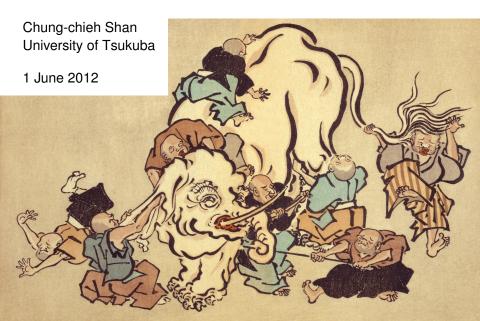
From language models to distributional semantics



Approaches to semantics

"In order to say what a meaning is,
we may first ask what a meaning does,
and then find something that does that." —David Lewis

Approaches to semantics

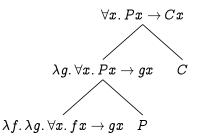
"In order to say what a meaning *is*,
we may first ask what a meaning *does*,
and then find something that does that." —David Lewis

Truth, entailment

Every person cried. \models Every professor cried.

A person cried. $\not\models$ A professor cried.

Formal semantics



Approaches to semantics

"In order to say what a meaning *is*,
we may first ask what a meaning *does*,
and then find something that does that." —David Lewis

Concepts, similarity

```
ambulance \sim battleship ambulance \sim bookstore
```

Distributional semantics

```
abandon minativa cade mile acade accept accept ambulance battleship bookstore 5 0 6 33 13 ... :
```

For each word w, rank contexts c by descending $\frac{\Pr(c \mid w)}{\Pr(c)} > 1$.

"pointwise mutual information"

For each word w, rank contexts c by descending $\frac{\Pr(c \mid w)}{\Pr(c)} > 1$.

"pointwise mutual information"

parent argcount_n arglist_n arglist_j phane_n specity_n qdisc_n carthy_n

parents-to-be_n non-resident_j step-parent_n tc_n ballons_n eliza_n symptons_n adoptive_j stepparent_n nonresident_j

home-school_n scabrid_n petiolule_n ...

person anglia_n first-mentioned_i unascertained_i enure_v

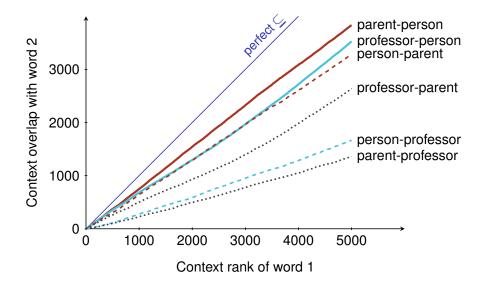
 $\label{eq:constraint} \begin{aligned} &\text{deposit-taking}_{j} \ \ \text{bonis}_{n} \ \ \text{iconclass}_{j} \ \ \text{cotswolds}_{n} \ \ \text{aforesaid}_{n} \\ &\text{haver}_{v} \ \ \text{foresaid}_{j} \ \ \text{gha}_{n} \ \ \text{sub-paragraphs}_{n} \ \ \text{enacted}_{j} \ \ \text{geest}_{j} \\ &\text{non-medicinal}_{j} \ \ \text{sub-paragraph}_{n} \ \ \text{intimation}_{n} \ \ \text{arrestment}_{n} \end{aligned}$

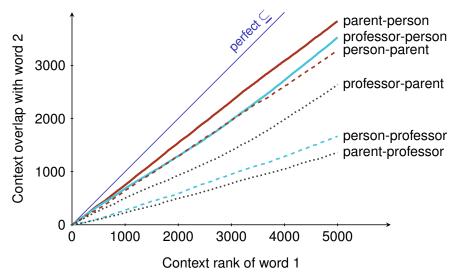
incumbrance_n ...

professor william_n extraordinarius_n ordinarius_n francis_n reid_n emeritus_n derwent_n regius_n laurence_n edward_n

carisoprodol_n adjunct_j winston_n privatdozent_j edward_j

xanax_n tenure_v cialis_n florence_n ...





More sophisticated: *Kullback-Leibler divergence*, skew divergence (Lee), balAPinc (Kotlerman et al.), ...

Sparse data strikes back

Successes for words and short phrases:

- similarity
- entailment
- sentiment

For long, rare, episodic phrases and sentences, need

- syntactic structure
- pragmatic context
- grounding in other information sources

This need goes way back—

^{&#}x27;common sense' from noisy large corpora

^{&#}x27;linguistic generalization' from poor stimulus

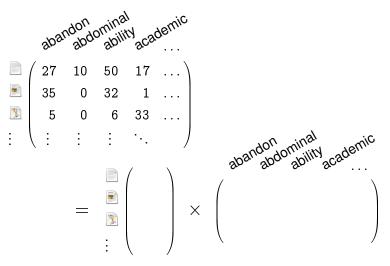
From documents×terms to words×contexts

Information retrieval started with bag of terms in each document. Stopwords, stemming, tagging; TF-IDF.

	abar	ndon	ilids ilids	i. Nacar	demic
	/ 27	10	50	17)
2	35	0	32	1	
X.	5	0	6	33	
:	:	:	÷	٠)

From documents×terms to words×contexts

Information retrieval started with bag of terms in each document. Stopwords, stemming, tagging; TF-IDF. Dimensionality reduction reveals topics.



From documents×terms to words×contexts

Information retrieval started with bag of terms in each document. Stopwords, stemming, tagging; TF-IDF. Dimensionality reduction reveals topics. Now rows are phrases and columns are contexts.

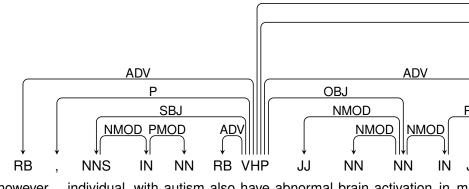
Composite phrases?

Need syntactic structure: substitution? locality? compositionality?

RB , NNS IN NN RB VHP JJ NN NN IN however , individual with autism also have abnormal brain activation in m However , individuals with autism also have abnormal brain activation in m

Composite phrases?

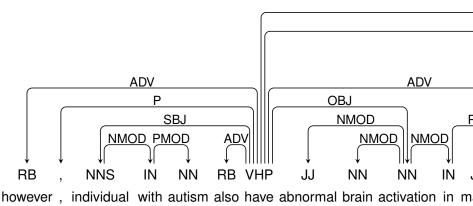
Need syntactic structure: substitution? locality? compositionality?



however, individual with autism also have abnormal brain activation in m However, individuals with autism also have abnormal brain activation in m

Composite phrases?

Need syntactic structure: substitution? locality? compositionality?



However, individuals with autism also have abnormal brain activation in m

To cope with sparse data, NLP (parsing, translation, compression) applies linguistic insight (factoring, smoothing).

From language models to distributional semantics

A language model is a virtual infinite corpus: not frequencies observed but probabilities estimated.

Let the distributional meaning of a phrase w be the probability distribution over its contexts c.

$$\llbracket w
Vert = \lambda c. rac{\Pr(c[w])}{\sum_{c'} \Pr(c'[w])}$$
 $\llbracket ext{red army}
Vert = \lambda(l,r). rac{\Pr(l ext{ red army } r)}{\sum_{(l',r')} \Pr(l' ext{ red army } r)}$ $\llbracket ext{red } w
Vert = \lambda(l,r). rac{\llbracket w
Vert (l ext{ red, } r)}{\sum_{(l',r')} \llbracket w
Vert (l' ext{ red, } r')}$

Probabilities from any model: bag of words, Markov, PCFG... Pass the buck.

From language models to distributional semantics

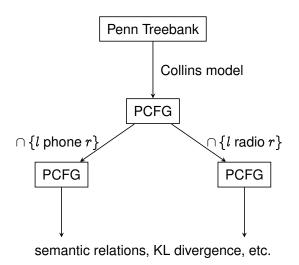
A language model is a virtual infinite corpus: not frequencies observed but probabilities estimated.

Let the distributional meaning of a phrase w be the probability distribution over its contexts c.

$$\llbracket w
rbracket = \lambda c. rac{\Pr(c[w])}{\sum_{c'} \Pr(c'[w])}$$
 $\llbracket ext{red army}
rbracket = \lambda(l,r). rac{\Pr(l ext{ red army } r)}{\sum_{(l',r')} \Pr(l' ext{ red army } r)}$ $\llbracket ext{red } w
rbracket = \lambda(l,r). rac{\llbracket w
rbracket(l ext{ red, } r)}{\sum_{(l',r')} \llbracket w
rbracket(l' ext{ red, } r')}$

Probabilities from any model: bag of words, Markov, PCFG... Pass the buck.

From Penn Treebank to distributional semantics



Random sentences

```
[[[[],/, he/PRP] -LCB-/-LRB-] [the/DT company/NN]] [[[[the/DT +unknown+/NNP]
+unknown+/NNP1 +unknown+/NNP1 compared/VBN]] [says/VBZ [:/: :/:]]]
[have/VBP [lately/RB [[in/IN [July/NNP [[[[weighted/JJ large/JJ] exchange/NN]
for/IN] clients/NNS]]] been/VBN]]]
was/VBD
[[,/, [Mr./NNP Bush/NNP]] said/VBD1
[plunged/VBD [4/CD ,/,]]
[[start/NN of/IN] [was/VBD [me/PRP [1.9/CD pence/NN]]]]
has/VBZ
[[./, they/PRP] [see/VBP [aided/VBN [[in/IN [[some/DT seconds/NNS] [[of/IN
[executive/NN [[[a/DT share/NN] [[yesterday/NN [[the/DT last/JJ] market/NN]]
acted/VBDII [[the/DT advance/NN] revenue/NN]]] [a/DT share/NN]]] [by/N
[[[the/DT pound/NN] and/CC] Exchange/NNP]]]]]
would/MD
[[Dec./NNP 28/CD] [announced/VBD that/IN]]
[[[[,/, ,/,] ,/,] [is/VBZ [[[[[the/DT only/JJ] third-quarter/JJ] net/JJ] emphasis/NN]
[[very/RB executive/JJ] [[not/RB Soviet/JJ] to/TO]]]]] says/VBZ [[President/NNP
Co./NNP] [Lee/NNP [chamber/NN supervisor/NN]]]]
```

Random sentences containing "car dealer"

```
[[many/JJ [[the/DT car/NN] dealer/NN] Developers/NNS]] ,/,] are/VBP]
[[[the/DT characteristic/NN] [[that/WDT agreed/VBD] in/IN]] [is/VBZ [[[[[a/DT
new/JJ] federal/JJ] car/NN] dealer/NN] of/IN] [:/: [in/IN [[[their/PRP$ modern/JJ]
movie/NN] [likely/JJ ,/,]]]]]]
[says/VBZ [[[[[[[[[[[[[]]], [[[[the/DT crude/NN] oil/NN] man/NN] plans/NNS]
car/NN]] [dealer/NN [of/IN [in/IN [[[the/DT U.S./NNP] Cambodia/NNP]
Europe/NNP]]]]] But/CC] was/VBD] [anxiety/NN of/IN]] [[[John/NNP
+unknown+/NNP] +unknown+/NNP] ./,] [a/DT +unknown+/NNP]] In/IN]
[said/VBD [[[[[,/, ,/,] bonds/NNS] Yet/RB] nonperforming/VBG] will/MD]]] [the/DT
role/NN]] [[[[the/DT executive/NN] 's/POS] son/NN] ,/,]] [the/DT computer/NN]] ,/,]
engineering/NN [[of/IN life/NN] of/IN]]] that/DT] [[+unknown+/NN
+unknown+/NNP] [[The/DT head/NN] from/IN]]] goes/VBZ]]
[resigned/VBD [[to/TO [price/VB [[[[the/DT car/NN] dealer/NN] [from/IN [[Mr./NNP
+unknown+/NNP] on/IN]]] [through/RP [[such/PDT a/DT] offering/NN]]]]]
showing/VBG [[[The/DT junk/NN] defense/NN] measure/NN] [bank/NN]
known/VBN]]]]]
[[[[[still/RB [[the/DT Gardens/NNPS] life/NN]] [initial/JJ transaction/NN]] [[a/DT
few/JJ] arrangement/NN]] administration/NN] [The/DT group/NN]] [[[the/DT
first/NN] price/NN] of/IN]] ,/,] [is/VBZ [[[car/NN dealer/NN] [of/IN [[$/$
```

Lunknown L/CDI [tho/DT futures/NNS]]]] [was//RD [[going//RG [[against/]N]

Random sentences containing "drug dealer"

```
[[[[[In/IN ,/,] ,/,] [[[[its/PRP$ past/JJ] five/CD] structural/JJ] +unknown+/NN]
[of/IN [Allied/NNP stock/NN]]] [+unknown+/JJ farmer/NN]] +unknown+/NNS] ,/,]
[[the/DT most/JJS] [[who/WP [drag/VBP [require/VBP because/IN]]] [because/IN]
of/IN [[the/DT company/NN] [[a/DT year/NN] [[+unknown+/JJ cooperative/JJ]
children/NNS]]]]]] [[[[this/DT +unknown+/JJ] OTC/NNP] market/NN] for/IN]]
[The/DT company/NN]] [[The/DT drug/NN] dealer/NN]] [soared/VBD [./.
[reducing/VBG [,/, [,/, Monday/NNP]]]]]]
[[[[[]],/, +unknown+/NNP] [[rose/VBD [[from/IN [[[]$/$ [+unknown+/CD
[million/CD [million/CD [+unknown+/CD [million/CD [billion/CD 15.6/CD]]]]]]]
[a/DT share/NN]] [,/, [today/NN tickets/NNS]]] [[[A/DT deep/JJ] series/NN] [[of/IN
[fact/NN [[last/JJ car/NN] that/WDT]]] [with/IN looks/NNS]]] [[seven/CD
cents/NNS] [a/DT share/NN]]]] [on/IN [[[[The/DT +unknown+/JJ] ownership/NN]
or/CCl yesterday/NN]]]] [[[[another/DT year/NN] price/NN] [above/IN -/:]]
[was/VBD [[against/IN him/PRP] although/IN]]] [but/CC [[[[the/DT following/JJ]
week/NN] [was/VBD [[[[[[[a/DT specific/JJ] +unknown+/JJ] short-term/JJ]
Treasury/NNP] [economic/JJ trade/NN]] [[the/DT FDA/NNP] ./.]] ./.] [marks/NNS
[[[[the/DT coming/VBG] early/JJ] next/JJ] year/NN] little/RB]]] ,/,]]] [and/CC
n't/RB]] [received/VBD [[[[a/DT serious/JJ] drag/NN] on/IN] [now/RB [[when/WRB
[[[the/DT drug/NN] dealer/NN] pay/VB] [[[Sun/NNP Jeep/NNP] Stoll/NNP]
```

THE TAKEN THE PARTY OF THE PART

Random sentences containing "card dealer"

[[[,/, [[[a/DT newspaper/NN] base/NN] of/IN]] [the/DT floor/NN]] [was/VBD [ago/RB [[breaking/JJ trend/NN] [sharply/RB [[[[[[a/DT formal/JJ] brokerage/NN] and/CC] couple/NN] [[[[[[John/NNP Agency/NNP] He/PRP] [July/NNP [where/WRB when/WRB]]] he/PRP] [can/MD [[close/VB [at/IN [[until/IN [should/MD [has/VBZ [causes/VBZ [the/DT world/NN]]]]] once/RB]]] even/RB]]] [they/PRP ['ve/VBP [[+unknown+/VBN [on/IN [[the/DT University/NNP] in/IN]]] [got/VBN [[in/IN [[last/JJ week/NN] [[a/DT philosophy/NN] [[the/DT Congress/NNP1 [[The/DT +unknown+/NN] to/TO]]]]] [his/PRP\$ toll/NN]]] [[already/RB traded/VBN] [got/VBN [grown/VBN [,/, [[based/VBN []on/IN [the/DT amount/NN]] with/IN]] [by/IN [[according/VBG [[to/TO [[[[Prudential/NNP Committee/NNP] 's/POS| media/NNS] [[[[a/DT visible/JJ] program/NN] trading/NN] arena/NN]]] [[to/TO [[chief/JJ big/JJ] [[[Bear/NNP II/NNP] official/NN] [[the/DT disaster/NN] [[a/DT card/NN] dealer/NN]]]]] [to/TO [[[a/DT [[[10/CD 6.9/CD] 34/CD] %/NN]] secretary/NN] [of/IN [of/IN [area/NN [bought/VBD] [[[the/DT +unknown+/JJ] shareholders/NNS] according/VBG]]]]]]]] [in/IN [+unknown+/NN of/IN]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]aid/VBD] [[of/IN [no/DT technology/NN]] [in/IN [that/WDT for/IN]]]] [Using/VBG [[[[another/DT leveraged/VBN] +unknown+/NN] concerned/JJ] Robert/NNP11111111

[is/VBZ [[[[[the/DT New/NNP] York/NNP] +unknown+/NNP] Co./NNP] [of/IN [[ABC/NNP television/NN] negotiations/NNS]]] [[[[[[the/DT Soviet/JJ] real/JJ]

Kullback-Leibler divergence

$$D_{ ext{KL}}(P \parallel Q) = \underbrace{\sum_{x} P(x) \log rac{1}{Q(x)}}_{\text{cross entropy}} - \underbrace{\sum_{x} P(x) \log rac{1}{P(x)}}_{\text{cross entropy}}$$

Example

20 samples from P:

Kullback-Leibler divergence

$$D_{ ext{KL}}(P \parallel Q) = \underbrace{\sum_{x} P(x) \log rac{1}{Q(x)}}_{\text{cross entropy}} - \underbrace{\sum_{x} P(x) \log rac{1}{P(x)}}_{\text{cross entropy}}$$

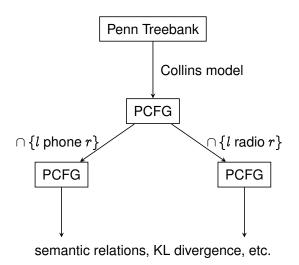
Example

20 samples from *P*:

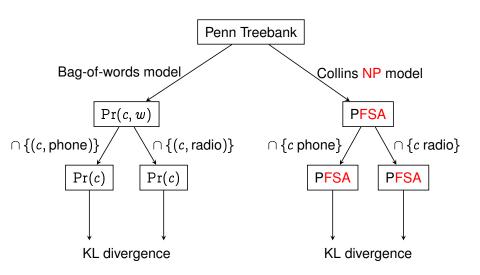
encoded for P: 10001001101010110100101110110000111 encoded for Q: 100000100001101000011000101000101

KL divergence: 0.25 bits = 2.00 bits - 1.75 bits

From Penn Treebank to distributional semantics

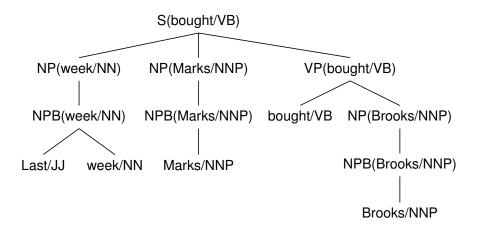


From Penn Treebank to distributional semantics



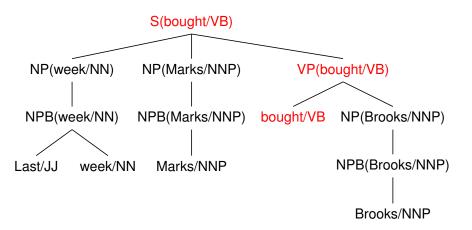
Collins model

Lexicalized PCFG for parsing (1997) Not for generation (Post & Gildea 2008) Bikel (2004) exegesis



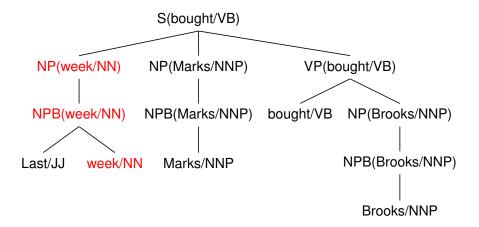
Collins model

Lexicalized PCFG for parsing (1997) Not for generation (Post & Gildea 2008) Bikel (2004) exegesis



Collins model

Lexicalized PCFG for parsing (1997) Not for generation (Post & Gildea 2008) Bikel (2004) exegesis



Summary statistics

Standard English training set: Wall Street Journal §§02–21

- 39 832 sentences
- 950 028 word tokens
 - 44 113 unique words
 - 10 437 unique words that occur 6+ times
- 28 basic nonterminal labels42 parts of speech

Tiny for a corpus today.

Simplified Collins Model 1

575 936 nonterminals
 15 564 terminals
 12 611 676 rules

Big for a grammar today.

Pilot evaluation using BLESS data set

Relatum

Relation

Concept

Concept	neialion		Baroni and Lenci Evaluation
phone	coord	computer	of Semantic Spaces (2011)
phone	coord	radio	
phone	coord	stereo	Only head nouns observed
phone	coord	television	in corpus:
phone	hyper	commodity	•
phone	hyper	device	NP(phone/NN)
phone	hyper	equipment	
phone	hyper	good	
phone	hyper	object	NPB(phone/NN) ——→
phone	hyper	system	
phone	mero	cable	
phone	mero	dial	←— phone/NN
phone	mero	number	Compute KI divergences
phone	mero	plastic	Compute KL divergences
phone	mero	wire	among distributions over
phone	random-n	choice	modifier-nonterminal
phone	random-n	clearance	sequences
phone	random-n	closing	
phone	random-n	entrepreneur	

16/19

Pilot evaluation using BLESS data set Dolotion

Dalatum

Canaant

Concept	Relation	Relatum	Baroni and Lenci Evaluation
phone	coord	computer	of Semantic Spaces (2011)
phone	coord	radio	. ,
phone	coord	stereo	Only head nouns observed
phone	coord	television	in corpus:
phone	hyper	commodity	•
phone	hyper	device	NP(phone/NN)
phone	hyper	equipment	
phone	hyper	good	NDD(1 (* 14.1)
phone	hyper	object	NPB(phone/NN) →
phone	hyper	system	
phone	mero	cable	
phone	mero	dial	← phone/NN
phone	mero	number	Compute KI divergences
phone	mero	plastic	Compute KL divergences
phone	mero	wire	among distributions over
phone	random-n	choice	modifier-nonterminal
phone	random-n	clearance	sequences
phone	random-n	closing	
phone	random-n	entrepreneur	

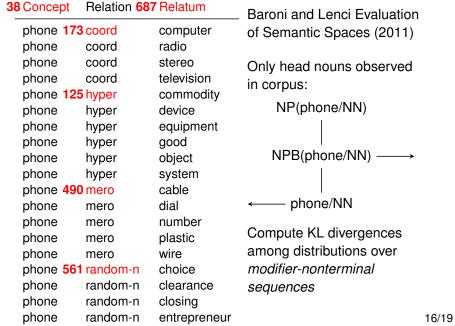
16/19

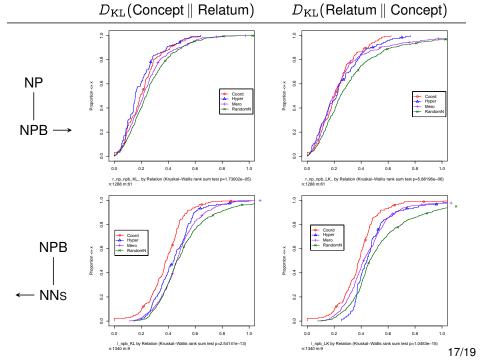
Pilot evaluation using BLESS data set

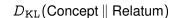
Concept	Relation	Relatum	Baroni and Lenci Evaluation
phone	coord	computer	of Semantic Spaces (2011)
phone	coord	radio	
phone	coord	stereo	Only head nouns observed
phone	coord	television	in corpus:
phone	hyper	commodity	•
phone	hyper	device	NP(phone/NN)
phone	hyper	equipment	
phone	hyper	good	
phone	hyper	object	NPB(phone/NN) →
phone	hyper	system	
phone	mero	cable	
phone	mero	dial	← phone/NN
phone	mero	number	0 1/4 1
phone	mero	plastic	Compute KL divergences
phone	mero	wire	among distributions over
phone	random-n	choice	modifier-nonterminal
phone	random-n	clearance	sequences
phone	random-n	closing	•
phone	random-n	entrepreneur	

16/19

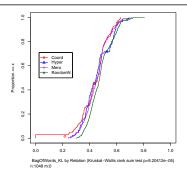
Pilot evaluation using BLESS data set

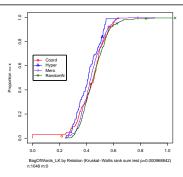






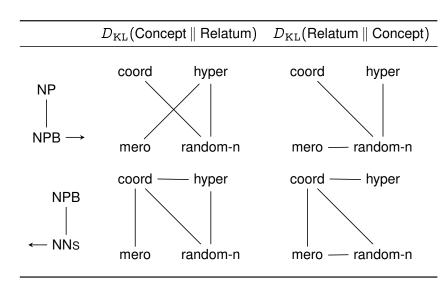
$D_{KL}(Relatum || Concept)$





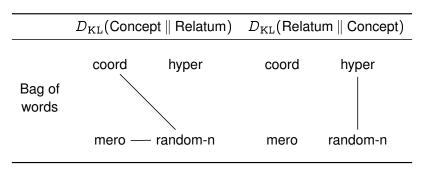
Mann-Whitney-Wilcoxon rank sum test

Edges indicate p < .01



Mann-Whitney-Wilcoxon rank sum test

Edges indicate p < .01



Summary

Distributional semantics from language models

- Estimate felicity in context from observed use
- Cope with sparse data using linguistic insight such as syntax

Better distributional semantics from better language models?

- Pilot test on the Penn Treebank using two language models
- Further tests need more computation techniques, resources

Thanks!

- Bolzano: European Masters Program in Language and Communication Technologies
- Trento: Marco Baroni, Raffaella Bernardi, Roberto Zamparelli
- Rutgers: Jason Perry, Matthew Stone
- Cornell: John Hale, Mats Rooth