because

they trigger more constraints (e.g., ‘but’ deepens tree)

The speaker
I believes private world knowledge
I desires to maximize expected utility
I trades off informativity against complexity

(e.g., omission, white lies)

The linguist
I invokes inference algorithms in probabilistic models

(but can abstract; e.g., layperson model of meteorologist)
I programs in an intuitive and expressive language

13/14

Going meta
The hearer
I believes utterance is grammatical and true

(constrains unobserved random variables)
I desires to maximize expected utility
I processes complex utterances less accurately because

they trigger more constraints (e.g., ‘but’ deepens tree)

The speaker
I believes private world knowledge
I desires to maximize expected utility
I trades off informativity against complexity

(e.g., omission, white lies)

The linguist
I invokes inference algorithms in probabilistic models

(but can abstract; e.g., layperson model of meteorologist)
I programs in an intuitive and expressive language

13/14

Going meta
The hearer
I believes utterance is grammatical and true

(constrains unobserved random variables)
I desires to maximize expected utility
I processes complex utterances less accurately because

they trigger more constraints (e.g., ‘but’ deepens tree)

The speaker
I believes private world knowledge
I desires to maximize expected utility
I trades off informativity against complexity

(e.g., omission, white lies)

The linguist
I invokes inference algorithms in probabilistic models

(but can abstract; e.g., layperson model of meteorologist)
I programs in an intuitive and expressive language

14/14

Roadmap

Probabilistic models invoke inference.
Random choices manipulate continuations.

Multiple layers track who thinks what.

I Probabilistic models
I Inference algorithms
I The hearer’s program
I The speaker’s program

We have a hammer. (Nails: anaphora? vagueness? . . .)

http://okmij.org/ftp/kakuritu/

http://okmij.org/ftp/kakuritu/incite.ml

http://okmij.org/ftp/kakuritu/
http://okmij.org/ftp/kakuritu/incite.ml

