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Probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT)

Pr(W )

Pr(F jW )

Observed evidence F

9=
;Compute Pr(W jF ), etc.

Language
(BLOG)

Today: best
of both worlds

Express both models and inference as programs
in the same general-purpose language.
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Declarative probabilistic inference

Model (what) Inference (how)

Toolkit
(BNT)

invoke distributions,
conditionalization,
. . .

Language
(BLOG)

random choice,
evidence observation,
. . .

interpret

Today: best
of both worlds

Express both models and inference as programs
in the same general-purpose language.
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Model (what) Inference (how)

Toolkit
(BNT)

use existing facilities:
libraries, compilers,
types, debugging

add custom procedures:
just sidestep or extend
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(BLOG)

succinct and natural:
sampling procedures,
relational programs

compile models to more
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Model (what) Inference (how)

Toolkit
(BNT)

use existing facilities:
libraries, compilers,
types, debugging

add custom procedures:
just sidestep or extend

Language
(BLOG)

succinct and natural:
sampling procedures,
relational programs

compile models to more
efficient inference code

Today: best
of both worlds

invoke interpret

models of inference:
theory of mind

deterministic parts of
models run at full speed

Express both models and inference as programs
in the same general-purpose language.



4/16

Outline

I Expressivity (colored balls)
Memoization

Inference (music)
Reifying a model into a search tree
Importance sampling with look-ahead

Self-interpretation (implicature)
Variable elimination
Particle filtering
Theory of mind
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Colored balls
An urn contains an unknown number of balls—say, a number
chosen from a [uniform] distribution. Balls are equally likely to be
blue or green. We draw some balls from the urn, observing the
color of each and replacing it. We cannot tell two identically
colored balls apart; furthermore, observed colors are wrong with
probability 0.2. How many balls are in the urn? Was the same ball
drawn twice? (Milch et al. 2007)

http://www.flickr.com/photos/gj_thewhite/2754363729/
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Colored balls

type color = Blue | Green

let opposite_color = function Blue -> Green
| Green -> Blue

let observed_color = function c ->
dist [(0.8, c); (0.2, opposite_color c)]

let model_nballs = function obs () ->
let nballs = 1 + uniform 8 in
let ball_color = memo (function b ->

dist [(0.5, Blue); (0.5, Green)]

) in
let observe = function o ->

if o <> observed_color (ball_color (uniform nballs))
then fail () in

Array.iter observe obs; nballs

normalize (sample_reify 17 10000 (model_nballs
[|Blue;Blue;Blue;Blue;Blue;Blue;Blue;Blue;Blue;Blue|]))
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Outline

Expressivity (colored balls)
Memoization

I Inference (music)
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Reifying a model into a search tree

C

C

V Blue

.8

C

.2

.3

V Green

.2

C

C

.6

C

.3

.5

unit -> color

reify

reflect

type ’a vc = V of ’a | C of (unit -> ’a pV)
and ’a pV = (float * ’a vc) list
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Reifying a model into a search tree

pV

pV

V Blue

.8

pV

.2

.3

V Green

.2

pV

C

.6

C

.3

.5

unit -> color

reify

reflect

type ’a vc = V of ’a | C of (unit -> ’a pV)
and ’a pV = (float * ’a vc) list

Depth-first traversal is exact inference by brute-force enumeration.
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Reifying a model into a search tree

C

pV

V Blue

.8

pV

.2

.3

V Green

.2

pV

C

.6

C

.3

.5

unit -> color

reify

reflect

type ’a vc = V of ’a | C of (unit -> ’a pV)
and ’a pV = (float * ’a vc) list

Inference procedures cannot access models’ source code.
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Reifying a model into a search tree

C

pV

V Blue

.8

pV

.2

.3

V Green

.2

pV

C

.6

C

.3

.5

unit -> color

reify

reflect

Implemented
by representing (Filinski 1994)
a state monad transformer (Moggi 1990)
applied to a probability monad (Giry 1982)
using shift and reset (Danvy & Filinski 1989)
to operate on first-class (Felleisen et al. 1987)
delimited continuations (Strachey & Wadsworth 1974)

I model runs inside reset (like an exception handler)
I dist and fail perform shift (like throwing an exception)
I memo mutates thread-local storage
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Importance sampling with look-ahead

C

C

V Blue

.8

C

.2

.3

V Green

.2

C

C

.6

C

.3

.5

Probability mass pc = 1

(:2; Green) (:6; Blue)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



9/16

Importance sampling with look-ahead

pV

C

V Blue

.8

C

.2

.3

V Green

.2

C

C

.6

C

.3

.5

Probability mass pc = 1

(:2; Green) (:6; Blue)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



9/16

Importance sampling with look-ahead

pV

C

V Blue

.8

C

.2

.3

V Green

.2

C

C

.6

C

.3

.5

Probability mass pc = 1

(:2; Green)

(:6; Blue)

1. Expand one level.

2. Report shallow successes.

3. Expand one more level and tally open probability.

4. Randomly choose a branch and go back to 2.



9/16

Importance sampling with look-ahead
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Music model

Pfeffer’s test of importance sampling (2007):
motivic development in early Beethoven piano sonatas

Source motif S Destination motif D

Random binary tree Random binary tree

recursively
divide

recursively
transpose
or delete

recursively
concatenate

Want Pr(D = � � � jS = � � � ).
Exact inference and rejection sampling are infeasible.
Implemented using lists with stochastic parts.
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Typical inference results
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Outline

Expressivity (colored balls)
Memoization

Inference (music)
Reifying a model into a search tree
Importance sampling with look-ahead

I Self-interpretation (implicature)
Variable elimination
Particle filtering
Theory of mind
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Models of inference

Inference procedures and models
I are written in the same general-purpose language
I use the same stochastic primitive dist

so inference procedures can be invoked by models

inference (function () ->
... inference (function () -> ...) ...)

and deterministic parts run at full speed.

Program generation with mutable state and control effects.

One common usage pattern: reify-infer-reflect
I Brute-force enumeration becomes variable elimination
I Sampling becomes particle filtering
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Theory of mind

Instances abound:
I False-belief (Sally-Anne) task
I Trading securities
I Teacher’s hint to student
I Gricean reasoning in language use

1. “Some professors are coming to the party.”
2. “All professors are coming to the party.”
3. “Some but not all professors are coming to the party.”

Trade-off between precision and ease of comprehension?

Crucial for collaboration among human and computer agents!

Want executable models.

A bounded-rational agent’s theory of bounded-rational mind
� approximate inference about approximate inference



14/16

Theory of mind

Instances abound:
I False-belief (Sally-Anne) task
I Trading securities
I Teacher’s hint to student
I Gricean reasoning in language use

1. “Some professors are coming to the party.”
2. “All professors are coming to the party.”
3. “Some but not all professors are coming to the party.”

Trade-off between precision and ease of comprehension?

Crucial for collaboration among human and computer agents!

Want executable models.

A bounded-rational agent’s theory of bounded-rational mind
� approximate inference about approximate inference



14/16

Theory of mind

Instances abound:
I False-belief (Sally-Anne) task
I Trading securities
I Teacher’s hint to student
I Gricean reasoning in language use

1. “Some professors are coming to the party.”
2. “All professors are coming to the party.”
3. “Some but not all professors are coming to the party.”

Trade-off between precision and ease of comprehension?

Crucial for collaboration among human and computer agents!

Want executable models.

A bounded-rational agent’s theory of bounded-rational mind
� approximate inference about approximate inference



15/16

Marr’s computational vs algorithmic models

world W 2 f0 come; 1 come; 2 come; 3 comeg � � � �

action A 2 ffeed 0; feed 1; feed 2; feed 3g

form F � fsome; all; no; not allg

A computational model of the modeler nests an algorithmic model
of the modelee: invoke inference recursively, without interpretive
overhead.

model Pr(W ),
Pr(truejW;F ), U(A;W )
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Summary

Express both models and inference as programs
in the same general-purpose language.

I Combine strengths of toolkits and standalone languages
I Deterministic parts of models run at full speed
I Models can invoke inference without interpretive overhead
I Theory of mind: inference about approximate inference
I A variety of inference methods: variable elimination,

particle filtering, importance sampling, . . . ?
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