
1/14

Functional modularity in the lambda calculus

Chung-chieh Shan
Cornell University

28 December 2011



2/14



3/14

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-2, NO. 1, MARCH 1976

On the Design and Development of E1rpFnneialniIies
DAVID L. PARNAS IM1UL,.- D

.31NGhiAMiC,,jEkaW YORK 13902

cannot always design all algorithms before implementation of
the system. These algorithms are invariably improved experi-
mentally after the system is complete. This need for the exis-
tence of many experimental versions of a system is yet another
reason for interest in "multiversion" programs.

It is well known that the production and maintenance of
multiversion programs is an expensive problem for software
distributors. Often separate manuals and separate mainte-
nance groups are needed. Converting a program from one ver-
sion to another is a nontrivial (and hence expensive) task.
This paper discusses two relatively new programming

methods which are intended explicitly for the development of
program families. We are motivated by the assumption that if
a designer/programmer pays conscious attention to the family
rather than a sequence of individual programs, the overall cost
of development and maintenance of the programs will be re-
duced.' The goal of this paper is to compare the methods,
providing some insight about the advantages and disadvantages
of each.

CLASSICAL METHOD OF PRODUCING PROGRAM FAMILIES
The classical method of developing programs is best de-

scribed as sequential completion. A particular member of the
family is developed completely to the "working" stage. The
next member(s) of the family is (are) developed by modifica-
tion of these working programs. A schematic representation
of this process is shown by Fig. 1. In this figure a node is rep-
resented as a circle, if it is an intermediate representation on
the way to producing a program, but not a working program
itself. An X represents a complete (usable) family member.
An arc from one node to another indicates that a program (or
intermediate representation of a program) associated with the
first node was modified to produce that associated with the
second.
Each arc of this graph represents a design decision. In most

cases each decision reduces the set of possible programs under
consideration. However, when one starts from a working
program, one generally goes through a reverse step, in which
the set of possible programs is again increased (i.e., some de-
tails are not decided). Nodes 5 and 6 are instances of this.
When a family of programs is produced according to the

above model, one member of the family can be considered to
be an ancestor of other family members. It is quite usual for

,Some preliminary experiments support this assumption [1], [2],
but the validity of our assumption has not yet been proved in practice.
Readers who do not want to read about programming techniques based
on this unproved assumption should stop reading here.

Abstract-Program families are defined (analogously to hardware fam-
ilies) as sets of programs whose common properties are so extensive
that it is advantageous to study the common properties of the programs
before analyzing individual members. The assumption that, if one is to
develop a set of similar programs over a period of time, one should
consider the set as a whole while developing the first three approaches to
the development, is discussed. A conventional approach called "sequen-
tial development" is compared to "stepwise refinement" and "specifica-
tion of information hiding modules." A more detailed comparison of
the two methods is then made. By means of several examples it is
demonstrated that the two methods are based on the same concepts
but bring complementary advantages.

Index Terms-Information hiding modules, module specifications,
program families, software design methodology, software engineering,
stepwise refimement.

INTRODUCTION

IITE consider a set of programs to constitute a family,
whenever it is, worthwhile to study programs from the
set by first studying the common properties of the set

and then determining the special properties of the individual
family members. A typical family of programs is the set of
versions of an operating system distributed by a manufac-
turer. While there are many significant differences between
the versions, it usually pays to learn the common properties of
all the versions before studying the details of any one. Pro-
gram families are analogous to the hardware families promul-
gated by several manufacturers. Although the various models
in, a hardware family might not have a single component in
common, almost everyone reads the common principles of
operations" manual before studying the special characteristics
of a specific model. Traditional programming methods were
intended for the development of a single program. In this
paper, we propose to examine explicitly the process of de-
veloping a program family and to compare various program-
ming techniques in terms of their suitability for designing such
sets of programs.

MOTIVATION FOR INTEREST IN FAMILIES

Variations in application demands, variations in hardware
configurations, and the ever-present opportunity to improve a
program mean that software will inevitably exist in many ver-
sions. The differences between these versions are unavoidable
and purposeful. In addition, experience has shown that we

Manuscript received November 3, 1975.
The author is with the Research Group on Operating Systems I,

Fachbereich Informatik, Technische Hochschule Darmstadt, Darmstadt,
West Germany.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

place system generators. Since these methods are applied in
the design stage and generators are useful when a specific
family member must be produced. Stepwise refinement and
the method of module specification can simplify the work to
be done by a system generation program.
System generators would be completely unnecessary if we

wished to build a program which at run time could "simulate"
any member of the family. Such a program would be rela-
tively inefficient. By removing much of this variability at the
time that the program is generated, increases in productive
capacity are made possible.
Often a family of programs includes small members in which

certain variables are fixed and larger members in which these
factors may vary. For example, an operating system family
may include some small members where the number of pro-
cesses is fixed and other members where dynamic creation and
deletion is possible. The programs developed for the larger
members of the family can be used as part of the "generator,"
which produces a smaller member.

CONCLUDING REMARKS
Another way of comparing the two methods is to answer the

following often-heard questions.
1) When should we teach structured programming or step-

wise refinement to our students?
2) When should we teach about modules and specifications?
To the first question we can respond with another question:

"When should we teach unstructured programming?" The
second question, however, requires a "straight answer":
module design specifications should only be taught to students
who have learned to program well and have decided to proceed
further and learn methods appropriate to the production of
software packages [12].
One of the difficulties in applying the recent concepts of

structured programming is that there are no criteria by which
one may evaluate the structure of a system on an objective
basis. Aspiring practitioners must go to a famous artist and
ask for an evaluation. The "master" may then indicate
whether or not he considers the system "tasteful."
The concept of program families provides one way of con-

sidering program structure more objectively. For any precise
description of a program family (either an incomplete refine-
ment of a program or a set of specifications or a combination
of both) one may ask which programs have been excluded and
which still remain.
One may consider a program development to be good, if

the early decisions exclude only uninteresting, undesired, or
unnecessary programs. The decisions which remove desired
programs would be either postponed until a later stage or con-
fined to a well delimited subset of the code. Objective criti-
cism of a program's structure would be based upon the fact
that a decision or assumption which was likely to change has
influenced too much of the code either because it was made
too early in the development or because it was not confined
to an information hiding module.
Clearly this is not the only criterion which one may use in

evaluating program structures. Clarity (e.g., ease of under-
standing, ease of verification) is another quite relevant con-
sideration. Although there is some reason to suspect that the
two measures are not completely unrelated, there are no rea-
sons to assume that they will agree. For one thing, the "ease"
measures mentioned above are functions of the understander
or verifier, the set of programs being excluded by a design
decision can be interpreted objectively. Of course, the ques-
tion of which decisions are likely to require changing for some
family members is again a question which requires judgment
and experience. It is, however, a somewhat more concrete and
more easily discussed question than ease of comprehension.

HISTORICAL NOTE
In closing this comparison, I want to make a comment on

the origin and history of some of the ideas found in this paper.
I recently reread one of the papers in which Dijkstra intro-
duced the ideas of structured programming [3]. This paper is
unusual in that it seems better each time you read it. The root
of both methods of producing program families and the con-
cept of family itself is in this original work by Dijkstra. The
concept of the division into modules is somewhat differently
formulated, but it is present in the concept of the design of
the abstract machines, the notion of information hiding is im-
plicit (in the discussion of the thickness of the ropes tying the
pearls together). Module specification is not discussed. (Naur
introduced a concept quite similar to that of the module when
he discussed action clusters [101, but the concept of informa-
tion hiding was not made specific and the example does not
correspond exactly to what this principle would suggest.)
For various reasons the concept of division into modules and
the hiding of information seems to have attracted less atten-
tion, and later works by other authors [4], [5] have empha-
sized only the stepwise refimement of programs, ignoring the
order of the steps or the question of the thickness of the
ropes.

ACKNOWLEDGMENT
I am grateful for opportunities to discuss the subject with

members of I.F.I.P. Working Group 2.3 on Programming
Methodology. These discussions have helped me to clarify the
points in this paper. I am also grateful to W. Bartussek of the
Technische Hochschule Darmstadt, for his thoughtful com-
ments on an earlier version of this paper, to Dr. H. Mills of
the IBM Federal Systems Division who found a rather subtle
error in a recent draft, and to Dr. L. Belady of the IBM T. J.
Watson Research Laboratory who made a number of helpful
comments.

REFERENCES
[11 D. L. Parnas, "Some conclusions from an experiment in software

engineering techniques," in 1972 Fall Joint Computer Conf.,
AFIPS Conf. Proc., vol. 41. Montvale, NJ: AFIPS Press, 1972,
pp. 325-329.

[2] H. Mills, "Mathematical foundations of structured program-
ming," IBM Federal Systems Div., No. FSC72-6012, pp. 1-62,
Feb. 1972.

[3] E. W. Dijkstra, "Structured programming," in Software Engineer-

8

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

place system generators. Since these methods are applied in
the design stage and generators are useful when a specific
family member must be produced. Stepwise refinement and
the method of module specification can simplify the work to
be done by a system generation program.
System generators would be completely unnecessary if we

wished to build a program which at run time could "simulate"
any member of the family. Such a program would be rela-
tively inefficient. By removing much of this variability at the
time that the program is generated, increases in productive
capacity are made possible.
Often a family of programs includes small members in which

certain variables are fixed and larger members in which these
factors may vary. For example, an operating system family
may include some small members where the number of pro-
cesses is fixed and other members where dynamic creation and
deletion is possible. The programs developed for the larger
members of the family can be used as part of the "generator,"
which produces a smaller member.

CONCLUDING REMARKS
Another way of comparing the two methods is to answer the

following often-heard questions.
1) When should we teach structured programming or step-

wise refinement to our students?
2) When should we teach about modules and specifications?
To the first question we can respond with another question:

"When should we teach unstructured programming?" The
second question, however, requires a "straight answer":
module design specifications should only be taught to students
who have learned to program well and have decided to proceed
further and learn methods appropriate to the production of
software packages [12].
One of the difficulties in applying the recent concepts of

structured programming is that there are no criteria by which
one may evaluate the structure of a system on an objective
basis. Aspiring practitioners must go to a famous artist and
ask for an evaluation. The "master" may then indicate
whether or not he considers the system "tasteful."
The concept of program families provides one way of con-

sidering program structure more objectively. For any precise
description of a program family (either an incomplete refine-
ment of a program or a set of specifications or a combination
of both) one may ask which programs have been excluded and
which still remain.
One may consider a program development to be good, if

the early decisions exclude only uninteresting, undesired, or
unnecessary programs. The decisions which remove desired
programs would be either postponed until a later stage or con-
fined to a well delimited subset of the code. Objective criti-
cism of a program's structure would be based upon the fact
that a decision or assumption which was likely to change has
influenced too much of the code either because it was made
too early in the development or because it was not confined
to an information hiding module.
Clearly this is not the only criterion which one may use in

evaluating program structures. Clarity (e.g., ease of under-
standing, ease of verification) is another quite relevant con-
sideration. Although there is some reason to suspect that the
two measures are not completely unrelated, there are no rea-
sons to assume that they will agree. For one thing, the "ease"
measures mentioned above are functions of the understander
or verifier, the set of programs being excluded by a design
decision can be interpreted objectively. Of course, the ques-
tion of which decisions are likely to require changing for some
family members is again a question which requires judgment
and experience. It is, however, a somewhat more concrete and
more easily discussed question than ease of comprehension.

HISTORICAL NOTE
In closing this comparison, I want to make a comment on

the origin and history of some of the ideas found in this paper.
I recently reread one of the papers in which Dijkstra intro-
duced the ideas of structured programming [3]. This paper is
unusual in that it seems better each time you read it. The root
of both methods of producing program families and the con-
cept of family itself is in this original work by Dijkstra. The
concept of the division into modules is somewhat differently
formulated, but it is present in the concept of the design of
the abstract machines, the notion of information hiding is im-
plicit (in the discussion of the thickness of the ropes tying the
pearls together). Module specification is not discussed. (Naur
introduced a concept quite similar to that of the module when
he discussed action clusters [101, but the concept of informa-
tion hiding was not made specific and the example does not
correspond exactly to what this principle would suggest.)
For various reasons the concept of division into modules and
the hiding of information seems to have attracted less atten-
tion, and later works by other authors [4], [5] have empha-
sized only the stepwise refimement of programs, ignoring the
order of the steps or the question of the thickness of the
ropes.

ACKNOWLEDGMENT
I am grateful for opportunities to discuss the subject with

members of I.F.I.P. Working Group 2.3 on Programming
Methodology. These discussions have helped me to clarify the
points in this paper. I am also grateful to W. Bartussek of the
Technische Hochschule Darmstadt, for his thoughtful com-
ments on an earlier version of this paper, to Dr. H. Mills of
the IBM Federal Systems Division who found a rather subtle
error in a recent draft, and to Dr. L. Belady of the IBM T. J.
Watson Research Laboratory who made a number of helpful
comments.

REFERENCES
[11 D. L. Parnas, "Some conclusions from an experiment in software

engineering techniques," in 1972 Fall Joint Computer Conf.,
AFIPS Conf. Proc., vol. 41. Montvale, NJ: AFIPS Press, 1972,
pp. 325-329.

[2] H. Mills, "Mathematical foundations of structured program-
ming," IBM Federal Systems Div., No. FSC72-6012, pp. 1-62,
Feb. 1972.

[3] E. W. Dijkstra, "Structured programming," in Software Engineer-

8



4/14

Functional modularity

A module is a part of a description of a system
I Modularity should be invariant under physically entangled

emulation with dye pack
I Modularity makes a theory more concise, comprehensible
I ‘Functional structure’ (Gallistel)/

‘Wirkungsgefüge’ (behavioral physiology)/source code

a:"

b:"

":"
a:a

b:b

":"
a:"

b:"

b

a

a
b

a

b

a

b

on abb =

general description specific machinery
specialize



4/14

Functional modularity

A module is a part of a description of a system
I Modularity should be invariant under physically entangled

emulation with dye pack
I Modularity makes a theory more concise, comprehensible
I ‘Functional structure’ (Gallistel)/

‘Wirkungsgefüge’ (behavioral physiology)/source code

Good decomposition helps reuse when environment changes
I Utterances need not re-conventionalize
I Organisms need not re-learn
I Species need not re-evolve
I Researchers need not re-discover



5/14

Lambda the ultimate

The essence of reuse:
a module is a sub-expression.
Binding. Higher-order abstractions.

Types classify terms. Polymorphism
circumscribes information flow.

1. Expressions and interpretations
in Abstract Categorial Grammar

2. Layers of monads for
quantification and state

http://cs.wellesley.edu/~fturbak/captain-abstraction.html


6/14

Lambda the ultimate

The essence of reuse:
a module is a sub-expression.
Binding. Higher-order abstractions.

Types classify terms. Polymorphism
circumscribes information flow.

1. Expressions and interpretations
in Abstract Categorial Grammar

2. Layers of monads for
quantification and state

http://cs.wellesley.edu/~fturbak/captain-abstraction.html


7/14

Abstract Categorial Grammar

e = �hjohn;mary; like; r1; r2i:
r1 john (r2 like mary)

r1

john r2

like mary

JA = h : : : i

EN = h‘John’;
‘Mary’;
‘likes’;
�s: �v: sa‘ ’av;
�v: �o: va‘ ’aoi

Sem = hj0;
m0;

l0;

�s: �v: vs;

�v: �o: voi

e(JA) = ‘ジョンさんはメリさんのことが好きだ’

e(EN) = ‘John likes Mary’ e(Sem) = lmj



7/14

Abstract Categorial Grammar

e = �hjohn;mary; like; r1; r2i:
r1 john (r2 like mary)

r1

john r2

like mary

JA = h : : : i

EN = h‘John’;
‘Mary’;
‘likes’;
�s: �v: sa‘ ’av;
�v: �o: va‘ ’aoi

Sem = hj0;
m0;

l0;

�s: �v: vs;

�v: �o: voi

e(JA) = ‘ジョンさんはメリさんのことが好きだ’

e(EN) = ‘John likes Mary’ e(Sem) = lmj



7/14

Abstract Categorial Grammar

e = �hjohn;mary; like; r1; r2i:
r1 john (r2 like mary)

r1

john r2

like mary

JA = h : : : i

EN = h‘John’;
‘Mary’;
‘likes’;
�s: �v: sa‘ ’av;
�v: �o: va‘ ’aoi

Sem = hj0;
m0;

l0;

�s: �v: vs;

�v: �o: voi

e(JA) = ‘ジョンさんはメリさんのことが好きだ’

e(EN) = ‘John likes Mary’ e(Sem) = lmj



8/14

Interpretations

Symantics

Lambda

Quantifier
States

Dynamics
Pronoun

EN

JA
Sem

R

P

C

EN

JA
R

P

C

P

CEN



8/14

Interpretation transformers

Symantics

Lambda

Quantifier
States

Dynamics
Pronoun

EN

JA
Sem

R

P

C

EN

JA
R

P

C

P

CEN

Sem = hj0;
m0;

l0;

�s: �v: vs;

�v: �o: voi

R = hj0;m0; l0; �f: �x: fx; : : :i

C = h‘j’; ‘m’; ‘l’; �f: �x: fa‘(’axa‘)’; : : :i

P = �hj;m; l;@;:;^; : : :i: h: : :i



8/14

Interpretation transformers

Symantics

Lambda

Quantifier
States

Dynamics
Pronoun

EN

JA
Sem

R

P

C

EN

JA
R

P

C

P

CEN

Sem = �hj;m; l;@;:;^; : : :i:
hj;
m;

l;

�s: �v:@vs;

�v: �o:@voi

R = hj0;m0; l0; �f: �x: fx; : : :i

C = h‘j’; ‘m’; ‘l’; �f: �x: fa‘(’axa‘)’; : : :i

P = �hj;m; l;@;:;^; : : :i: h: : :i



8/14

Interpretation transformers

Symantics

Lambda

Quantifier
States

Dynamics
Pronoun

EN

JA
Sem

R

P

C

EN

JA
R

P

C

P

CEN

Sem = �hj;m; l;@;:;^; : : :i:
hj;
m;

l;

�s: �v:@vs;

�v: �o:@voi

R = hj0;m0; l0; �f: �x: fx; : : :i

C = h‘j’; ‘m’; ‘l’; �f: �x: fa‘(’axa‘)’; : : :i

P = �hj;m; l;@;:;^; : : :i: h: : :i



8/14

Interpretation transformers

Symantics
Lambda

Quantifier
States

Dynamics
Pronoun

EN

JA
Sem R

P

C

EN

JA
R

P

C

P

CEN

Sem = �hj;m; l;@;:;^; : : :i:
hj;
m;

l;

�s: �v:@vs;

�v: �o:@voi

R = hj0;m0; l0; �f: �x: fx; : : :i

C = h‘j’; ‘m’; ‘l’; �f: �x: fa‘(’axa‘)’; : : :i

P = �hj;m; l;@;:;^; : : :i: h: : :i



8/14

Interpretation transformers

Symantics
Lambda

Quantifier

States

Dynamics
Pronoun

EN

JA
Sem R

P

C

EN

JA

R

P

C

P

CEN

�hjohn;mary; like; r1; r2; every; some; r4; r5i:
hjohn;mary; like; r1; r2i



8/14

Dynamic logic

Symantics
Lambda

Quantifier
States

Dynamics
Pronoun

EN

JA
Sem R

P

C

EN

JA
R

P

C

P

CEN



8/14

Dynamic logic

Symantics
Lambda

Quantifier
States

Dynamics

Pronoun

EN

JA
Sem R

P

C

EN

JA
R

P

C

P

C

EN



8/14

Dynamic logic

Symantics
Lambda

Quantifier
States

Dynamics
Pronoun

EN

JA
Sem R

P

C

EN

JA
R

P

C

P

CEN



9/14

Expression transformers

Macros are maps from expressions to expressions.

_ = �hj;m; l;@;:;^; : : :i:
�e1: �e2::

�
^(:e1)(:e2)

�

Also for analyzing unquotation.

Ralph warned that he has
‘long suspected that [Ortcutt] is a spy’.

Ralph warned that he has
‘long suspected that [Ortcutt’s beach alias] is a spy’.



10/14

Lambda the ultimate

The essence of reuse:
a module is a sub-expression.
Binding. Higher-order abstractions.

Types classify terms. Polymorphism
circumscribes information flow.

1. Expressions and interpretations
in Abstract Categorial Grammar

2. Layers of monads for
quantification and state

http://cs.wellesley.edu/~fturbak/captain-abstraction.html


11/14

Generalization to the worst case

extensional
john = j

mary = m

r1 = �s: �v: vs

r2 = �v: �o: vo

possible worlds
john = �w: j

mary = �w:m

r1 = �s: �v: �w: vw(sw)

r2 = �v: �o: �w: vw(ow)

alternative sets
john = fjg
mary = fmg

r1 = �s: �v: f fx j x 2 s; f 2 v g
r2 = �v: �o: f fx j f 2 v; x 2 o g



11/14

Generalization to the worst case

extensional
john = j

mary = m

r1 = �s: �v: vs

r2 = �v: �o: vo

state
john = �i: hi; ji
mary = �i: hi;mi

r1 = �s: �v: �i: hi00; fxi where hi0; xi = si hi00; fi = vi0

r2 = �v: �o: �i: hi00; fxi where hi0; fi = vi hi00; xi = oi0

continuations
john = �c: cj

mary = �c: cm

r1 = �s: �v: �c: s�x: v�f: c(fx)

r2 = �v: �o: �c: v�f: o�x: c(fx)



12/14

Generalization of the worst case
Three components of a monad:

M; � : � ! M�; ? : M� ! (� ! M�) ! M�

john = �(j)

mary = �(m)

r1 = �s: �v: s ? �x: v ? �f: �(fx)

r2 = �v: �o: v ? �f: o ? �x: �(fx)

extensional
M� = �

�(a) = a

m ? q = qm

possible worlds state
M� = s ! � M� = i ! (i� �)

�(a) = �w: a �(a) = �i: hi; ai
m ? q = �w: q(mw)w m ? q = �i: qai0 where hi0; ai = mi

alternative sets continuations
M� = � ! t M� = (� ! r) ! r

�(a) = fag �(a) = �c: ca

m ? q =
S
a2m

qa m ? q = �c:m�a: qac



12/14

Generalization of the worst case
Three components of a monad:

M; � : � ! M�; ? : M� ! (� ! M�) ! M�

john = �(j)

mary = �(m)

r1 = �s: �v: s ? �x: v ? �f: �(fx)

r2 = �v: �o: v ? �f: o ? �x: �(fx)

extensional
M� = �

�(a) = a

m ? q = qm

possible worlds state
M� = s ! � M� = i ! (i� �)

�(a) = �w: a �(a) = �i: hi; ai
m ? q = �w: q(mw)w m ? q = �i: qai0 where hi0; ai = mi

alternative sets continuations
M� = � ! t M� = (� ! r) ! r

�(a) = fag �(a) = �c: ca

m ? q =
S
a2m

qa m ? q = �c:m�a: qac



12/14

Generalization of the worst case
Three components of a monad:

M; � : � ! M�; ? : M� ! (� ! M�) ! M�

john = �(j)

mary = �(m)

r1 = �s: �v: s ? �x: v ? �f: �(fx)

r2 = �v: �o: v ? �f: o ? �x: �(fx)

her = �i: hi; i(5)i

extensional
M� = �

�(a) = a

m ? q = qm

possible worlds state
M� = s ! � M� = i ! (i� �)

�(a) = �w: a �(a) = �i: hi; ai
m ? q = �w: q(mw)w m ? q = �i: qai0 where hi0; ai = mi

alternative sets continuations
M� = � ! t M� = (� ! r) ! r

�(a) = fag �(a) = �c: ca

m ? q =
S
a2m

qa m ? q = �c:m�a: qac



12/14

Generalization of the worst case
Three components of a monad:

M; � : � ! M�; ? : M� ! (� ! M�) ! M�

john = �(j)

mary = �(m)

r1 = �s: �v: s ? �x: v ? �f: �(fx)

r2 = �v: �o: v ? �f: o ? �x: �(fx)

john and mary = �c: cj ^ cm

extensional
M� = �

�(a) = a

m ? q = qm

possible worlds state
M� = s ! � M� = i ! (i� �)

�(a) = �w: a �(a) = �i: hi; ai
m ? q = �w: q(mw)w m ? q = �i: qai0 where hi0; ai = mi

alternative sets continuations
M� = � ! t M� = (� ! r) ! r

�(a) = fag �(a) = �c: ca

m ? q =
S
a2m

qa m ? q = �c:m�a: qac



13/14

Semantic cartography

state monad continuation monad transformer

M� = i ! (i� �) M0� = (� ! Mr) ! Mr

�(a) = � � � �0(a) = � � �
m ? q = � � � m ?0 q = � � �

`(m) = �c:m ? c

her = `
�
�i: hi; i(5)i

�
j&m = �c: cj ? �x: cm ? �y: �(x ^ y)

M0� =
�
� ! i ! (i� r)

�
! i ! (i� r)

her = �c: �i: c
�
i(5)

�
i

6= �c: �i:


i; c

�
i(5)

�
i _ c

�
i(6)

�
i
�

j&m = �c: �i: hi00; x ^ yi where hi0; xi = cji hi00; yi = cmi0

6= �c: �i:


i0; x ^ y

�
where hi0; xi = cji hi00; yi = cmi0



13/14

Semantic cartography

state monad continuation monad transformer

M� = i ! (i� �) M0� = (� ! Mr) ! Mr

�(a) = � � � �0(a) = � � �
m ? q = � � � m ?0 q = � � �

`(m) = �c:m ? c

her = `
�
�i: hi; i(5)i

�
j&m = �c: cj ? �x: cm ? �y: �(x ^ y)

M0� =
�
� ! i ! (i� r)

�
! i ! (i� r)

her = �c: �i: c
�
i(5)

�
i

6= �c: �i:


i; c

�
i(5)

�
i _ c

�
i(6)

�
i
�

j&m = �c: �i: hi00; x ^ yi where hi0; xi = cji hi00; yi = cmi0

6= �c: �i:


i0; x ^ y

�
where hi0; xi = cji hi00; yi = cmi0



13/14

Semantic cartography

state monad continuation monad transformer

M� = i ! (i� �) M0� = (� ! Mr) ! Mr

�(a) = � � � �0(a) = � � �
m ? q = � � � m ?0 q = � � �

`(m) = �c:m ? c

her = `
�
�i: hi; i(5)i

�
j&m = �c: cj ? �x: cm ? �y: �(x ^ y)

M0� =
�
� ! i ! (i� r)

�
! i ! (i� r)

her = �c: �i: c
�
i(5)

�
i

6= �c: �i:


i; c

�
i(5)

�
i _ c

�
i(6)

�
i
�

j&m = �c: �i: hi00; x ^ yi where hi0; xi = cji hi00; yi = cmi0

6= �c: �i:


i0; x ^ y

�
where hi0; xi = cji hi00; yi = cmi0



13/14

Semantic cartography

state monad continuation monad transformer

M� = i ! (i� �) M0� = (� ! Mr) ! Mr

�(a) = � � � �0(a) = � � �
m ? q = � � � m ?0 q = � � �

`(m) = �c:m ? c

her = `
�
�i: hi; i(5)i

�
j&m = �c: cj ? �x: cm ? �y: �(x ^ y)

M0� =
�
� ! i ! (i� r)

�
! i ! (i� r)

her = �c: �i: c
�
i(5)

�
i

6= �c: �i:


i; c

�
i(5)

�
i _ c

�
i(6)

�
i
�

j&m = �c: �i: hi00; x ^ yi where hi0; xi = cji hi00; yi = cmi0

6= �c: �i:


i0; x ^ y

�
where hi0; xi = cji hi00; yi = cmi0



13/14

Semantic cartography

state monad continuation monad transformer

M� = i ! (i� �) M0� = (� ! Mr) ! Mr

�(a) = � � � �0(a) = � � �
m ? q = � � � m ?0 q = � � �

`(m) = �c:m ? c

her = `
�
�i: hi; i(5)i

�
j&m = �c: cj ? �x: cm ? �y: �(x ^ y)

M0� =
�
� ! i ! (i� r)

�
! i ! (i� r)

her = �c: �i: c
�
i(5)

�
i

6= �c: �i:


i; c

�
i(5)

�
i _ c

�
i(6)

�
i
�

j&m = �c: �i: hi00; x ^ yi where hi0; xi = cji hi00; yi = cmi0

6= �c: �i:


i0; x ^ y

�
where hi0; xi = cji hi00; yi = cmi0



14/14

Summary

Functional modules are description parts
that can be reused in the face of change

I Expressions
I Interpretations
I Side effects
I Lexical entries
I . . .

Types enforce information hiding

http://www.flickr.com/photos/surrealmuse/4757004/

