Entailment above the word level in distributional semantics

Marco Baroni Raffaella Bernardi Chung-chieh Shan

University of Trento University of Trento Ngoc-Quynh Do EM LCT, Free University of Bozen-Bolzano Cornell University, University of Tsukuba

> **EACL** 25 April 2012

Entailment among composite phrases rather than nouns. (Cheap training data!)

Entailment among logical words rather than content words. (Part of Recognizing Textual Entailment?)

Entailment among **composite phrases** rather than nouns. (Cheap training data!)

Entailment among logical words rather than content words. (Part of Recognizing Textual Entailment?)

$$AN \models N$$
 \xrightarrow{train} \xrightarrow{test} $N \models N$ big cat cat dog animal

Entailment among **composite phrases** rather than nouns. (Cheap training data!)

Entailment among **logical words** rather than content words. (Part of Recognizing Textual Entailment?)

$$AN \models N$$
 \longrightarrow $N \models N$ big cat cat dog animal

Entailment among **composite phrases** rather than nouns. (Cheap training data!)

Entailment among **logical words** rather than content words. (Part of Recognizing Textual Entailment?)

Approaches to semantics

"In order to say what a meaning *is*,
we may first ask what a meaning *does*,
and then find something that does that." —David Lewis

Approaches to semantics

"In order to say what a meaning *is*,
we may first ask what a meaning *does*,
and then find something that does that." —David Lewis

Truth, entailment

Every person cried. \models Every professor cried.

A person cried. $\not\models$ A professor cried.

Formal semantics

Approaches to semantics

"In order to say what a meaning *is*,
we may first ask what a meaning *does*,
and then find something that does that." —David Lewis

Concepts, similarity

```
ambulance \sim battleship ambulance \sim bookstore
```

Distributional semantics

```
ambulance 27 10 50 17 130 ... battleship bookstore 5 0 6 33 13 ... :
```


For each word w, rank contexts c by descending $\frac{\Pr(c \mid w)}{\Pr(c)} > 1$.

"pointwise mutual information"

For each word w, rank contexts c by descending $\frac{\Pr(c \mid w)}{\Pr(c)} > 1$.

"pointwise mutual information"

parent argcount_n arglist_n arglist_j phane_n specity_n qdisc_n carthy_n

parents-to-be_n non-resident_j step-parent_n tc_n ballons_n eliza_n symptons_n adoptive_j stepparent_n nonresident_j

home-school_n scabrid_n petiolule_n ...

person anglia_n first-mentioned_i unascertained_i enure_v

 $\label{eq:constraint} \begin{aligned} &\text{deposit-taking}_{j} \text{ bonis}_{n} \text{ iconclass}_{j} \text{ cotswolds}_{n} \text{ aforesaid}_{n} \\ &\text{haver}_{v} \text{ foresaid}_{j} \text{ gha}_{n} \text{ sub-paragraphs}_{n} \text{ enacted}_{j} \text{ geest}_{j} \\ &\text{non-medicinal}_{j} \text{ sub-paragraph}_{n} \text{ intimation}_{n} \text{ arrestment}_{n} \end{aligned}$

incumbrance_n ...

professor william_n extraordinarius_n ordinarius_n francis_n reid_n emeritus_n emeritus_i derwent_n regius_n laurence_n edward_n

 $carisoprodol_n \ adjunct_j \ winston_n \ privatdozent_j \ edward_j$

xanax_n tenure_v cialis_n florence_n ...

Better: skew divergence (Lee), balAPinc (Kotlerman et al.), ...

Phrases have corpus distributions too!

N cat AN white cat

QN every cat

Phrases have corpus distributions too! But $\mathbf{N} \approx \mathbf{A} \mathbf{N} \not\approx \mathbf{Q} \mathbf{N}$

	Syntactic category				
N	cat	N			
AN	white cat	N			
QN	every cat	QP			

Phrases have corpus distributions too! But $\mathbf{N} \approx \mathbf{A} \mathbf{N} \not\approx \mathbf{Q} \mathbf{N}$

		Syntactic category	Semantic type
N	cat	N	e ightarrow t
AN	white cat	N	$oldsymbol{e} ightarrow t$
QN	every cat	QP	(e o t) o t

Phrases have corpus distributions too! But $N \approx AN \not\approx QN$

		Syntactic category	Semantic type
N	cat	N	e ightarrow t
AN	white cat	N	$oldsymbol{e} ightarrow t$
AAN	big white cat	N	$oldsymbol{e} ightarrow t$
QN	every cat	QP	$(m{e} ightarrow t) ightarrow t$
QAN	every big cat	QP	$(e \rightarrow t) \rightarrow t$
* AQN	big every cat		
* QQN	some every cat		

Our questions

Entailment among composite phrases rather than nouns?

Entailment among logical words rather than content words?

Different entailment relations at different semantic types?

Our questions

Entailment among composite phrases rather than nouns?

Entailment among logical words rather than content words?

Different entailment relations at different semantic types?

Our questions

Entailment among composite phrases rather than nouns?

Entailment among logical words rather than content words?

Different entailment relations at different semantic types?

Our semantic space

```
BNC, WackyPedia, ukWaC
                   TreeTagger (Schmid)
lemmatized, POS-tagged tokens (2.8G)
                   words and phrases in the same sentence
            most frequent
            A, N, V (27K)
     AN
```

Our semantic space

```
BNC, WackyPedia, ukWaC
                   TreeTagger (Schmid)
lemmatized, POS-tagged tokens (2.8G)
                   words and phrases in the same sentence
            most frequent
            A, N, V (27K)
                                                                (300)
     AN
     QN
    (48K
```

Our semantic space

$$\xrightarrow{\mathsf{PMI}} \left(\log \frac{\mathsf{Pr}(c|w)}{\mathsf{Pr}(c)} \right)$$

Train	Test
AN⊨N	N⊨N
$QN \models QN$	$QN \models QN$
$AN \models N$	$QN \models QN$

11/17

Results at noun type

	Р	R	F	Accuracy (95% C.I.)	
SVM _{upper}	88.6	88.6	88.5	88.6	(87.3-89.7)
$balAPinc_{AN \vDash N}$	65.2	87.5	74.7	70.4	(68.7–72.1)
balAPinc _{upper}	64.4	90.0	75.1	70.1	(68.4–71.8)
$SVM_{AN\vdashN}$	69.3	69.3	69.3	69.3	(67.6–71.0)
$cos(N_1,N_2)$	57.7	57.6	57.5	57.6	(55.8–59.5)
$fq(N_1) < fq(N_2)$	52.1	52.1	51.8	53.3	(51.4–55.2)

Holding out QN data

Holding out QN data

Holding out QN data

Results at quantifier type

	Р	R	F	Accura	acy (95% C.I.)
SVM _{pair-out}	76.7	77.0	76.8	78.1	(77.5–78.8)
SVM _{quantifier-out}	70.1	65.3	68.0	71.0	(70.3–71.7)
SVM ^Q _{pair-out}	67.9	69.8	68.9	70.2	(69.5–70.9)
SVM ^Q quantifier-out	53.3	52.9	53.1	56.0	(55.2–56.8)
$cos(QN_1,QN_2)$	52.9	52.3	52.3	53.1	(52.3-53.9)
$balAPinc_{AN \vdash N}$	46.7	5.6	10.0	52.5	(51.7–53.3)
$SVM_{AN \models N}$	2.8	42.9	5.2	52.4	(51.7–53.2)
$fq(QN_1){<}fq(QN_2)$	51.0	47.4	49.1	50.2	(49.4–51.0)
balAPinc _{upper}	47.1	100	64.1	47.2	(46.4–47.9)

Holding out each quantifier

Quantifier	Instances		Correct		
	F	¥	F	¥	
each	656	656	649	637	(98%)
every	460	1322	402	1293	(95%)
much	248	0	216	0	(87%)
all	2949	2641	2011	2494	(81%)
several	1731	1509	1302	1267	(79%)
many	3341	4163	2349	3443	(77%)
few	0	461	0	311	(67%)
most	928	832	549	511	(60%)
some	4062	3145	1780	2190	(55%)
no	0	714	0	380	(53%)
both	636	1404	589	303	(44%)
either	63	63	2	41	(34%)
Total	15074	16910	9849	12870	(71%)

Our questions answered

Entailment among composite phrases rather than nouns? Yes.

Entailment among logical words rather than content words? Yes.

Different entailment relations at different semantic types? Yes.

Our questions answered

Entailment among composite phrases rather than nouns? **Yes.** (Cheap training data!) Practical import

Entailment among logical words rather than content words? **Yes.** (Part of Recognizing Textual Entailment?) Practical import

Different entailment relations at different semantic types? **Yes.** (Prediction from formal semantics.)

Our questions answered

Entailment among composite phrases rather than nouns? **Yes.** (Cheap training data!)

Entailment among logical words rather than content words? **Yes.** (Part of Recognizing Textual Entailment?) Practical import

Different entailment relations at different semantic types? **Yes.** (Prediction from formal semantics.)

Ongoing work:

- How does the SVM work?
- Missing experiments?
- How to compose semantic vectors?

Holding out each quantifier pair

Quantifier pair Instances Correct			Quantifier pair Instances Correct		
all ⊨ some	1054	1044 (99%)	some ⊭ every	484	481 (99%)
all = several	557	550 (99%)	several ⊭ all	557	553 (99%)
$each \models some$	656	647 (99%)	several ⊭ every	378	375 (99%)
$all \models many$	873	772 (88%)	some ⊭ all	1054	1043 (99%)
$much \models some$	248	217 (88%)	many $\not\models$ every	460	452 (98%)
$every \models many$	460	400 (87%)	$some ot\models each$	656	640 (98%)
$many \models some$	951	822 (86%)	few $\not\models$ all	157	153 (97%)
$all \models most$	465	393 (85%)	many $ ot=$ all	873	843 (97%)
$several \models some$	580	439 (76%)	both $\not\models$ most	369	347 (94%)
$both \models some$	573	322 (56%)	several $ ot\models$ few	143	134 (94%)
$many \models several$	594	113 (19%)	both $\not\models$ many	541	397 (73%)
$most \models many$	463	84 (18%)	many $\not\models$ most	463	300 (65%)
both \models either	63	1 (2%)	either $ ot=$ both	63	39 (62%)
			many $\not\models$ no	714	369 (52%)
			some $ ot=$ many	951	468 (49%)
			few $\not\models$ many	161	33 (20%)
			both $\not\models$ severa	l 431	63 (15%)