
1

Quotation and effects in natural language
Three applications

Chung-chieh Shan Oleg Kiselyov

21 August 2007

2

Computational Linguistics

3

Computational Linguistics

4

Computational Linguistics

5

?

6

Outline

I Past: Mixed quotation

Present: Quantifier scope
Quotation for programming: code generation
Control for programming: let insertion
Control for linguistics: quantification
Quotation for linguistics: inverse scope

Future: Rational metaprogramming

7

Anaphora as state

Apparently, the idea of meeting participants making their own
reservations at the hotel does not work well for them.

8

Mixed quotation

“Bachelor” has eight letters.

Direct
Quine said, “Quotation has a certain anomalous feature”.

Indirect
Quine said that quotation has a certain anomalous feature.

Mixed
Quine said that quotation “has a certain anomalous feature”.
Bush said he has an “ecelectic” reading list.
Bush said the enemy “misunderestimates me”.

9

Mixed quotation

“Bachelor” has eight letters.
Direct

Quine said, “Quotation has a certain anomalous feature”.
Indirect

Quine said that quotation has a certain anomalous feature.
Mixed

Quine said that quotation “has a certain anomalous feature”.

Bush said he has an “ecelectic” reading list.
Bush said the enemy “misunderestimates me”.

10

Mixed quotation

“Bachelor” has eight letters.
Direct

Quine said, “Quotation has a certain anomalous feature”.
Indirect

Quine said that quotation has a certain anomalous feature.
Mixed

Quine said that quotation “has a certain anomalous feature”.
Bush said he has an “ecelectic” reading list.
Bush said the enemy “misunderestimates me”.

11

Anaphora in quotation

The professor said she requires “every student in my class who
lives on campus” to bring their homework to her office.
Professor to journalist:

I require every student in my class who lives on campus to
drop their work into this box.

Run with state?

* The professor told every student in her class who lives on
campus to “bring their homework to my office”.
Professor to John:

Please bring your Lordship’s homework to my office.
Professor to Mary:

Please bring your Ladyship’s homework to my office.
No cross-stage persistence?

12

Anaphora in quotation

The professor said she requires “every student in my class who
lives on campus” to bring their homework to her office.
Professor to journalist:

I require every student in my class who lives on campus to
drop their work into this box.

Run with state?

* The professor told every student in her class who lives on
campus to “bring their homework to my office”.
Professor to John:

Please bring your Lordship’s homework to my office.
Professor to Mary:

Please bring your Ladyship’s homework to my office.
No cross-stage persistence?

13

Outline

Past: Mixed quotation

I Present: Quantifier scope
Quotation for programming: code generation
Control for programming: let insertion
Control for linguistics: quantification
Quotation for linguistics: inverse scope

Future: Rational metaprogramming

14

Staging power

let rec power1 x = function
| 0 -> 1
| n -> x * power1 x (pred n)

I val power1: int -> int -> int = <fun>

let test1 = power1 2 11
I val test1: int = 2048

let rec power2 x = function
| 0 -> 〈1〉
| n -> 〈~x * ~(power2 x (pred n))〉

I val power2: (’a,int) code -> int -> (’a,int) code = <fun>

let test2 = 〈fun x -> ~(power2 〈x〉 11)〉
I val test2: (’a,int->int) code = 〈fun x -> x*(x*(x*(x*(x*(x*(x*(x*(x*(x*(x*1))))))))))〉

15

Staging power

let rec power1 x = function
| 0 -> 1
| n -> x * power1 x (pred n)

I val power1: int -> int -> int = <fun>

let test1 = power1 2 11
I val test1: int = 2048

let rec power2 x = function
| 0 -> 〈1〉
| n -> 〈~x * ~(power2 x (pred n))〉

I val power2: (’a,int) code -> int -> (’a,int) code = <fun>

let test2 = 〈fun x -> ~(power2 〈x〉 11)〉
I val test2: (’a,int->int) code = 〈fun x -> x*(x*(x*(x*(x*(x*(x*(x*(x*(x*(x*1))))))))))〉

16

Interpreting English

John loves Mary
I -: bool = true

John loves himself
I -: bool = false

Someone loves John
I -: bool = true

John loves Mary
I -: (’a,bool) code = 〈love Mary John〉

John loves himself
I -: (’a,bool) code = 〈love John John〉

Someone loves John
I -: (’a,bool) code = 〈List.exists people (love John)〉

17

Interpreting English

John loves Mary
I -: bool = true

John loves himself
I -: bool = false

Someone loves John
I -: bool = true

John loves Mary
I -: (’a,bool) code = 〈love Mary John〉

John loves himself
I -: (’a,bool) code = 〈love John John〉

Someone loves John
I -: (’a,bool) code = 〈List.exists people (love John)〉

18

The need to insert let

let square3 x =

〈~

x *

~

x

〉

let rec power3 x = function
| 0 ->

〈

1

〉

| 1 -> x
| n when n mod 2 = 0 -> power3 (square3 x) (n/2)
| n ->

〈~(

power3 (square3 x) (n/2)

)

*

~

x

〉

let test3 =

〈fun x -> ~(

power3 2 11

)〉

I val test3: int = 2048

= 〈fun x -> (((x*x)*(x*x))*((x*x)*(x*x)))*(x*x)*x〉

19

The need to insert let

let square4 x = 〈~x * ~x〉

let rec power4 x = function
| 0 -> 〈1〉
| 1 -> x
| n when n mod 2 = 0 -> power4 (square4 x) (n/2)
| n -> 〈~(power4 (square4 x) (n/2)) * ~x〉

let test4 = 〈fun x -> ~(power4 〈x〉 11)〉
I val test4: (’a, int -> int) code
= 〈fun x -> (((x*x)*(x*x))*((x*x)*(x*x)))*(x*x)*x〉

20

Inserting let in continuation-passing (or monadic) style

let square4 x

k

= 〈

let r =

~x * ~x

in ~(k 〈r〉)

〉

let rec power5 x k = function
| 0 -> k 〈1〉
| 1 -> k x
| n when n mod 2 = 0

-> square5 x (fun s -> power5 s k (n/2))
| n -> square5 x (fun s -> power5 s (fun r ->

k 〈~r * ~x〉)
(n/2))

let test5 = 〈fun x -> ~(power5 〈x〉 (fun r -> r) 11)〉
I val test5: (’a, int -> int) code

= 〈fun x -> let r1 = x * x in
let r2 = r1 * r1 in
let r3 = r2 * r2 in (r3 * r1) * x〉

21

Inserting let in continuation-passing (or monadic) style

let square5 x k = 〈let r = ~x * ~x in ~(k 〈r〉)〉

let rec power5 x k = function
| 0 -> k 〈1〉
| 1 -> k x
| n when n mod 2 = 0

-> square5 x (fun s -> power5 s k (n/2))
| n -> square5 x (fun s -> power5 s (fun r ->

k 〈~r * ~x〉)
(n/2))

let test5 = 〈fun x -> ~(power5 〈x〉 (fun r -> r) 11)〉
I val test5: (’a, int -> int) code

= 〈fun x -> let r1 = x * x in
let r2 = r1 * r1 in
let r3 = r2 * r2 in (r3 * r1) * x〉

22

Inserting let in continuation-passing (or monadic) style

let square5 x k = 〈let r = ~x * ~x in ~(k 〈r〉)〉

let rec power5 x k = function
| 0 -> k 〈1〉
| 1 -> k x
| n when n mod 2 = 0

-> square5 x (fun s -> power5 s k (n/2))
| n -> square5 x (fun s -> power5 s (fun r ->

k 〈~r * ~x〉)
(n/2))

let test5 = 〈fun x -> ~(power5 〈x〉 (fun r -> r) 11)〉
I val test5: (’a, int -> int) code

= 〈fun x -> let r1 = x * x in
let r2 = r1 * r1 in
let r3 = r2 * r2 in (r3 * r1) * x〉

23

Inserting let in direct style

let square6 x = shift (fun k -> 〈let r = ~x * ~x in ~(k 〈r〉)〉)

let rec power6 x = function
| 0 -> 〈1〉
| 1 -> x
| n when n mod 2 = 0 -> power6 (square6 x) (n/2)
| n -> 〈~(power6 (square6 x) (n/2)) * ~x〉

let test6 = 〈fun x -> ~(reset (fun () -> power6 〈x〉 11))〉
I val test6: (’a, int -> int) code

= 〈fun x -> let r1 = x * x in
let r2 = r1 * r1 in
let r3 = r2 * r2 in (r3 * r1) * x〉

24

Outline

Past: Mixed quotation

I Present: Quantifier scope
Quotation for programming: code generation
Control for programming: let insertion
Control for linguistics: quantification
Quotation for linguistics: inverse scope

Future: Rational metaprogramming

25

Shifting gears

type person = John | Mary
let people = [John; Mary]
let love (x: person) (y: person) = x != y
let f $ x = f x
let x $f = f x

John $(love $ Mary)
John loves Mary.

$

John
John

$

love
loves

Mary
Mary

26

In-situ quantification
let forall (f: person -> bool) = List.for_all f people
let exists (f: person -> bool) = List.exists f people

Someone loves John.

reset (fun () ->)

$

shift exists
someone

$

love
loves

John
John

27

In-situ quantification
let forall (f: person -> bool) = List.for_all f people
let exists (f: person -> bool) = List.exists f people

Mary loves everyone.

reset (fun () ->)

$

Mary
Mary

$

love
loves

shift forall
everyone

28

In-situ quantification
let forall (f: person -> bool) = List.for_all f people
let exists (f: person -> bool) = List.exists f people

Someone loves everyone.

reset (fun () ->)

$

shift exists
someone

$

love
loves

shift forall
everyone

29

Scope ambiguity

Someone loves everyone.

Children. . .
There’s a time and a place for everything,
and it’s called college.

Require left-to-right evaluation for other side effects:
* His mother loves everyone.
* What did who buy?
* Anyone loves no one.

30

Scope ambiguity

Someone loves everyone.

Children. . .
There’s a time and a place for everything

,
and it’s called college.

Require left-to-right evaluation for other side effects:
* His mother loves everyone.
* What did who buy?
* Anyone loves no one.

31

Scope ambiguity

Someone loves everyone.

Children. . .
There’s a time and a place for everything,
and it’s called college.

Require left-to-right evaluation for other side effects:
* His mother loves everyone.
* What did who buy?
* Anyone loves no one.

32

Scope ambiguity

Someone loves everyone.

Children. . .
There’s a time and a place for everything,
and it’s called college.

Require left-to-right evaluation for other side effects:
* His mother loves everyone.
* What did who buy?
* Anyone loves no one.

33

Inverse scope as quotation

Someone loves everyone.

reset (fun () ->)

$

shift exists
someone

$

love
loves

shift forall
everyone

34

Inverse scope as quotation

“Someone loves everyone”.

reset (fun () -> !〈 〉)

reset (fun () ->)

$

shift exists
someone

$

love
loves

shift forall
everyone

35

Inverse scope as quotation

“Someone loves” everyone.

reset (fun () -> !〈 〉)

reset (fun () ->)

$

shift exists
someone

$

love
loves

~(let v = in 〈v〉)

shift forall
everyone

36

Outline

Past: Mixed quotation

Present: Quantifier scope
Quotation for programming: code generation
Control for programming: let insertion
Control for linguistics: quantification
Quotation for linguistics: inverse scope

I Future: Rational metaprogramming

37

Speaker and hearer model each other

Isn’t it getting chilly in here?

A hotel cleaner enters a room and starts to clean it.
A female guest emerges from the shower.
The cleaner says “Excuse me sir” and exits.

38

Speaker and hearer model each other

Isn’t it getting chilly in here?

A hotel cleaner enters a room and starts to clean it.
A female guest emerges from the shower.
The cleaner says “Excuse me sir” and exits.

39

Rational metaprogramming

To model the beliefs, desires, and intentions of agents who have
beliefs about each other’s intentions,

about each other’s desires about each other’s beliefs,
and so on,

we model
intentions to perform actions as programs.

beliefs as probability distributions.
(weighted nondeterminism→ stochastic programs)

desires as utility functions.
(rational choice→ rational programs)

One agent’s model of another is a probability distribution over
(quoted) rational programs.

We need a modal type system and efficient self-interpretation.

40

Rational metaprogramming

To model the beliefs, desires, and intentions of agents who have
beliefs about each other’s intentions,

about each other’s desires about each other’s beliefs,
and so on,

we model
intentions to perform actions as programs.

beliefs as probability distributions.
(weighted nondeterminism→ stochastic programs)

desires as utility functions.
(rational choice→ rational programs)

One agent’s model of another is a probability distribution over
(quoted) rational programs.

We need a modal type system and efficient self-interpretation.

41

Rational metaprogramming

To model the beliefs, desires, and intentions of agents who have
beliefs about each other’s intentions,

about each other’s desires about each other’s beliefs,
and so on,

we model
intentions to perform actions as programs.

beliefs as probability distributions.
(weighted nondeterminism→ stochastic programs)

desires as utility functions.
(rational choice→ rational programs)

One agent’s model of another is a probability distribution over
(quoted) rational programs.

We need a modal type system and efficient self-interpretation.

42

Summary

Quotation goes well with effects (state, control,
nondeterminism), so that code does not have to be
generated in lexical order.

But we want a type system that prevents scope extrusion.

Multigrained theories of quotation:
the less intensional a theory,
the more cross-stage persistence it allows?

Levels of quotation are not quite levels of control operators.

43

Reckless let insertion

let test6 = 〈fun x -> ~(reset (fun () ->
power6 〈x〉 11))〉

I val test6: (’a, int -> int) code
= 〈fun x -> let r1 = x * x in

let r2 = r1 * r1 in
let r3 = r2 * r2 in (r3 * r1) * x〉

let test7a = 〈fun x -> ~(reset (fun () ->
〈let y = x + 1 in ~(power6 〈y〉 11)〉))〉

I val test7a: (’a, int -> int) code
= 〈fun x -> let r1 = y * y in

let r2 = r1 * r1 in
let r3 = r2 * r2 in
let y = x + 1 in (r3 * r1) * y〉

44

Reckless let insertion

let test6 = 〈fun x -> ~(reset (fun () ->
power6 〈x〉 11))〉

I val test6: (’a, int -> int) code
= 〈fun x -> let r1 = x * x in

let r2 = r1 * r1 in
let r3 = r2 * r2 in (r3 * r1) * x〉

let test7a = 〈fun x -> ~(reset (fun () ->
〈let y = x + 1 in ~(power6 〈y〉 11)〉))〉

I val test7a: (’a, int -> int) code
= 〈fun x -> let r1 = y * y in

let r2 = r1 * r1 in
let r3 = r2 * r2 in
let y = x + 1 in (r3 * r1) * y〉

45

Reckless let insertion

let test6 = 〈fun x -> ~(reset (fun () ->
power6 〈x〉 11))〉

I val test6: (’a, int -> int) code
= 〈fun x -> let r1 = x * x in

let r2 = r1 * r1 in
let r3 = r2 * r2 in (r3 * r1) * x〉

let test7b = 〈fun x -> ~(reset (fun () ->
〈let y = x + 1 in ~(reset (fun () -> power6 〈y〉 11))〉))〉

I val test7b: (’a, int -> int) code
= 〈fun x -> let y = x + 1 in

let r1 = y * y in
let r2 = r1 * r1 in
let r3 = r2 * r2 in (r3 * r1) * y〉

	Past: Mixed quotation
	Present: Quantifier scope
	Quotation for programming: code generation
	Control for programming: let insertion
	Control for linguistics: quantification
	Quotation for linguistics: inverse scope

	Future: Rational metaprogramming

