Linguistic

modularity and side effects

Chung-chieh Shan
October 26, 2012

YEPR!
imaginary hors

inside a
computer!!

fi b,

GREETINGS T-REX HAVE YOU
EVER WANTED TO PRODUCE
YOUR OWN VIDEO GAME

Then I found out t's

really hard to make an
e jump

There's all th
there's not on

Thanks, 1ohn
Computers!
way to invent
machines that
don't even do
what I want
them ta!

from the eyes.

iy ==

type in "0 r a horse and u can shoot bullets

\\\comes out!

uages but

ese programming Tan
etE you

e - NOT OME - fhat ?
MOT A DREAM. There r bad
guys 2 shoot and u can
powerups that make you
shoot cannonballs from

get

the
hoofs" and then a game

It's Tike - did we get
bored half-way through

Py

irventing

rogramming
anguages?? why
isn't this DoOME

well, come on,

than that!

NOT A
PROEBLEM.

\

need maore description

21 201z Ryan MWorth

"Enemies are Tike what if wou mashed
sonic and mario together. " But the

bosses r giant and u shoot them even
tho u r small (Tike in religion??)".

you'd

I don't -
b

GAME
FLEASE.

T-REX I WAS ASKING BECAUSE
I NEED A PARTNER FOR MY
COMPUTER GAME PROJECT

I CALL IT
"PRESS X
TO EAT A
BIG PIE"

\

o Im
HHstening. ..

Wy, QWantz. com

http://www.qwantz.com/index.php?comic=2234

Human concepts

2/29

http://www.flickr.com/photos/nickgray/2434200018/

nd what they represent

ntations a

http://www.csiss.org/map-projections/

Functional modularity

o
e
=

5/29

Functional modularity

light bulb
object {sphere ..
interior {medla {emission <.4,.3,.2>}}}
=
=

object {cylinder ...}

5/29

Functional modularity

light bulb
object {sphere ...
interior {media {emission <.4,.3,.2>}}}
=
=

object {cylinder ...}

5/29

Functional modularity

light bulb

object {sphere ...
— interior {media {emission <.4,.3,.2>}}}
=
=

object {cylinder ...}

N\

light saber

object {cone ...

interior {media {emission <.4,.3,.2>}}}
object {sphere ...

interior {media {emission <.4,.3,.2>}}}

bject lind
object {cylinder } 529

Al Memo 357 May 1976

FROM UNDERSTANDING COMPUTATION TO
UNDERSTANDING NEURAL CIRCUITRY

by

D. Marr and T. Poggios

Abstract: The CNS needs to be understood at four nearly independent levels of description:
(1) that at which the nature of a computation is expressed; (2) that at which the algorithms
that implement a computation are characterized; (3) that at which an algorithm is committed
to particular mechanisms; and (4) that at which the mechanisms are realized in hardware.
In general, the nature of a computation is determined by the problem to be solved, the
mechanisms that are used depend upon the available hardware, and the particular
algorithms chosen depend on the problem and on the available mechanisms. Examples are
given of theories at each level.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-2, NO. 1, MARCH 1976 1

On the Design and Development of Programd&kamilies

cINGTD ~ vurmpn(
L inTa DIisIoY
J, NEW YORK 13902

DAVID L. PARNAS SIMULA AT
3INGHAMICH

One may consider a program development to be good, if
the early decisions exclude only uninteresting, undesired, or
unnecessary programs. The decisions which remove desired
programs would be either postponed until a later stage or con-
fined to a well delimited subset of the code. Objective criti-
cism of a program’s structure would be based upon the fact
that a decision or assumption which was likely to change has
influenced too much of the code either because it was made
too early in the development or because it was not confined
to an information hiding module.

Clearly this is not the only criterion which one may use in
evaluating program structures. Clarity (e.g., ease of under-
standing, ease of verification) is another quite relevant con-
sideration. Although there is some reason to suspect that the
two measures are not completely unrelated, there are no rea- 7/29

Today: Side effects

Side effects .
Natural languages ————————— Programming languages

entailment from corpora probabilistic inference
mixed quotation portable performance

8/29

Today: Side effects

Side effects .
Natural languages ————————— Programming languages

v

Studies of language
Examples of side effects
» State
» Quantificationl/control
Generalizations across side effects
» Order matters
» Apparent noncompositionality
Treatments of side effects

» Operational semantics
» Denotational semantics

v

v

v

8/29

9/29

Describe (is) vs prescribe (ought)

How do natural languages work?

How should programming languages work?

10/29

Describe (is) vs prescribe (ought)

How do natural languages work?
How do people learn to speak?

How should programming languages work?
How should computers be designed?

10/29

Describe (is) vs prescribe (ought)

How do natural languages work?
How do people learn to speak?
How do people understand utterances?

How should programming languages work?
How should computers be designed?
How should computers run programs?

10/29

Describe (is) vs prescribe (ought)

How do natural languages work?
How do people learn to speak?
How do people understand utterances?

How should programming languages work?
How should computers be designed?
How should computers run programs?

‘Semantics’

‘Who is here?’ isdigit(getchar())

behavior

truth connotation o
ontology,

aboutness similarity a mbigu%
simplicity.

10/29

What is the total population of the ten largest capitals in the US?
Answering these types of complex questions compositionally
involves first mapping the questions into logical forms (semantic
parsing).

Liang, Jordan & Klein

11/29

What is the total population of the ten largest capitals in the US?
Answering these types of complex questions compositionally
involves first mapping the questions into logical forms (semantic
parsing).

The filtering function F' rules out improperly-typed trees ...
To further reduce the search space ...

Think of DCS as a higher-level programming language tailored to
natural language, which results in programs which are much
simpler than the logically-equivalent lambda calculus formulae.

Liang, Jordan & Klein

11/29

Side effects

John
The man sitting there
A man loves his mother.

Every man
No man

Which man loves his mother?

John doesn’t think anyone turned off the damn gas.

c = getchar();
putchar(c);
...isdigit(c)...

12/29

http://en.wikipedia.org/wiki/File:Blind_monks_examining_an_elephant.jpg

Order matters

a man.
* His mother loves { every man.
no man.

* Which man does his mother love _?
Every man loves a woman.

Who do you think _ loves who in the story?
* Who do you think who loves _ in the story?

putchar(c);
c = getchar();

putchar(getchar());

All side effects interact within one evaluation order!

14/29

State, operationally

14+2+3+-++100 =7

X sum

sum = 0;

x =1;

while (x < 100) {
sum = sum + X;
x =x + 1;

15/29

State, operationally

14+2+3+-++100 =7

X sum
[0]

x =1;

while (x < 100) {
sum = sum + X;
X =x + 1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

[0]
while (x < 100) {
sum = sum + X;
x=x+1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

[1] [0
sum = sum + X;
x =x + 1;
while (x < 100) {
sum = sum + X;
x=x+1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

x =x+1;
while (x < 100) {

sum = sum + X;
x=x+1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

while (x < 100) {

sum = sum + X;
x=x+1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

sum = sum + X;
x =x + 1;
while (x < 100) {

sum = sum + X;
x=x+1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

x =x + 1;
while (x < 100) {

sum = sum + X;
x=x+1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

while (x < 100) {

sum = sum + X;
x=x+1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

sum = sum + X;

x=x+1;

while (x < 100) {
sum = sum + X;
x=x+1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

X =x + 1;

while (x < 100) {
sum = sum + X;
x=x+1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

[6]
while (x < 100) {
sum = sum + X;
x=x+1;

15/29

State, operationally

14+2+3+-++100 =7

X sum

5050 (order matters)

15/29

State, operationally

Mitt loves his mother. She loves him too.

As if checking or updating a database.

16/29

State, operationally

7 loves his mother. She loves him too.

As if checking or updating a database.

mitt(z)

16/29

State, operationally

¥
mitt(z)
mother(7, 7)

1 loves j. She loves him too.

As if checking or updating a database.

16/29

State, operationally

She loves him too.

As if checking or updating a database.

174

mitt(z)
mother(7,7)
love(£1,1,7)

16/29

State, operationally

7 loves him too.

As if checking or updating a database.

174

mitt(z)
mother(7,7)
love({1,1, 7)

16/29

State, operationally

j loves ¢

As if checking or updating a database.

too.

174

mitt(z)
mother(7,7)
love({1,1, 7)

16/29

State, operationally

As if checking or updating a database.

1741 4

mitt(z)

mother(7,7)
love({1,1, 7)
love(¢2, 7,%)

16/29

State, operationally

1741 4o

mitt(z)

mother(7,7)
love(41,1,7)
love(£2, 7,1%)

As if checking or updating a database.

We like feeling dynamic and orderly.

16/29

Apparent noncompositionality

Mitt loves his mother, and Paul does too.
Mitt loves Mitt’'s mother, and Paul does too.

No one is better than God.
The devil is better than no one.

c = getchar();

while (isdigit(c)) {
putchar(c);
c = getchar();

}

...(random() + random())...
x = random(); ...(x + x)...

Unsound reasoning ‘joke’ based on state?

17/29

State, denotationally

[sum

[1 < 100] = true
[x < 100] = 7?7

sum + x| = 777

18/29

State, denotationally

‘Lift’ denotations from type X to type store — (store x X).

[sum

[1 < 100] = As. (s, true)
[1 + 2] =Xs. (s, 3)
[x < 100] = As. (s, s(x) < 100)
sum + x| = As. (s[sum := s(sum) + s(x)], s(sum) + s(x))

18/29

State, denotationally

‘Lift’ denotations from type X to type store — (store x X).

[1 < 100] = As. (s, true)
[1 + 2] =Xs.(s, 3)
[x < 100] = As. (s, s(x) < 100)
[sum = sum + x] = As. (s[sum := s(sum) + s(x)], s(sum) + s(x))

Also for natural language, but often with baked-in nondeterminism
(e.g., Muskens 1996 ‘Compositional DRT’).

[his mother] & As. (s[j := mother(s(z))], 7)

We like feeling meaningful and not just tree hacking.

18/29

Relating operational and denotational semantics

Programming languages have both

operational semantics (‘transformational syntax’)
so we feel dynamic and orderly

denotational semantics (‘model-theoretic semantics’)
so we feel meaningful and not just tree hacking

Don’t choose—relate! ‘adequacy’, ‘full abstraction’

Another example of relating the two semantics:
quantification/control . ..

19/29

Beyond state: Quantification

A man
Every man ; loves his mother.
No man
a man.
* His mother loves { every man.
no man.

Which man loves his mother?
* Which man does his mother love _?

Every man loves a woman.

Who do you think _ loves who in the story?
* Who do you think who loves _ in the story?

‘In-situ’ ‘nondeterminism’

20/29

Quantification, operationally

Every man loves a woman.

Vi. (man(¢) = J3. (woman(j) A love(t, 5)))

every man

loves awoman

As if checking or updating a database.

21/29

Quantification, operationally

Every man loves a woman.

Vi. (man(¢) = J3. (woman(j) A love(t, 5)))

every man ¢
K, 1

loves awoman

As if checking or updating a database.

21/29

Quantification, operationally

Every man loves a woman.

Vi. (man(¢) = J3. (woman(j) A love(t, 5)))

every man ¢

awoman j

As if checking or updating a database.

21/29

Quantification, operationally

Every man loves a woman.

Vi. (man(¢) = J3. (woman(j) A love(t, 5)))

every man ¢

awoman j

As if checking or updating a database.

Every man loves his mother.

Someone from every city likes it. 21/9

Control, operationally

‘Both 1 and 3 are less than either 2 or 4.
reset {(shift a. a(l) Aa(3)) < (shift b. b(2) vb(4))}

Shuffle/reinstate/duplicate ‘the rest of the computation’

22/29

Control, operationally

‘Both 1 and 3 are less than either 2 or 4.
reset {(shift a. a(l) Aa(3)) < (shift b. b(2) Vb(4))}

reset {1 < (shift b. b(2) Vb(4))} A
reset {3 < (shift b. b(2) Vb(4))}

Shuffle/reinstate/duplicate ‘the rest of the computation’

22/29

Control, operationally

‘Both 1 and 3 are less than either 2 or 4.
reset {(shift a. a(l) Aa(3)) < (shift b. b(2) vb(4))}

reset {1 < (shift b. b(2) Vb(4))} A
reset {3 < (shift b. b(2) Vb(4))}

(reset {1 < 2} V reset {1 < 4}) A
reset {3 < (shift b. b(2) Vb(4))}

Shuffle/reinstate/duplicate ‘the rest of the computation’

22/29

Control, operationally

‘Both 1 and 3 are less than either 2 or 4.
reset {(shift a. a(l) Aa(3)) < (shift b. b(2) vb(4))}

reset {1 < (shift b. b(2) Vb(4))} A
reset {3 < (shift b. b(2) Vb(4))}

(reset {1 < 2} V reset {1 < 4}) A
reset {3 < (shift b. b(2) Vb(4))}

Shuffle/reinstate/duplicate ‘the rest of the computation’

22/29

Control, operationally

‘Both 1 and 3 are less than either 2 or 4.
reset {(shift a. a(l) Aa(3)) < (shift b. b(2) vb(4))}

reset {1 < (shift b. b(2) Vb(4))} A
reset {3 < (shift b. b(2) Vb(4))}

(reset {1 < 2} V reset {1 < 4}) A
reset {3 < (shift b. b(2) Vb(4))}

Shuffle/reinstate/duplicate ‘the rest of the computation’

Useful: input/output, suspend/resume, backtracking search,
probabilistic programming, code generation,
classical logic, . ..

Common: fork/exit, generators, (restartable) exceptions, ...
Obscure? but natural language offers intuitions, applications!

22/29

Quantification and control, denotationally

[1 < 100] = true

[1 +2]=3
[shift c. c(1) Ac(3)] =777
[a woman] = ???

23/29

Quantification and control, denotationally

continuation

. . /_/%
‘Lift’ denotations from type X to type (X — R) — R.

[1 < 100] = Ac. c(true)
[1 + 2] = Ac.¢(3)
[shift c. c(1) Ac(3)] = Ac.c(1) A c(3)

[a woman] = Ac. 3;. (woman(7) A c(5))

23/29

Quantification and control, denotationally

continuation

. . ,—/ﬁ
‘Lift’ denotations from type X to type (X — R) — R.

[1 < 100] = Ac. c(true)
[1 + 2] = Ac. ¢(3)
[shift c. c(1) Ac(3)] = Ac.¢(1) A c(3)

[a woman] = Ac. 3j. (woman(3) A ¢(5))

This connection lets us uniformly explain linguistic side effects and
their interaction.

Every man loves his mother.
Someone from every city likes it.
Every farmer who owns a donkey beats it.

23/29

Ongoing work: Side effects and quotation

In New York, a man is mugged every 11 seconds.
| would now like you to meet that man.

Nobody had the frigging mind to turn off the damn gas.

Safely generate code with optimizations that reach across binders,
e.g., ‘loop invariant code motion’

24/29

Today: Side effects

Side effects .
Natural languages ————————— Programming languages

entailment from corpora probabilistic inference
mixed quotation portable performance

v

Studies of language
Examples of side effects
» State
» Quantificationl/control
Generalizations across side effects
» Order matters
» Apparent noncompositionality
Treatments of side effects

» Operational semantics
» Denotational semantics

v

v

v

25/29

Describe (is) vs prescribe (ought) revisited

A computer language is not just a way of getting a
computer to perform operations but rather . .. a novel
formal medium for expressing ideas about methodology.
Thus, programs must be written for people to read, and
only incidentally for machines to execute.

—Abelson & Sussman

So much to communicate, so little time and common ground.
Human communication has adapted to only ever work when
cooperative (and interactive), ambiguous (and fallible).

How do we cooperate?
How should we cooperate?

26/29

Describe (is) vs prescribe (ought) revisited

A computer language is not just a way of getting a
computer to perform operations but rather . .. a novel
formal medium for expressing ideas about methodology.
Thus, programs must be written for people to read, and
only incidentally for machines to execute.

—Abelson & Sussman

So much to communicate, so little time and common ground.
Human communication has adapted to only ever work when
cooperative (and interactive), ambiguous (and fallible).

How do we cooperate?
How should we cooperate?

26/29

Describe (is) vs prescribe (ought) revisited

A computer language is not just a way of getting a
computer to perform operations but rather . .. a novel
formal medium for expressing ideas about methodology.
Thus, programs must be written for people to read, and
only incidentally for machines to execute.

—Abelson & Sussman

So much to communicate, so little time and common ground.
Human communication has adapted to only ever work when
cooperative (and interactive), ambiguous (and fallible).

How do we cooperate?
How should we cooperate?

26/29

Describe (is) vs prescribe (ought) revisited

A computer language is not just a way of getting a
computer to perform operations but rather . .. a novel
formal medium for expressing ideas about methodology.
Thus, programs must be written for people to read, and
only incidentally for machines to execute.

—Abelson & Sussman

So much to communicate, so little time and common ground.
Human communication has adapted to only ever work when
cooperative (and interactive), ambiguous (and fallible).

How do we cooperate?
How should we cooperate?

26/29

Describe (is) vs prescribe (ought) revisited

A computer language is not just a way of getting a
computer to perform operations but rather . .. a novel
formal medium for expressing ideas about methodology.
Thus, programs must be written for people to read, and
only incidentally for machines to execute.

—Abelson & Sussman

So much to communicate, so little time and common ground.
Human communication has adapted to only ever work when
cooperative (and interactive), ambiguous (and fallible).

How do we cooperate?
How should we cooperate?

26/29

Towards a ‘just semantics’

How should we cooperate?

» What do we tend to want to signify?
» How hard do we have to work?

» Motor/sensory work (hence use shorthand)
» Cognitive work (hence be systematic)

» Emotional work

» Standby work

» Who adapts to whom?

27/29

Collaborative reference

y

!

G VING
C}jd(’ﬁ;f‘xzfﬂ & Ll & P.o D | 4

http://www.flickr.com/photos/crossettlibrary/5375117309/

Interactive, not literary.

A: the guy reading with, holding his book to the left.
B: Okay, kind of standing up?

A: Yeah.

B: Okay.

Context and feedback!

29/29

Interactive, not literary.

A: the guy reading with, holding his book to the left.
B: Okay, kind of standing up?

A: Yeah.

B: Okay.

Context and feedback!

29/29

	Functional modularity
	Studies of language
	Side effects
	Just semantics

