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Abstract

Apparently noncompositional phenomena in natural languages can be ana-
lyzed like computational side effects in programming languages: anaphora can be
analyzed like state, intensionality can be analyzed like environment, quantifica-
tion can be analyzed like delimited control, and so on. We thus term apparently
noncompositional phenomena in natural languages linguistic side effects. We put
this new, general analogy to work in linguistics as well as programming-language
theory.

In linguistics, we turn the continuation semantics for delimited control into a
new implementation of quantification in type-logical grammar. This graphically-
motivated implementation does not move nearby constituents apart or distant
constituents together. Just as delimited control encodes many computational
side effects, quantification encodes many linguistic side effects, in particular
anaphora, interrogation, and polarity sensitivity. Using the programming-language
concepts of evaluation order and multistage programming, we unify four linguistic
phenomena that had been dealt with only separately before: linear scope in
quantification, crossover in anaphora, superiority in interrogation, and linear order
in polarity sensitivity. This unified account is the first to predict a complex pattern
of interaction between anaphora and raised-wh questions, without any stipulation
on both. It also provides the first concrete processing explanation of linear order
in polarity sensitivity.

In programming-language theory, we transfer a duality between expressions
and contexts from our analysis of quantification to a new programming language
with delimited control. This duality exchanges call-by-value evaluation with
call-by-name evaluation, thus extending a known duality from undelimited to
delimited control. The same duality also exchanges the familiar let construct with
the less-familiar shift construct, so that the latter can be understood in terms of
the former.
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CHAPTER 1

Introduction

This dissertation is about computational linguistics, in two senses. First,
we apply insights from computer science, especially programming-language se-
mantics, to the science of natural languages. Second, we apply insights from
linguistics, especially natural-language semantics, to the engineering of program-
ming languages. The phrase “computational linguistics” has a popular third sense,
which is natural-language processing: teaching computers to listen to, speak,
read, and write natural language. That is not our aim, even though the research
described here indirectly helps it—by enhancing our understanding of natural and
programming languages. This dissertation contains no quantitative performance
measures. Rather, our success is measured by the qualitative yardsticks of linguis-
tics and programming-language theory. Therefore, we introduce these yardsticks
before describing our contributions in more detail.

1.1. Linguistics

Linguistics aims to explain empirical observations of natural language: what
utterances are available for what meanings. For example, a linguist observing
Harvard students may note that they can pronounce and perceive the utterances
Alice passed and Bob passed without any sense of error, and that they react
differently to the two utterances. But before analyzing or even reporting such
observations, the linguist must focus on some aspects of language and abstract
away from others. For example, Alice passed can be pronounced and perceived
differently by different people in different situations with different shades of mean-
ing. We pretend—as linguists often do—that there is a single language called
English, spoken perfectly at an instant in time by a homogeneous community
who pronounce Alice passed identically. We idealize—as natural-language syn-
tacticians often do—the pronunciation of Alice passed as a two-word sequence,
which speakers judge to be acceptable with little or no information about the
situation of use. By contrast, we take the two-word sequence *passed Alice
to be unacceptable (notated with the asterisk in front), in that it is only with a
sense of error that an idealized community of English speakers can produce or
comprehend the isolated utterance in an idealized situation of English speech.

As natural-language semanticists often do, we distinguish the meanings of

1



2 1. Introduction

utterances by observing their truth conditions: when is an utterance true, and
when is it false? That is, what situations (or models, or possible worlds) satisfy
a given utterance’s description? For example, we observe empirically that Alice
passed and Bob passed differ semantically, because a situation exists where
Alice passed is true but Bob passed is false. We also observe that Alice passed is
true in every situation where Both Alice and Bob passed is true. (These are facts
about English, in that only an English speaker knows them, but they presumably
have to do with corresponding logical entailments and non-entailments.) Thus we
aim to produce a scientific theory that is as simple as possible and accounts as
accurately as possible for these observations of utterance acceptability and truth
conditions. Like many linguists, we focus our theories on particular linguistic
phenomena we are interested in and utterances that exemplify them, then expect
to gain formal devices and informal insights that apply more broadly.

Our notions of word and meaning only intuitively resemble the colloquial
senses of the terms, because we justify (operationalize) them only by how much
they help us account for utterance acceptability and truth conditions. For example,
we view Alice passed as a two-word sequence only because it makes for a simpler
or more accurate account of utterance acceptability, not because standard English
orthography puts a space between Alice and passed. Similarly, to determine the
meaning of Alice, we weigh only what would make for a simpler or more accurate
account of truth conditions, not our intuition that the utterance Alice passed is
about the person Alice. Indeed, truth conditions only tell us that certain utterances
have different meanings, not what these meanings are. Moreover, truth conditions
fall silent on utterances that can be neither true nor false, such as Alice, Did Alice
pass?, and If Alice passed. Yet as Section 1.5 illustrates, natural language is rich
enough for us to find out about words and meanings just by striving to account for
utterance acceptability and truth conditions simply and accurately. For example,
the utterances mentioned above help us decide that Alice is a word and what it
means.

1.2. Programming-language theory

Computer-science research on programming aims to help programmers convey
their intentions, and computers execute them, correctly and efficiently. Program-
ming-language theory contributes to this goal by modeling and reasoning about
the conveyance and execution. As has proven useful, we abstract away from how
programmers and computers interact and vary over time and space in different
environments. Instead, we formalize a programming language as a collection of
well-formed programs that evaluate to observable outcomes. Under this model, an
idealized programmer conveys a well-formed program to an idealized computer,
which runs the program and announces the outcome. Programs that are ill-formed
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Well-formed program Outcome

2 + 3 5
print (2 + 3) 5, and printing 5
2 + (print 3) 5, and printing 3

Ill-formed program No outcome

2 + ×

print ×

2 + (3 print) ×

Figure 1.1. Observations on a toy programming language for printing

(that is, not well-formed) are prohibited.
As in linguistics, we focus our theories on issues and programs of interest, then

expect to gain formal devices and informal insights that apply more broadly. For
example, to study the issue of printing, we may contemplate a toy programming
language with the programs and outcomes listed in Figure 1.1. An outcome in
this language is a number and possibly some printed output.

Suppose that a demanding customer calls up a programming-language design
shop and orders the observations given in Figure 1.1. The programming-language
theorist at the shop then tries to design simple rules that give rise to the obser-
vations accurately, so as to teach programmers and build computers to convey
and execute intentions in the language. These rules invoke notions of syntax and
semantics to distinguish well-formed programs and determine their outcomes.
For example, it can be useful to view parentheses (as in print (2 + 3)) as syntactic
units (“words”) in their own right, but only for some purposes (like checking for
a well-formed program) and not others (like executing a well-formed program).
Similarly, it can be useful to assign semantic values (“meanings”) to program
parts like 2, +, and print, but only to account for different outcomes (that is, to
ensure that expressions with the same meaning have the same outcome). For
example, the fact that the three well-formed programs in Figure 1.1 differ in
outcome tells us only that they differ in meaning, not what they mean. Moreover,
outcomes fall silent on program parts that are not complete programs, such as +
and print. Yet as Section 1.4 illustrates, we can learn plenty about the syntax and
semantics of a rich-enough programming language just by striving to specify its
well-formed programs and their outcomes simply and accurately.

1.3. Contributions

This dissertation shows a new way for linguists and programming-language
theorists to share their work and help each other: an analogy between apparently
noncompositional phenomena in natural languages and computational side effects
in programming languages. As is well-studied and explained below in this chapter,
expressions like every student elude compositional treatment at first glance, and
programs like print 3 incur computational side effects. It turns out that these
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phenomena may be analyzed using similar tools. To stress this analogy, we
term apparently noncompositional phenomena in natural languages linguistic side
effects. We apply this analogy to linguistics as well as programming-language
theory.

Many connections between natural and programming languages are based on
logic, including this one. The reason is that logic underlies the syntax and seman-
tics of both kinds of languages. On the programming-language side, programs can
be viewed as logical proofs according to the formulas-as-types correspondence
(Girard et al. 1989), as well as reasoned about using logical axioms (Hoare 1969).
On the natural-language side, the proofs and models of logic can characterize
the acceptability of utterances (Lambek 1958) as well as their truth conditions
(Montague 1974a).

We introduce the logical machinery used in the bulk of this dissertation in
Chapter 2. Then, in Chapter 3, we use this machinery to present the analogy
between computational and linguistic side effects. In one direction, Chapter 4
draws from the execution of computer programs to model natural languages
more realistically. In the opposite direction, Chapter 5 then draws from the
symmetry of linguistic combinations to design programming languages more
perspicuously. We evaluate our contributions and compare them with previous
work throughout the dissertation, then collect the evaluations in Chapter 6, along
with some thoughts for future work.

To be sure, this work is far from the first to draw an analogy between utterances
and programs. Intensional logic, in which much natural-language semantics
since Montague (1974a) is couched, has long been understood computationally
(Hobbs and Rosenschein 1978; Hung and Zucker 1991). More recently, dynamic
semantics (Groenendijk and Stokhof 1991; Heim 1982; Kamp 1981) has been
used to analyze natural-language phenomena such as verb-phrase ellipsis (van
Eijck and Francez 1995; Gardent 1991; Hardt 1999), as well as to design a
programming language (van Eijck 1998). Our work is novel because the general
concept of side effects unifies many concerns at both ends of the analogy.

The rest of this section gives more details on our contributions to the study of
natural and programming languages.

1.3.1. Evaluation order in natural languages. Most computational side
effects and many linguistic ones are thought of as the dynamic effect of executing
a program or processing an utterance. This is the intuition underlying the term
“side effects”. For example, it is intuitive to conceive of state (a computational
side effect) and anaphora (a linguistic side effect) in similar, dynamic terms, as
follows. In the sentence

(1.1) Every woman’s father saw her mother,



1.3. Contributions 5

the pronoun her can refer to the woman introduced by the antecedent every
woman. Thus (1.1) can mean that every woman x is such that x’s father saw x’s
mother. A pronoun tends to appear only after its antecedent, so the sentence

(1.2) Her father saw every woman’s mother

does not have the same meaning. To explain this prohibition against crossover,
it is popular to hypothesize that every woman stores a discourse referent into a
memory cell and her retrieves it, and that a human typically processes parts of an
utterance in spoken order. This hypothesis is appealingly reminiscent of how the
program

(1.3) x := 2; x + 1

stores a number into the variable x and later retrieves it, and how a computer
typically executes parts of a program in written order. This view on anaphora and
state is dynamic, as indicated by the preceding verbs “store”, “retrieve”, “process”,
and “execute”. Unfortunately, the naïve form of this hypothesis fails to account
for exceptions like the following.

(1.4) Which of her relatives did every woman see?
(1.5) Which woman did her father see?

In (1.4), the phrase every woman occurs after the pronoun her, yet can serve as
its antecedent. In (1.5), the phrase which woman occurs before the pronoun her,
yet cannot serve as its antecedent.

Relating this dynamic (operational) view on side effects to a static (denota-
tional) view has been a focus of recent research. Across our new side-effects
analogy, linguists and programming-language theorists have been asking alike:
how does an expression manage to be both a static product that stands alone
mathematically and a dynamic action that takes place physically (Wadler 1997;
Trueswell and Tanenhaus 2005)? For programming languages, game semantics
(Abramsky and McCusker 1997) and other models of interaction (Milner 1996)
blur the boundary between what programs statically denote and how they dynam-
ically operate. Linguists are constantly reminded that the distinction between
semantics and pragmatics is far from black and white, by dynamic semantics and
notions like the felicity of an answer to a question (Hamblin 1973; Groenendijk
and Stokhof 1997) and the computational load to produce or comprehend an
utterance (Gibson and Pearlmutter 1998; Altmann 1990).

In Chapter 4, we apply the dynamic concept of evaluation order from pro-
gramming languages to natural languages. Using this concept, we properly
formalize the hypothesis about anaphora above to account for crossover, includ-
ing exceptions like (1.4) and (1.5). Moreover, the similarity between anaphora
and state turns out to be just one in a wide range of similarities between linguistic
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and computational side effects: intensionality can be analyzed like environment,
quantification can be analyzed like delimited control, and so on. The single
hypothesis that humans typically process utterance parts in spoken order, once we
formalize it properly, turns out to explain an unprecedented variety of linguistic
generalizations whose similarity across side effects was previously unrecognized:
not just the prohibition against crossover in anaphora, but also the preference for
linear scope in quantification, the superiority constraint on questions, and the
effect of spoken order on polarity sensitivity. Via our side-effects analogy, pro-
gramming-language theory helps us formalize this natural hypothesis regarding
how humans process utterances dynamically.

1.3.2. Delimited duality in programming languages. Many linguistic for-
malisms feature a duality between left and right, that is, an involution that reverses
the spoken order of utterance parts. Type-logical grammar, the linguistic formal-
ism used in this dissertation, is one such formalism whose left-right duality is
especially obvious. For example, given a model of English in type-logical gram-
mar, it is trivial to mirror it to yield a model of a hypothetical natural language
that is just like English, except with the opposite word order, so *Alice passed is
not an acceptable utterance, but passed Alice is.

The left-right duality in type-logical grammar is intrinsic to the default mode
of binary combination: juxtapose two utterances to form a larger one. To analyze
the linguistic side effect of quantification, in Chapter 4 we add another mode
of binary combination: plug a subexpression into a context to form a larger
expression. This multimodal type-logical grammar thus features another intrinsic
duality, between the subexpression inside a context and the context outside a
subexpression.

In Chapter 5, we apply the duality between inside and outside from natural
languages to programming languages. Drawing from our linguistic analysis of
quantification, we formalize a programming language with the computational
side effect of delimited control, in which subexpressions and contexts are dual.
It turns out that this duality exchanges call-by-value and call-by-name, two
evaluation orders long studied in programming languages, so that one order may
be understood in terms of the other. This result is not surprising, because call-
by-value and call-by-name are known to be dual in the presence of undelimited
control (Filinski 1989a,b; Danos et al. 1995; Curien and Herbelin 2000; Selinger
2001; Wadler 2003). Via our side-effects analogy, linguistics helps us extend this
duality to delimited control for the first time. The same duality also exchanges the
well-understood let construct for variable binding and the less-well-understood
shift construct for delimited control, so that one construct may be understood in
terms of the other.

The rest of this chapter informally illustrates our analogy between compu-
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Well-formed program Outcome

2 > 6 false
2 + 6 > 6 true
2 + 6 > (2 + 2) + 2 true
2 + 6 > 6 + 6 false
2 > 2 false

Figure 1.2. A tiny programming language

tational and linguistic side effects. We examine how a denotational semantics
typically treats environment (a computational side effect) in Section 1.4, and
intensionality (a linguistic side effect) in Section 1.5. We then point out how the
treatments are similar in Section 1.6.

1.4. Environment in programming languages

Figure 1.2 illustrates a tiny programming language where arithmetic expres-
sions are compared to yield Boolean results (true or false). For example, the
program

(1.6) 2 + 6 > 6
‘(Check if) the sum of 2 and 6 is greater than 6.’

evaluates to the true outcome.
Although arithmetic expressions like 2 + 6 and 6 are not complete programs

with (Boolean) outcomes, it is intuitive to regard them as evaluating to numeric
results. For example, we regard 2 + 6 as evaluating to 8, and 6 as evaluating to 6,
even though these results are only indirectly observable by comparison using >.
Under this intuition, if two expressions E1 and E2 evaluate to the same result in
this language, then whenever E1 occurs as part of a larger expression, it can be
replaced with E2 without affecting what the larger expression evaluates to.1 For
example, since 6 and (2 + 2) + 2 evaluate to the same result, so do 2 + 6 > 6 and
2 + 6 > (2 + 2) + 2.

In operational terms, each expression is a procedure that can be followed to
produce a result. In denotational terms, we can take each expression simply to
mean this result. For example, the program (1.6) can simply denote true. To
provide a denotational semantics for a language is to specify the denotation JEK
of every expression E. For our programming language, we specify the integer

1This property is sometimes known as referential transparency (Quine 1960), but we avoid
the term because it is problematically overloaded (Søndergaard and Sestoft 1990, 1992).
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and Boolean denotations

J2K = 2,(1.7)

J6K = 6,(1.8)

JA + BK = JAK + JBK ,(1.9)

JA > BK =
{

true if JAK > JBK,
false if JAK ≤ JBK,

(1.10)

where A and B are any expressions. These rules together entail that the pro-
gram (1.6) denotes true.

J2 + 6K = J2K + J6K = 2 + 6 = 8.(1.11)

J2 + 6 > 6K =
{

true if J2 + 6K > J6K
false if J2 + 6K ≤ J6K

(1.12)

= true, because 8 > 6.

We want a denotational semantics that is sound with respect to the operational
semantics, and this one is. Soundness means that, if two expressions E1 and E2

have the same denotation, then they evaluate to the same result. For example,
since 2 > 6 and 2 + 6 > 6 + 6 both denote false, soundness guarantees (correctly)
that they evaluate to the same result (namely false). Soundness is desirable
because expressions with the same denotation should be equivalent in meaning,
and what an expression evaluates to (in particular, the outcome of a program)
should be part of its meaning.

Another desirable feature of this denotational semantics is that it is compo-
sitional: the denotation of every complex expression is fully determined by the
denotations of its parts and the mode of combination. For example, the denotation
of every + expression is fully determined by the denotations of its two subexpres-
sions. Compositional semantic theories are desirable because they are easier to
use and extend (Janssen 1997). In theory, any language admits a compositional
semantics, regardless of what its expressions are and what they evaluate to—just
let each expression denote itself.2 However, it is often a challenge to come up
with a compositional semantics that is simple and insightful enough to facilitate
further analysis of the language.

2A less trivial result, shown by Zadrozny (1994) and Lappin and Zadrozny (2000) using
non-well-founded set theory, is that any language admits a compositional semantics that respects
synonymy. For a denotational semantics to respect synonymy is for two expressions E1 and E2 to
denote the same thing whenever they are synonymous (or observationally equivalent). We say
that E1 and E2 are synonymous if, whenever E1 occurs as part of a larger expression, it can be
replaced with E2 to form another expression with the same evaluation result, and vice versa.
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Well-formed program Outcome

2 > 6 false
2 + 6 > 6 true
2 + 6 > (2 + 2) + 2 true
2 + 6 > 6 + 6 false
2 > 2 false

let it be 2. (it > 6) false
let it be 2. (it + 6 > 6) true
let it be 2. (it + 6 > (let it be it + it. it + 2)) true
let it be 6. (2 + it > it + it) false
it + 6 > 6 false
it > 2 false
let it be 6. (it > 2) true
let it be 6. (2 > 2) false

Figure 1.3. A tiny programming language, with environment

We now add the environment feature to the language, as illustrated in Fig-
ure 1.3. We introduce two new constructs: a primitive expression it, which reads a
number from the environment, and a binary operator let it be A. B, which provides
A as the environment to be read by B. The program

(1.13) let it be 2. (it + 6 > 6)
‘As for 2, the sum of it and 6 is greater than 6.’

evaluates to the true outcome, as 2 + 6 > 6 does, because let it be 2 provides the
environment 2 to the expression

(1.14) it + 6 > 6
‘The sum of it and 6 is greater than 6.’

As another example, the program

(1.15) let it be 2. (it + 6 > (let it be it + it. it + 2))

evaluates to the true outcome, as 2 + 6 > (2 + 2) + 2 does, because let it be it + it
provides the environment 4 to the expression it + 2. We stipulate that any it not
enclosed by let it be . . . evaluates to 0. For example, the program (1.14) above
evaluates to false, because 0 + 6 is not greater than 6. (On the other hand, a
let it be . . . that encloses no it is simply ignored.)
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In denotational terms, once environment is introduced into the language, we
can no longer just let each expression denote its result—at least not if we want the
denotational semantics to stay compositional and sound, which we do. To see this,
suppose that each program were to denote its Boolean outcome. Then, since the
two programs in (1.16) both evaluate to false, they have the same denotation. By
compositionality, the two programs in (1.17) must also have the same denotation.
But (1.17a) evaluates to true, whereas (1.17b) evaluates to false, so soundness
fails.

(1.16) a. it > 2
‘It is greater than 2.’

b. 2 > 2
‘2 is greater than 2.’

(1.17) a. let it be 6. (it > 2)
‘As for 6, it is greater than 2.’

b. let it be 6. (2 > 2)
‘As for 6, 2 is greater than 2.’

It is crucial to this proof that, whereas the programs in (1.16) evaluate to
the same result, the programs in (1.17) do not. That is, the proof relies on two
expressions E1 and E2 that evaluate to the same result, such that replacing E1

with E2 as part of a larger expression affects what the larger expression evaluates
to. Adding environment made it impossible to specify a compositional and sound
denotational semantics where each expression denotes its result. A computational
side effect is a programming-language feature that gives rise to two expressions
that evaluate to the same result by themselves but yield different results as part
of a larger expression, thus rendering unsound any compositional denotational
semantics where each expression denotes its result. In this sense, environment is
a computational side effect.

To preserve soundness and compositionality in the presence of environment,
the programming-language semanticist typically revises the denotational seman-
tics so that an expression denotes not a result but a map from environments to
results. For example, the expression 2 will now denote not 2 but the function that
maps every environment to 2. Formally, we specify (cf. (1.7)–(1.10))

J2K (ρ) = 2,(1.18)

J6K (ρ) = 6,(1.19)

JA + BK (ρ) = JAK (ρ) + JBK (ρ),(1.20)

JA > BK (ρ) =
{

true if JAK (ρ) > JBK (ρ),
false if JAK (ρ) ≤ JBK (ρ),

(1.21)
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Acceptable utterance Truth value

Alice saw Bob true
Alice saw the morning star false
Alice saw the evening star false
Bob saw Alice true
Bob saw the morning star true
Bob saw the evening star true

Figure 1.4. A tiny fragment of English

for any number ρ and any expressions A and B. Having lifted denotations from
plain results to environment-to-result functions, we can now provide denotations
for expressions involving it:

Jlet it be A. BK (ρ) = JBK
(
JAK (ρ)

)
,(1.22)

JitK (ρ) = ρ.(1.23)

These rules give the desired denotation for the program (1.13).

Jit + 6K (2) = JitK (2) + J6K (2) = 2 + 6 = 8.(1.24)

Jit + 6 > 6K (2) =
{

true if Jit + 6K (2) > J6K (2)
false if Jit + 6K (2) ≤ J6K (2)

(1.25)

= true, because 8 > 6.

Jlet it be 2. (it + 6 > 6)K (ρ) = Jit + 6 > 6K
(
J2K (ρ)

)
(1.26)

= Jit + 6 > 6K (2) = true.

We have seen that adding environment to a programming language forces
us to revise our denotational semantics, and how to model environment using
functions as denotations. We have also seen that, even when a toy programming
language is so simple that the outcome of a program can only be true or false, we
can learn about the syntax and semantics of the language by striving to specify the
programs and their outcomes simply and accurately. In the next section, we turn
to natural language and learn about syntax and semantics by striving to specify
which sentences are true and which are false simply and accurately.

1.5. Intensionality in natural languages

Figure 1.4 shows a tiny fragment of English, comprised of utterances about
seeing (Frege 1891, 1892; Quine 1960). According to the table, Alice and Bob
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saw each other, but only Bob saw Venus. (Venus is also known as the morning
star and the evening star.)

When an utterance is true or false, like those in Figure 1.4, we say that
the utterance refers to its truth value. Although expressions like Alice and the
morning star are not utterances with (Boolean) truth values, it is intuitive to regard
them as referring to objects. For example, we regard Alice as referring to Alice,
and the morning star as referring to Venus, even though these references are only
indirectly observable by embedding these expressions in a larger utterance with a
truth value. Under this intuition, if two expressions E1 and E2 in this fragment
of English refer to the same thing, then whenever E1 occurs as part of a larger
expression, it can be replaced with E2 without affecting what the larger expression
refers to. For example, since the morning star and the evening star have the
same reference, so do Bob saw the morning star and Bob saw the evening star.

In operational terms, an expression like Alice and the morning star is a
procedure that can be followed to pick out an object, and an expression like

(1.27) Alice saw the morning star
(1.28) Alice saw the evening star

is a procedure that can be followed to check if the expression is true. The
sentence (1.27) means to pick out Alice and the morning star, then check whether
she saw it. In denotational terms, we can take each expression simply to mean its
reference. For example, the utterance (1.27) can simply denote false. We specify

JAliceK = Alice,(1.29)

JBobK = Bob,(1.30)

Jthe morning starK = Venus,(1.31)

Jthe evening starK = Venus,(1.32)

JA saw BK =


true if JAK = Alice and JBK = Bob,
false if JAK = Alice and JBK = Venus,
true if JAK = Bob and JBK = Alice,
true if JAK = Bob and JBK = Venus, . . . .

(1.33)

These rules together entail that the utterance (1.27) denotes false.
This denotational semantics is sound. For example, since the morning star

and the evening star denote the same thing, they also refer to the same thing:
the morning star is the evening star. This semantics is also compositional, as is
evident from the form of (1.29)–(1.33).

We now expand this fragment of English to include some utterances about
thinking, as shown in Figure 1.5. According to the table, Bob (being ignorant of
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Acceptable utterance Truth value

Alice saw Bob true
Alice saw the morning star false
Alice saw the evening star false
Bob saw Alice true
Bob saw the morning star true
Bob saw the evening star true

Bob thinks Alice saw the morning star true
Bob thinks Alice saw the evening star false

Figure 1.5. A tiny fragment of English, with think

astronomy) does not know that the morning star is the evening star, so he thinks
Alice saw the morning star but does not think that Alice saw the evening star.3

In denotational terms, once we expand our fragment to include think, we can
no longer just let each expression denote its reference—at least not if we want
the denotational semantics to stay compositional and sound, which we do. To see
this, suppose that each utterance that is true or false were to denote its Boolean
reference. Then, since the utterances (1.27) and (1.28) have the same reference
(namely false), they have the same denotation. By compositionality, the two
utterances

(1.34) Bob thinks Alice saw the morning star
(1.35) Bob thinks Alice saw the evening star

must also have the same denotation. But (1.34) is true, yet (1.35) is false, so
soundness fails.

It is crucial to this proof that, whereas the utterances (1.27) and (1.28) have
the same reference, the utterances (1.34) and (1.35) do not. That is, the proof
relies on two expressions E1 and E2 that have the same reference, such that
replacing E1 with E2 as part of a larger expression affects the larger expression’s
reference. In English, think makes it impossible to specify a compositional and
sound denotational semantics where each expression denotes its reference. The
word think is said to be intensional.

To preserve soundness and compositionality in the presence of intensionality,
the natural-language semanticist typically revises the denotational semantics so

3This classical example may be counter-intuitive to a reader who knows astronomy. An
equivalent example is Bob thinks Alice drove on Route 9 versus Bob thinks Alice drove on
Worcester Street.
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that an expression denotes not a reference but a map from possible worlds to
references. The morning star and the evening star will now denote not Venus
but two distinct functions from possible worlds to heavenly bodies. These two
denotations will map the actual world to the same heavenly body Venus, but other
worlds to different heavenly bodies. Similarly, (1.27) and (1.28) will now denote
not false but two distinct functions from possible worlds to truth values. These
two denotations will map the actual world to false, but other worlds to different
truth values. If w is a world where the morning and evening stars are distinct and
Alice only saw the former, then the denotations of (1.27) and (1.28) map w to
true and false, respectively. Formally, we specify (cf. (1.29)–(1.33))

JAliceK (w) = Alice,(1.36)

JBobK (w) = Bob,(1.37)

Jthe morning starK (w) = the morning star in the world w,(1.38)

Jthe evening starK (w) = the evening star in the world w,(1.39)

JA saw BK (w) = whether JAK (w) saw JBK (w).(1.40)

Having lifted denotations from plain references to possible-world-to-reference
functions, we can now provide denotations for utterances involving think:

JA think BK (w) = whether JBK (w′) is true for every world w′

that JAK (w) considers possible in w.
(1.41)

These rules give the desired denotation for the sentence (1.34).

JBob thinks Alice saw the morning starK (w)

= whether JAlice saw the morning starK (w′) is true
for every world w′ that JBobK (w) considers possible in w

= whether JAliceK (w′) saw Jthe morning starK (w′)
for every world w′ that Bob considers possible in w

= whether Alice saw the morning star
in every world that Bob considers possible in w

(1.42)

We have seen that the presence of an intensional verb in natural language
forces us to revise our denotational semantics, and how to model intensionality
using functions as denotations. We have also seen that we can learn about the
syntax and semantics of natural language just by striving to specify the sentences
and their truth conditions simply and accurately. We now compare the situation
with that for programming languages.
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1.6. Computational versus linguistic side effects

Environment constructs in programming languages (Section 1.4) and inten-
sional verbs in natural languages (Section 1.5) exemplify a general pattern. In
natural-language semantics, it is intuitive to expect every expression to have a
reference, like a physical object or a Boolean value. In programming-language
semantics, it is intuitive to model program evaluation by assigning to every ex-
pression a result, like a number or a Boolean value. (We henceforth use the
terms “reference” and “result” interchangeably.) Given a notion of reference,
some simple languages guarantee that, if two expressions E1 and E2 have the
same reference, then whenever E1 occurs as part of a larger expression, it can be
replaced with E2 without affecting the reference of the larger expression.

A denotational semantics is a system that assigns a denotation to every ex-
pression. We want such a semantics to be sound: two expressions with the same
denotation should also have the same reference. We also want it to be compo-
sitional: the denotation of every complex expression should be determined by
the denotations of its parts and the mode of combination. We prefer for every
expression simply to denote its reference, but to preserve soundness and com-
positionality in the absence of the guarantee above requires that denotations be
more complex than simple reference. Indeed, some expressions, such as Sherlock
Holmes and the king of France, seem to have no reference at all, let alone a
reference to denote soundly and compositionally. When such expressions are
present in a language, it is obviously impossible for every expression to denote its
reference.

Intensionality is only one of many natural-language phenomena that break the
notion of reference or the guarantee above. We term them linguistic side effects.
Some examples are anaphora (1.43), quantification (1.44), interrogation (1.45),
focus (1.46), and presuppositions (1.47).

(1.43) Anaphora: A man walks in the park. He whistles.
(1.44) Quantification: Every woman whistles.
(1.45) Interrogation: Which star did Alice see?
(1.46) Focus: Alice only saw Venus.
(1.47) Presuppositions: The king of France whistles.

To account for each linguistic side effect, semantic theories typically preserve
soundness and compositionality by incorporating into denotations some new
aspect of meaning beyond reference.

The same guarantee discussed above is not just observed to break down in
natural languages, but also designed to break down in programming languages:
to make programs more concise and modular, we often want some expressions
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to evaluate to the same result or no result at all, yet, when placed inside some
larger context, to yield larger expressions that evaluate to different results. En-
vironment is only one of many programming-language features that break the
notion of evaluation result or the guarantee above. Such features are known
technically as computational side effects, and the vast majority of programming
languages in use today have them. Some examples are output (1.48), state (1.49),
nondeterminism (1.50), exceptions (1.51), and control (1.52).

(1.48) Output: print 2; 10
‘Print the number 2, then produce the number 10.’

(1.49) State: x := 2; 10
‘Store 2 in the variable x, then produce 10.’

(1.50) Nondeterminism: 2 + random(10, 20)
‘Add 2 to either 10 or 20, randomly chosen.’

(1.51) Exceptions: try(2 + throw) catch 3
‘Add 2 to an error; fall back to 3 in case of error.’

(1.52) Control: label: 2 + goto label
‘Add 2 to the result of starting over again.’

To preserve soundness and compositionality in the face of a computational side
effect, semantic theories of programming languages typically take the same
strategy as those of natural languages: they add to denotations a new aspect of
meaning beyond evaluation results.

As described above, environment and intensionality can be modeled using
functions as denotations. Other side effects call for different treatments. The
proper treatments of many linguistic and computational side effects are open areas
for research: some studies focus on a single side effect, while others characterize
more than one.

Be it for the scientific goal of characterizing humans who learn and use
language or for the engineering goal of building machines that process and
execute language, the linguist and the programming-language theorist both strive
for a simple, modular, and extensible treatment of side effects. One approach
towards such a treatment is to unify multiple notions or phenomena and show
how they are instances of a more general concern. That is the approach we
take throughout this dissertation, both in drawing a general analogy between
computational and linguistic side effects and in applying the analogy to its two
ends:

• We use apparent noncompositionality to unify computational and lin-
guistic side effects.
• We use left-to-right evaluation in the presence of computational side
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effects to unify four generalizations across linguistic side effects: the
prohibition against crossover in anaphora, the preference for linear scope
in quantification, the superiority constraint on interrogation, and the
effect of spoken order on polarity sensitivity.
• We use the duality between inside and outside in quantification (a lin-

guistic side effect) to unify call-by-value with call-by-name, and the let
construct with the shift construct, in the presence of delimited control (a
computational side effect).

But first, we need some notation.





CHAPTER 2

Formalities

This chapter establishes the formal frameworks in which the remainder of
this dissertation presents analyses of programming and natural languages. An
analysis is comprised of general rules that specify or predict what expressions are
acceptable and what they mean. Because these rules need to apply to a potentially
infinite number of expressions, we cannot simply enumerate every case. Instead,
we specify a finite set of inference rules, which can give rise to an infinite number
of conclusions.

As is standard in logic, we indicate inference by a horizontal rule that separates
zero or more premises above from exactly one conclusion below. Whereas the
inference

(2.1)
All men are mortal Socrates is a man

Socrates is mortal

concludes with mortality, the inference

(2.2)
Alice is a subject left is a predicate

Alice left is a sentence

concludes with acceptability. These premises and conclusions are called judg-
ments.

This notation can be used to write inference rules as well as proofs. An
inference rule describes an allowed pattern of inference. For example, the infer-
ence (2.1) illustrates the rule

(2.3)
All men are P X is a man

All-Men,
X is P

where P and X are called metavariables because they range over expressions that
form a judgment (such as “mortal” and “Socrates”), not the objects they refer to
(such as the set of mortals or the person Socrates). The optional label “All-Men”
names the rule. We say that the inference (2.1) instantiates (or matches) the
All-Men rule. To take another example, the inference (2.2) illustrates the rule

(2.4)
S is a subject P is a predicate

Subject-Predicate,
S P is a sentence

19
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where S P means to concatenate S and P. A rule with no premise is an axiom. To
reason about English, we might stipulate the axiom

(2.5) Alice.
Alice is a subject

An axiom like this, which classifies an atomic expression like Alice, is called
a lexical entry because it can be thought of as an entry in a lexicon (that is,
dictionary).

A proof is a tree of connected inferences; it is also sometimes called a
derivation. For example, the Subject-Predicate rule (2.4) and the Alice rule (2.5)
can be instantiated and combined to form the proof

(2.6)
Alice

Alice is a subject thinks vanilla is a predicate
Subject-Predicate.

Alice thinks vanilla is a sentence
Starting from the sole premise judgment that “thinks vanilla is a predicate”, this
proof concludes that “Alice thinks vanilla is a sentence”. That “Alice is a subject”
is not a premise assumed by the proof, but the conclusion of the Alice rule used
by the proof. The proof works whether or not thinks vanilla is a predicate: it only
says that Alice thinks vanilla is a sentence if thinks vanilla is a predicate.1

Our formal plan, then, is as follows. To specify a language, we introduce
some judgment forms and enumerate some inference rules whose premise and
conclusion patterns are of these forms. A typical judgment classifies an expression
into a type (or category). For example, the judgment “Alice is a subject” above
classifies the expression Alice into the type of subjects. We classify expressions
into types so as to reason about similar expressions, such as all subjects or all
predicates, together.

The inference rules we enumerate can be instantiated and combined to form
proofs that (starting from no premise) classify certain expressions into the type of
complete programs or complete utterances. We take exactly these expressions to
be complete programs in our programming language or complete utterances in
our natural language. Further, we describe what these programs mean, often by
specifying how they execute, or what these utterances mean, often by modeling
when they are true. A grammar is a formal system of inference rules and meaning
descriptions.

When a given grammar classifies an expression into a type, we say that
the expression is well typed. Contrary to some usage in computer science and
linguistics, this classification is a syntactic discipline (Reynolds 1983; Pierce
2002) rather than a semantic one, in that it is an expression that is classified
rather than its meaning. For example, the judgment “Alice is a subject” classifies
Alice rather than Alice. Thus we use the terms “well-typed” and “well-formed”

1In response to What is Bob’s favorite ice cream flavor?, for instance.
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interchangeably. Ill-typed (or ill-formed) expressions are those that are not
classified into any type. A grammar models them simply by their absence.

Like all models, a natural-language grammar only approximates reality: it
concentrates on aspects of natural language that we want to study, leaving out
the rest. In particular, in this dissertation we examine how words combine with
each other (roughly speaking) without worrying about how they sound, originate,
change, or vary from speaker to speaker. Hence we do not try to enumerate or
derive every lexical entry like the Alice rule in (2.5). Instead, in most natural-
language derivations below, we simply start from premises like “Alice is a subject”,
rather than starting from no premise or drilling down into the internal constitution
of the word Alice. This approximation simplifies our grammar while still letting
us study how words combine with each other. Similarly, a programming-language
grammar also only approximates reality. Even if we wanted to, we could not
perfectly formalize practical programming with all the features and complications
that it entails, such as interactions with users, cosmic rays, and the evolution of
a programming language over time. In order to make progress, it is standard
practice to model programming languages with toy programming languages and
natural languages with natural-language fragments. In either case, we design
and study formal grammars that bring into focus the phenomena of interest in
real-world languages.

The main body of this dissertation builds on the λ-calculus as a programming
language and uses type-logical grammar to analyze natural languages. Before
describing the λ-calculus (in Section 2.3) and type-logical grammar (in Sec-
tion 2.4), we first introduce some concepts through a context-free fragment of
natural language (in Section 2.1) and a toy programming language for arithmetic
(in Section 2.2). Although we specify these systems completely, the reader who
has not encountered inference rules and the λ-calculus before may find it helpful
to acquire more background and intuition from an introductory text like Wadler’s
article (2000), Gallier’s tutorial (1993, 1991), and Carpenter’s (1997), Girard
et al.’s (1989), and Pierce’s (2002) books.

2.1. Context-free grammars for natural language

Figure 2.1 shows some inference rules that model a tiny fragment of English.
There is only one judgment form, written A : T and pronounced “A is a T”, where
A is an expression and T is a type. For now, an expression is a sequence of words,
such as the empirically acceptable Alice said Bob left and the empirically unac-
ceptable *Alice said Bob said. As mentioned earlier, types classify expressions.
The types in this system are named after classes of expressions in linguistics: np
(noun phrase), vp (verb phrase), v (verb), and s (clause, or sentence). For example,



22 2. Formalities

Expressions A : T

Alice : np Bob : np left : v slept : v saw : v loved : v said : v

A : np B : vp
A B : s

A : v
A : vp

A : v B : np
A B : vp

A : v B : s
A B : vp

Figure 2.1. A natural-language fragment

npF Alice | Bob vF left | slept | saw | loved | said
sF np vp vpF v | v np | v s

Figure 2.2. The context-free grammar equivalent to Figure 2.1

the judgment “Alice said Bob left : s” has the proof below.

(2.7)
Alice : np

said : v
Bob : np left : vp

Bob left : s
said Bob left : vp

Alice said Bob left : s
Hence, as desired, Alice said Bob left is predicted to be an acceptable English
utterance, in particular a sentence. Also, “said Bob left : s” has no proof, so *said
Bob left is predicted to be unacceptable.

In this set of inference rules, every expression metavariable (A or B) that
appears in the conclusion of a rule also appears in a premise of the rule. Thus the
tree of rules used in a proof determines the final conclusion. For example, if we
give a name to each rule in Figure 2.1, and add these names to (2.7), then we can
omit all the judgments between and under the horizontal rules in (2.7) with no
loss of information. This property, that the proof determines the expression, holds
in many grammars below as well.

Because the judgment form and inference rules in Figure 2.1 are so simple
and use only finitely many types, this grammar is just a context-free grammar
in thin disguise: In more familiar notation, the grammar can be written as in
Figure 2.2. Each type is a nonterminal symbol, each word is a terminal symbol,
and each inference rule is a production.

Alas, the types in Figures 2.1 and 2.2 do not distinguish finely enough among
expressions. For example, the grammar classifies both said and left as just
verbs (v), so it predicts incorrectly that *Alice said Bob said is as acceptable as
Alice said Bob left. We can begin to fix this problem by making finer distinctions
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Expressions A : T

Alice : np Bob : np left : iv slept : iv saw : tv loved : tv said : sv

A : np B : vp
A B : s

A : iv
A : vp

A : tv B : np
A B : vp

A : sv B : s
A B : vp

Figure 2.3. A natural-language fragment that distinguishes among three kinds of
verbs

npF Alice | Bob ivF left | slept tvF saw | loved svF said
sF np vp vpF iv | tv np | sv s

Figure 2.4. The context-free grammar equivalent to Figure 2.3

in the types. Figures 2.3 and 2.4 show a refined system (as inference rules and
as productions) that splits the type v into three more refined types of verbs: iv
(intransitive verb), tv (transitive verb), and sv (sentential verb). This new system
properly rules out *Alice said Bob said.

The linguistic rules so far rely on a binary concatenation operation on expres-
sions (written with a space), so as to combine Bob and left to give Bob left. As
we have been taking an expression to be a sequence of words (rather than a binary
tree, a set, or a multiset of words), this concatenation operation is associative,
non-commutative, and non-idempotent. The language models in the following
sections treat the data structure of expressions more elaborately and explicitly:
they allow more operations for building up expressions than just concatenation,
and they take fewer properties of these operations for granted. One reason to ex-
plore such models is to go beyond context-free grammars. Context-free grammars
are not ideal for modeling natural languages, for at least three reasons.

• Some natural languages are not context-free. For example, verb-object
agreement in Swiss-German embedded clauses boils down (Shieber
1985) to the formal language of doubled strings {ww | w ∈ Σ∗ }, which is
context-sensitive.
• Some natural-language phenomena are awkward to model with context-

free grammars. In particular, many languages let a wh-phrase appear
in front of a question, arbitrarily far from its “associated” verb. For
example, who in the English question who do you think Alice said left
is far from left.
• A context-free grammar only defines the syntax of a language and does
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Expressions A : s

0 : s
A : s

succ A : s
A : s B : s

A + B : s true : s false : s
A : s B : s

A = B : s
A : s B1 : s B2 : s

if A then B1 else B2 : s

Figure 2.5. A toy programming language for arithmetic

sF 0 | succ s | s + s | true | false | s = s | if s then s else s

Figure 2.6. The context-free grammar equivalent to Figure 2.5

not constrain its semantics. For example, although the expression Alice
said Bob left is classified as a sentence, it is not required to have a
meaning. Moreover, although the proof (2.7) splits into one branch
for Alice and another for said Bob left, a meaning for Alice said Bob
left need not be composed from one meaning for Alice and another for
said Bob left. One may prefer to model natural language in a way that
enforces a tighter correspondence between syntax and semantics.

We start to assuage these shortcomings in Section 2.4 below, with a framework
for natural-language grammars that makes utterance structure more explicit and
elaborate than just concatenation. But first, let us consider some programming
languages.

2.2. A toy programming language

Figure 2.5 defines the syntax of a toy programming language. This grammar
uses only one type s (for “start”), the type of programs. Accordingly, a judgment
has the form A : s, pronounced “A is an s” or “A is a program”, where A is an
expression. (We omit “: s” from judgments in the next section for brevity.) Some
expressions classified as programs are:

succ 0 + succ succ 0 + succ succ succ 0,(2.8)
true + false,(2.9)

if true = succ succ 0 then false else 0 + 0,(2.10)
succ if true then false else succ 0.(2.11)

As in Section 2.1, this grammar is equivalent to a context-free grammar, whose
productions are shown in Figure 2.6.
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succ succ

0 succ

0

Figure 2.7. Expressions are trees but usually written with a textual representation

We take an expression in this language to be not a string of characters (concrete
syntax) but a tree-like data structure (abstract syntax), such that

• each leaf is labeled by 0, true, or false;
• each unary branch is labeled by succ;
• each binary branch is labeled by + or =;
• each ternary branch is labeled by if-then-else; and
• there are no other kind of branches.

For example, the first tree in Figure 2.7 depicts graphically the same expression
as (2.9) represents textually. This abstract syntax tree is equivalent to a context-
free parse tree. It is also equivalent to a proof tree, so the tree of proof rules
used determines the final conclusion judgment and the expression therein, as in
previous grammars in Section 2.1.

Some concrete strings are ambiguous among many abstract expressions, which
can be distinguished in writing using parentheses. For example, the string in (2.8)
may be understood as any of the following expressions, among others.

((succ 0) + (succ succ 0)) + (succ succ succ 0)(2.12)
(succ 0) + ((succ succ 0) + (succ succ succ 0))(2.13)
succ (0 + ((succ succ 0) + (succ succ succ 0)))(2.14)

(The remainder of Figure 2.7 depicts these three expressions graphically.) By
convention, we let + and = associate to the left, so 0+0+0 represents (0+0)+0 and
not 0+(0+0). Also by convention, we specify that succ has the highest precedence
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true : s

0 : s
succ 0 : s

succ succ 0 : s
true = succ succ 0 : s false : s

0 : s 0 : s
0 + 0 : s

if true = succ succ 0 then false else 0 + 0 : s

Figure 2.8. Proving that if true = succ succ 0 then false else 0 + 0 is well
formed

in the language, followed by +, =, and if-then-else (in that order). This way,
the concrete string in (2.8) means only the abstract expression in (2.12). To take
another example, the concrete string (2.10) means only the abstract expression

(2.15) if true = succ succ 0 then false else (0 + 0).

Figure 2.8 proves the well-formedness of this expression.
A popular use of programs is to run them. We now describe how to run a

program in our toy language, using a small-step operational semantics. First
we define the set of evaluation contexts (Felleisen 1987).2 Intuitively, a context
is an expression with a hole in it, where a subexpression can be plugged in. In
other words, a context is an expression tree with a subtree removed, where a new
subtree can be attached. For example,

(2.16) succ 0 + succ [ ] + succ succ succ 0

is a context, as is the trivial context [ ]. We write the metavariable C[ ] for a
context. If C[ ] is a context and A is an expression, then we write C[A] for the
result of plugging A into C[ ]. For example, if C[ ] is the context (2.16), then
C[succ 0] is the expression (2.8) on page 24. If C[ ] and C′[ ] are two contexts,
then we write C[C′[ ]] for the result of plugging C′[ ] into C[ ]. Continuing the
example, C[0 = [ ]] is the context

(2.17) succ 0 + succ (0 = [ ]) + succ succ succ 0.

Figure 2.9 uses this notation to define evaluation contexts formally. Our judgment
form for evaluation contexts is simply C[ ], where C[ ] contains [ ]. This grammar

2For this toy language, it is overkill to specify the operational semantics in terms of evaluation
contexts, but the notion of contexts is crucial for studying the computational side effect of delimited
control and the linguistic side effect of quantification, which we start to do in Chapter 3.
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Evaluation contexts C[ ]

[ ]
C[ ]

C[succ [ ]]
C[ ] B : s
C[[ ] + B]

A : s C[ ]
C[A + [ ]]

C[ ] B : s
C[[ ] = B]

A : s C[ ]
C[A = [ ]]

C[ ] B1 : s B2 : s
C[if [ ] then B1 else B2]

A : s C[ ] B2 : s
C[if A then [ ] else B2]

A : s B1 : s C[ ]
C[if A then B1 else [ ]]

Figure 2.9. Evaluation contexts

cF ; | c succ | + s c | c s + | = s c | c s =
| then s else s c if | else s c if s then | c if s then s else

Figure 2.10. The context-free grammar of evaluation contexts, equivalent to
Figure 2.9

Computation A B B

C[succm0 + succn0] B C[succm+n0]
C[succm0 = succm0] B C[true]
C[succm0 = succn0] B C[false] if m , n

C[if true then B1 else B2] B C[B1]
C[if false then B1 else B2] B C[B2]

Figure 2.11. The computation relation between expressions. By succm0 we
mean m copies of succ in front of 0, where m is a nonnegative integer.

can be viewed “inside-out” as a context-free grammar: if we change the notation
of contexts to swap what is written to the left of the hole with what is written to
the right, so that the context (2.16) is notated

(2.18) + succ succ succ 0 ; succ 0 + succ

instead, then Figure 2.9 becomes a context-free grammar, shown in Figure 2.10.
Figure 2.11 introduces the computation relation B, a binary relation between

expressions. Intuitively, A B B holds just in case the expression A turns into the
expression B in one small step of computation. Computation proceeds by chaining
these small steps together. For example, starting with the expression (2.8) on
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if 0 = 0 then succ 0 + succ 0 else false B if 0 = 0 then succ succ 0 else false
O O

if true then succ 0 + succ 0 else false B if true then succ succ 0 else false
O O

succ 0 + succ 0 B succ succ 0

Figure 2.12. Three confluent ways to run the same program

page 24, we have

succ 0 + succ succ 0 + succ succ succ 0
B succ succ succ 0 + succ succ succ 0
B succ succ succ succ succ succ 0.

(2.19)

We write B∗ for the reflexive and transitive closure of B, and B+ for the transitive
closure of B. Under the (intended) interpretation of succ as the successor function
on numbers, this fact that

succ 0 + succ succ 0 + succ succ succ 0

B∗ succ succ succ succ succ succ 0

(2.20)

means that (1 + 2) + 3 evaluates to 6.
The computation relation B is nondeterministic: there exist expressions A such

that A B B1 and A B B2 hold for two different expressions B1 and B2. For example,
Figure 2.12 shows three ways to run the program at the upper-left corner to get
the result at the lower-right corner. Nevertheless, this programming language is
confluent (or equivalently, it has the Church-Rosser property): whenever A B∗ B1

and A B∗ B2 for some expressions A, B1, and B2, there exists an expression B′

such that B1 B
∗ B′ and B2 B

∗ B′. This definition is illustrated below.

(2.21)

A

B1

O∗

B2B∗

B′
O∗

B∗

An expression A from which computation cannot proceed (that is, such that
no B satisfies A B B) is said to be in normal form. Our language enjoys the weak
normalization property, which means that every expression A has a normal form B
such that A B∗ B. In words, every program can be run in some way to stop. In fact,
every way to run every program in this language eventually stops. That is, there
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Expressions A : T

0 : n
A : n

succ A : n
A : n B : n

A + B : n true : b false : b
A : n B : n

A = B : b
A : b B1 : T B2 : T

if A then B1 else B2 : T

Figure 2.13. A toy programming language with a more refined type system

does not exist an infinite sequence of computation steps A0 B A1 B A2 B · · · .
This property is called strong normalization or termination.

Informally speaking, there are two kinds of expressions in normal form.
On one hand, an expression in normal form may be the result of a successful
computation, such as the last line in (2.19): succ succ succ succ succ succ 0.
On the other hand, an expression in normal form may be stuck in an unsuccessful
computation, such as (2.9) on page 24, which tries to add true to false. To
distinguish between these two cases formally, we define a value to be either true,
false, or zero or more copies of succ in front of 0. A normal form that is not
a value, like (2.9), is stuck. A value is the result of a successful computation,
whereas a stuck expression is the carnage of an unsuccessful computation.

The expressions (2.10) and (2.11) on page 24 are not initially stuck, but get
stuck after some computation steps. In other words, these expressions never
produce a value when run; they are akin to a program that begins running but then
crashes. To rule out such errors without actually running the program, we can
refine the type system of our language, as is done in Figure 2.13. The catch-all
type s for programs becomes two types: n for (an expression that computes to)
a number and b for (an expression that computes to) a Boolean. A judgment in
this type system has the form A : T , where A is a metavariable that ranges over
expressions, and T is a metavariable that ranges over types. Types are generated
by the simple context-free grammar

(2.22) T F n | b.

This type system shares with the previous one in Figure 2.5 the subject
reduction property, also known as type preservation: if A B B and A : T , then B : T
as well. Furthermore, no expression to which this refined type system assigns a
type (either n or b) is stuck. That is, any expression assigned a type either is a
value or computes to some expression. These two properties together entail that
any expression assigned a type never computes to a stuck expression—in other
words, never “goes wrong”. Formally, if A B∗ B and A : T , then B is not stuck. In
particular, the refined type system assigns no type to (“rules out”) the expressions
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(2.10) and (2.11).
For the purpose of ruling out programs that go wrong, this type system only

classifies expressions approximately. Besides ruling out every program that goes
wrong, the system also rules out some programs (hopefully seldom encountered
or needed in practice) that do not go wrong when run. For example, the program
(similar to (2.11) on page 24)

(2.23) succ if false then false else succ 0

is no longer assigned a type according to Figure 2.13, yet computes to a value
just fine:

(2.24) succ if false then false else succ 0 B succ succ 0.

This kind of approximation is often necessary in a practical type system, especially
for a programming language without the termination property, because it may
take too long or even be impossible for a computer to decide precisely whether
a given program goes wrong. Even when every computation sequence is finite,
as is the case here, an approximate type serves to summarize an expression to
a programmer, much as a natural-language type classifies an expression to a
linguist.

2.3. The λ-calculus

A crucial ability missing from the toy programming language in Section 2.2
is to pass a program or its result for use elsewhere. The λ-calculus (Church 1932,
1940; Barendregt 1981; Hindley and Seldin 1986) is a canonical programming
language that incorporates this ability by allowing values, including functions, to
be passed around. Because the λ-calculus lets us pass functions as values, it is
known as a higher-order programming language.

We first introduce the λ-calculus informally, then consider its type systems
and operational semantics. The three kinds of expressions in the λ-calculus are
variables, abstractions, and applications. The expression λx. succ 0 + x is an
abstraction; it denotes a function that maps each number to its successor. The
variable x here, representing the input to the function, is bound within the body
succ 0 + x of the abstraction. We notate the application of a function F to an
argument E as FE. A function can apply multiple times to different arguments,
each time binding the variable to a different input. For example, the application
expression

(2.25) (λf . f (0) + f (succ succ 0))(λx. succ 0 + x)

first binds f to the increment function, then binds x to 0 in the first application of f ,
but to succ succ 0 in the second application of f . This program thus computes
(1 + 0) + (1 + 2).
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Expressions Γ ` E

Id
x ` x

Γ, x ` E
Abstract

Γ ` λx. E
Γ ` F ∆ ` E

Apply
Γ,∆ ` FE

Γ[∆] ` E
Weaken

Γ[∆,Θ] ` E
Γ[∆,∆] ` E

Contract
Γ[∆] ` E

Γ[∆,Θ] ` E
Exchange

Γ[Θ,∆] ` E
Γ[(∆,Θ),Π] ` E
================ Associate
Γ[∆, (Θ,Π)] ` E

Figure 2.14. The untyped λ-calculus

For brevity, we omit some parentheses in expressions: Abstractions extend
as far to the right as possible, so λx. xy means λx. (xy) rather than (λx. x)y.
Applications associate to the left, so xyz means (xy)z rather than x(yz).

By convention, when multiple nested abstractions bind the same variable
name, the innermost binding “wins”. For example, the expression λx. λx. x means
the constant function returning the identity function—that is, λy. λx. x rather than
λx. λy. x. Expressions like λx. λx. x and λy. λx. x are α-equivalent in that they
(informally speaking) differ only in the names of bound variables. We henceforth
regard α-equivalent expressions to be equal. We then assume that all bound
variables in an expression are renamed whenever necessary to be distinct from
each other; this assumption is Barendregt’s variable convention (1981). In other
words, bound-variable names are not part of the abstract syntax of this language;
rather, they are just nomenclature for associating an abstraction expression with
variable expressions in its body.

To substitute an expression E for a variable x in another expression E′ is to
replace every occurrence of x in E′ by E. We notate the result as E′ {x 7→ E}.
(Here x is a metavariable that ranges over variables in the λ-calculus.) For
example,

(2.26) (x(λy. x)) {x 7→ λz. zw} = (λz. zw)(λy. λz. zw).

Because the same variable may be bound multiple times in E and E′, substitution
is not just a matter of textual replacement, but may involve renaming variables to
avoid conflicts. For example,

(2.27) (x(λy. x)) {x 7→ λx. yx} = (λx. yx)(λy ′. λx. yx) , (λx. yx)(λy. λx. yx).

Figure 2.14 defines the untyped λ-calculus, which is so called because it
only classifies expressions as well-formed. We use E and F as metavariables for
expressions. To keep track of bound variables, judgments in this system are of
the form Γ ` E. Here the type environment (or antecedent) Γ is a list of bound
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variables—more precisely, a binary tree whose leaves are either just the null
environment, written with a dot ·, or an assumption x, meaning that the variable x
is bound. The turnstile ` separates the type environment from the expression E
classified well-formed. Besides the metavariable Γ for type environments, we
also use the Greek letters ∆,Θ,Π.

The first three rules in this system construct variables, abstractions, and
applications. The Id rule says that a variable is a well-formed expression (· · · ` x),
as long as it is bound (x ` · · · ). The Abstract rule says that an abstraction λx. E
is well formed in the type environment Γ, as long as the body E is well formed
in Γ extended with an assumption for the bound variable x. The Apply rule says
that, if F and E are well formed in the type environments Γ and ∆, then the
application FE is well formed in the combined type environment Γ,∆.

As with expressions, we equate judgments that differ only in the name of
bound variables. A variable name in an environment, like the variable name bound
by an abstraction expression, is just nomenclature for associating an assumption
to the left of ` with variable expressions to the right of `. We then assume that
all bound variables in a judgment are renamed whenever necessary to be distinct
from each other. Thus the Abstract rule in Figure 2.14 is really shorthand for a
more elaborate rule that renames the bound variable x to a freshly chosen name y:

(2.28)
Γ, y ` E{x 7→ y} E does not mention y

Abstract.
Γ ` λx. E

The remaining four rules in the system are structural. They ensure that a type
environment behaves as a set of bound variables, even though strictly speaking
it has the structure of a binary tree. The notation Γ[. . .] in these rules means a
type environment that includes another. For example, Γ[∆,∆] in the Contract
rule matches any type environment that somewhere contains two identical type
environments ∆ together. Accordingly, Γ[∆] in the same rule matches the same
type environment with only one copy of ∆ at the same place. Thus Γ[ ] is a
metavariable for not a complete type environment but a type environment with a
hole [ ].

The Weaken rule says that it never hurts the well-formedness of an expres-
sion to assume an extra bound variable; that is, a bound variable’s value can be
discarded freely. The Contract rule says that duplicate assumptions in a type envi-
ronment can be merged; that is, a bound variable’s value can be duplicated freely.
The Exchange rule says that order does not matter in a type environment; that
is, the comma for combining type environments is commutative. The Associate
rule is written with a special notation: the double horizontal rule between the two
judgments means that either judgment can be used as the premise in an inference,
and the other judgment as the conclusion. This rule says that the comma for
combining type environments is associative. If we include the antecedents of each
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Id
f ` f

Weaken
f , · ` f

Exchange
·, f ` f

Id
f ` f

Id
x ` x

Apply
f , x ` fx

Apply
(·, f ), (f , x) ` f (fx)

Associate
((·, f ), f ), x ` f (fx)

Abstract
(·, f ), f ` λx. f (fx)

Associate
·, (f , f ) ` λx. f (fx)

Contract
·, f ` λx. f (fx)

Abstract
· ` λf . λx. f (fx)

Id
f ` f

Id
f ` f

Id
x ` x

Apply
f , x ` fx

Apply
f , x ` f (fx)

Abstract
f ` λx. f (fx)

Abstract
· ` λf . λx. f (fx)

Figure 2.15. Proving that λf . λx. f (fx) is well formed

Evaluation contexts C[ ]

[ ]
C[ ]

C[λx. [ ]]
C[ ] ∆ ` E

C[[ ]E]
Γ ` F C[ ]

C[F[ ]]

Figure 2.16. Evaluation contexts in the λ-calculus

structural rule in its name—for example, if we distinguish among instances of
Weaken with different Γ or Θ—then this grammar, like previous ones, ensures
that the tree of rules used in a proof determines the final judgment.

To illustrate all these rules, Figure 2.15 derives that the “twice” function
λf . λx. f (fx) is a well-formed expression. The same proof is shown there twice:
first in its full glory, regarding the type environment as a binary tree, and then
with the structural inferences omitted for brevity, regarding the type environment
as a set of bound variables rather than a tree.

A program in the λ-calculus runs as follows. Figure 2.16 defines a judgment
form C[ ], which means that C[ ] is a context that can be plugged with some
expression E to make a complete program C[E]. The context C[ ] may bind
variables in E; for example, plugging the expression E = fx into the context
C[ ] = λf . λx. f [ ] makes the complete program C[E] = λf . λx. f (fx). Armed
with this definition of an evaluation context, we can then define a computation
relation B, called β-reduction or λ-conversion:

(2.29) C[(λx. E′)E] B C[E′ {x 7→ E}].

Here C[ ] is any evaluation context, and E and E′ are any expressions, such that
the program on the left is well formed, in which case the program on the right
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is also well formed. As before, we write B∗ to mean the reflexive and transitive
closure of this computation relation, and B+ to mean the transitive closure. The
subject reduction property holds: if E B∗ E′ and Γ ` E, then Γ ` E′ as well.

To illustrate β-reduction, let us apply the “twice” function (from Figure 2.15)
to itself, to get the “four times” function.

(λf . λx. f (fx))(λf . λx. f (fx))
B λx. (λf . λx. f (fx))((λf . λx. f (fx))x)
= λf . (λf . λx. f (fx))((λf . λx. f (fx))f ) (by α-equivalence)
B λf . (λf . λx. f (fx))(λx. f (fx))
B λf . λx. (λx. f (fx))((λx. f (fx))x)
B λf . λx. (λx. f (fx))(f (fx))
B λf . λx. f (f (f (fx)))

(2.30)

To take another example, if we enrich the syntax of this λ-calculus to encompass
arithmetic expressions like (2.25) on page 30, then we can perform the following
computation.

(λf . f (0) + f (succ succ 0))(λx. succ 0 + x)
B (λx. succ 0 + x)(0) + (λx. succ 0 + x)(succ succ 0)
B (λx. succ 0 + x)(0) + (succ 0 + succ succ 0)
B (succ 0 + 0) + (succ 0 + succ succ 0)

(2.31)

Via a suitably enlarged computation relation, the last expression above may
compute eventually to succ succ succ succ 0, as desired.3

For clarity in the many example programs presented below in the λ-calculus,
we sometimes write

(2.32) let E be x. E′

to mean (λx. E′)E.4 This syntactic sugar makes sense because of β-reduction. We
call E the argument of the let, and E′ the body of the let. By convention, the
body E′ of the let expression extends as far to the right as possible, like the body
of the corresponding λ-abstraction.

3Many programming examples below assume, like this one, that the syntax and computa-
tion relation of the programming language are suitably extended with integer arithmetic as in
Section 2.2. We do not formalize such constants as succ, 0, and + and computation steps for
them, because they are not needed for the technical results in this dissertation. If desired, one
can implement them using products, unit, sums, and recursion, described in Sections 2.3.3, 2.3.4,
and 2.3.5.

4This notation orders E and x differently from the usual syntax let x = E in E′ in functional
programming languages. We choose this notation so that we can extend it to perform case
discrimination (case E of . . . in typical functional programming languages) in Section 2.3.4.
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Expressions Γ ` E : T

Id
x : T ` x : T

Γ, x : T1 ` E : T2 Abstract
Γ ` λx. E : T1→ T2

Γ ` F : T1→ T2 ∆ ` E : T1 Apply
Γ,∆ ` FE : T2

Γ[∆] ` E : T
Weaken

Γ[∆,Θ] ` E : T
Γ[∆,∆] ` E : T

Contract
Γ[∆] ` E : T

Γ[∆,Θ] ` E : T
Exchange

Γ[Θ,∆] ` E : T
Γ[(∆,Θ),Π] ` E : T
=================== Associate
Γ[∆, (Θ,Π)] ` E : T

Evaluation contexts C[ ]

[ ]
C[ ]

C[λx. [ ]]
C[ ] ∆ ` E : T1

C[[ ]E]
Γ ` F : T0 C[ ]

C[F[ ]]

Figure 2.17. The simply-typed λ-calculus

2.3.1. Confluence, normalization, and typing. The computation relation
just defined is confluent (Barendregt 1981). (As we extend this programming
language in Chapter 3, confluence becomes threatened.) But it is not weakly
normalizing, let alone strongly normalizing. For example, the expression

(2.33) (λx. xx)(λx. xx)

β-reduces to itself and no other expression, so there is no normal-form expres-
sion E such that (λx. xx)(λx. xx) B∗ E. Informally speaking, the program (2.33)
enters an infinite loop when run.

To enforce normalization, we can refine the type system. We classify expres-
sions into a countably infinite family of types, not just well-formed or s. A type is
now either an element of a fixed set of base types, say a, b, c, . . . , or a function
type, written T1→ T2 where T1 and T2 are again types. More formally, types T
are generated by the context-free grammar

(2.34) T F A | T → T ,

where base types A are generated by

(2.35) AF a | b | c | · · · .

A type environment Γ no longer just enumerates bound variables but also asso-
ciates each variable with a type. Figure 2.17 shows the refined type system, called
the simply-typed λ-calculus. For example, Figure 2.18 proves that the “twice”
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Id
f : a→ a ` f : a→ a

Id
f : a→ a ` f : a→ a

Id
x : a ` x : a

Apply
f : a→ a, x : a ` fx : a

Apply
f : a→ a, x : a ` f (fx) : a

Abstract
f : a→ a ` λx. f (fx) : a→ a

Abstract
· ` λf . λx. f (fx) : (a→ a)→ (a→ a)

Figure 2.18. Proving that λf . λx. f (fx) has type (a→ a)→ (a→ a)

function λf . λx. f (fx) has the type (a→ a)→ (a→ a). (We omit the structural rules
in this proof; they are entirely analogous to those in Figure 2.15.)

By convention, the function-type arrow→ associates to the right. For example,
a→ b→ c means the type a→ (b→ c) rather than (a→ b)→ c.

Some expressions in the untyped λ-calculus can no longer be derived in the
simply-typed λ-calculus. For example, the infinite-loop program (2.33) cannot
be assigned a type in the refined system. The computation relation B for the
simply-typed λ-calculus is just the restriction of the computation relation for the
untyped λ-calculus to those expressions that can still be derived in the refined
system. As in Section 2.2, the refined system preserves the subject reduction
property: if E B∗ E′ and Γ ` E : T , then Γ ` E′ : T as well. Furthermore, every
simply-typed λ-expression is strongly normalizing. That is, whenever Γ ` E : T
for some environment Γ, expression E and type T , there is no infinite sequence of
computation steps E B E1 B E2 B · · · starting at E.

We have been using the word “function” loosely in reference to expressions
and types. Technically speaking, expressions in the untyped λ-calculus are
not—cannot be interpreted as—functions to be applied in the traditional, set-
theoretic sense. For example, although we can think of the unique expression
λx. x informally as “the identity function”, there is no such thing as the identity
function in the traditional, set-theoretic sense—only a family of identity functions,
one for each domain. By contrast, an expression in the simply-typed λ-calculus
can be interpreted set-theoretically, provided that we fix the type of the expression
and specify a set for each base type mentioned in that type.

2.3.2. The formulas-as-types correspondence. In the simply-typed λ-cal-
culus, as with previous grammars, the tree of inference rules used in a proof
determines the final conclusion of the proof (provided, as before, that instances
of a structural rule with different antecedents count as different inference rules).
We can thus omit expressions and variables from judgments with no loss of
information.

Figure 2.19 shows the result of omitting expressions and variables from the
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Id
T ` T

Γ, T1 ` T2
→ I

Γ ` T1→ T2

Γ ` T1→ T2 ∆ ` T1
→E

Γ,∆ ` T2

Γ[∆] ` T
Weaken

Γ[∆,Θ] ` T
Γ[∆,∆] ` T

Contract
Γ[∆] ` T

Γ[∆,Θ] ` T
Exchange

Γ[Θ,∆] ` T
Γ[(∆,Θ),Π] ` T
================ Associate
Γ[∆, (Θ,Π)] ` T

Figure 2.19. Natural-deduction rules for propositional intuitionistic logic

Id
a→ a ` a→ a

Id
a→ a ` a→ a

Id
a ` a

→E
a→ a, a ` a

→E
a→ a, a ` a

→ I
a→ a ` a→ a

→ I
· ` (a→ a)→ (a→ a)

Figure 2.20. Proving that (a→ a)→ (a→ a)

simply-typed λ-calculus. This “grammar without expressions” turns out to be
a system for propositional intuitionistic logic, as follows. We read a, b, c, . . . as
not base types but atomic formulas, and T1→ T2 as not the function type from
T1 to T2 but the implication formula from T1 to T2. Under this interpretation,
the inference rule named Abstract in Figure 2.17 and → I in Figure 2.19 is
hypothetical reasoning (implication introduction), and the rule named Apply in
Figure 2.17 and→E in Figure 2.19 is modus ponens (implication elimination).
The antecedent, to the left of `, lists the hypotheses that have yet to be discharged.
The structural rules enforce the fact that hypotheses in intuitionistic logic form an
unordered set, from which an unused hypothesis can be freely discarded.

For example, Figure 2.20 (the result of erasing expressions from Figure 2.18)
proves the formula (a→ a)→ (a→ a) in intuitionistic logic. Conversely, the
λ-calculus expression λf . λx. f (fx) is a succinct way to write this proof that saves
space and hides where structural rules are used. This proof is one of an infinite
number of proofs of the same formula:

(2.36) λf . λx. x, λf . λx. fx, λf . λx. f (fx), λf . λx. f (f (fx)), . . . .

Propositional intuitionistic logic thus corresponds to the simply-typed λ-calcu-
lus: Formulas are types (atomic formulas are base types; implication formulas are
function types). Proofs are programs (the trivial proof is a variable; to compose
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· · · Id
T1 ` T1

· · · Id
T1 ` T1

· · ·

·
·
·
·
·
·
·
·
·

E′

Γ, T1 ` T2
→ I

Γ ` T1→ T2

·
·
·
·
·
·

E

∆ ` T1
→E

Γ,∆ ` T2

=⇒

· · ·

·
·
·
·
·
·

E

∆ ` T1 · · ·

·
·
·
·
·
·

E

∆ ` T1 · · ·
·
·
·
·
·
·
·
·
·

E′

Γ,∆ ` T2

Figure 2.21. Proof reduction for→ I followed by→E

two programs is to sequence two proofs). Moreover, to reduce a proof is to
execute a program: to β-reduce a program, as specified in (2.29) on page 33, is
to eliminate the detour in a proof that occurs when the conclusion of→ I is used
as the first premise of →E, as shown in Figure 2.21. The bound variable x in
a λ-abstraction λx. E′ represents a hypothesized proof; to β-reduce the program
(λx. E′)E is to substitute the actual proof E for x in E′. To emphasize this corre-
spondence, we henceforth take Abstract to be synonymous with→ I, and Apply
to be synonymous with→E.

This formulas-as-types correspondence is also called the Curry-Howard iso-
morphism (Howard 1980; Girard et al. 1989; Wadler 2000). We use it in both
directions. First, any semantics for the simply-typed λ-calculus or a variation
on it, such as the usual semantics in which types denote sets and λ-abstractions
denote functions, is a semantics for propositional intuitionistic logic or a (cor-
responding) variation on it. In Section 2.4 below, we present a formal system
for natural-language grammars that is a variation on propositional intuitionistic
logic, and endow that system with just such a semantics: we turn the proof that an
utterance is grammatical into the meaning of that utterance (van Benthem 1983,
1988; Carpenter 1997; Ranta 1994). Our linguistic formalism thus extends the
formulas-as-types correspondence to natural language: formulas and types are
syntactic categories; proofs and programs are utterance meanings.

Second, extensions to propositional intuitionistic logic guide us to extend the
simply-typed λ-calculus. We now follow this guidance to extend the simply-typed
λ-calculus with additional data structures besides functions. These extensions
yield a more practical programming language that is suitable for subsequent
example programs.

2.3.3. Products. Besides functions, we can add ordered pairs to our lan-
guage, to help build data structures with multiple components. A product type
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Expressions Γ ` E : T (additional)

Γ ` E1 : T1 ∆ ` E2 : T2
× I

Γ,∆ ` 〈E1, E2〉 : T1 × T2

∆ ` E : T1 × T2 Γ[x : T1, y : T2] ` E′ : T ′
×E

Γ[∆] ` let E be 〈x, y〉. E′ : T ′

Evaluation contexts C[ ] (additional)

C[ ] ∆ ` E2 : T2

C[〈[ ], E2〉]
Γ ` E1 : T1 C[ ]

C[〈E1, [ ]〉]

C[ ] Γ ` E′ : T ′

C[let [ ] be 〈x, y〉. E′]
∆ ` E : T0 C[ ]

C[let E be 〈x, y〉. [ ]]

Computation E B E′ (additional)

C[let 〈E1, E2〉 be 〈x, y〉. E′] B C[E′ {x 7→ E1} {y 7→ E2}]

Figure 2.22. Adding products to the λ-calculus

T1×T2 classifies an ordered pair of something of type T1 and something of type T2.
For example, assuming that 2 has the type int, the expression 〈2, (λf . f )(λx. x)〉 is
an ordered pair with the type int × (int→ int). To extract the two components of
this pair, we can write code like

(2.37) let 〈2, (λf . f )(λx. x)〉 be 〈x, y〉. yx,

which computes either to

(2.38) ((λf . f )(λx. x))(2)

or to

(2.39) let 〈2, λx. x〉 be 〈x, y〉. yx,

both of which in turn compute to (λx. x)2, and from there to 2. In an expression
like let E be 〈x, y〉. E′, we call E the argument and E′ the body.

Figure 2.22 formalizes the two rules for expressions, four rules for contexts,
and one rule for computation that we just illustrated. Types T are now generated
by the context-free grammar

(2.40) T F A | T → T | T × T ,

with a new case T × T at the end.
Via the formulas-as-types correspondence, a product type (written here with

the connective ×) corresponds to a conjunction formula (written typically with
the connective ∧), and a program of a product type corresponds to a proof of a
conjunction formula. Similarly, corresponding to logical truth (verum, typically
written >) is the unit or singleton type (here written 1). The unit type 1 contains
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Expressions Γ ` E : T (additional)

1 I
· ` 〈〉 : 1

∆ ` E : 1 Γ[·] ` E′ : T ′
1 E

Γ[∆] ` let E be 〈〉. E′ : T ′

Evaluation contexts C[ ] (additional)

C[ ] Γ ` E′ : T ′

C[let [ ] be 〈〉. E′]
∆ ` E : T0 C[ ]
C[let E be 〈〉. [ ]]

Computation E B E′ (additional)

C[let 〈〉 be 〈〉. E′] B C[E′]

Figure 2.23. Adding unit to the λ-calculus

just one element, denoted by the expression 〈〉. It is useful sometimes as a
placeholder. Figure 2.23 formalizes the rules. Types T are now generated by the
context-free grammar

(2.41) T F A | T → T | T × T | 1,

with a new case 1 at the end.

2.3.4. Sums. We can also add disjoint unions of types to our programming
language. A sum type T1 + T2 classifies something of type T1 or type T2, dis-
criminated using labels left and right. For example, if 2 has the type int, then
the expressions left 2 and right((λf . f )(λz. z)) both have the type int + (int→ int).
Given something of sum type T1 + T2, we want to check whether it is a T1 labeled
with left or a T2 labeled with right, and to extract the labeled T1 or T2. To do so,
we can write code like

(2.42) let left 2 be left x. x | right y. y5

(which chooses the left alternative) and

(2.43) let right((λf . f )(λz. z)) be left x. x | right y. y5

(which chooses the right alternative). These programs compute to 2 and 5,
respectively.

Another example, perhaps a more obviously useful one, is to encode the
Boolean type as 1 + 1: the sum of two unit types. We can represent, say, false as
left〈〉 and true as right〈〉, both of type 1 + 1 (but distinct, since we are taking the
disjoint union of 1 and 1). If x and y are both Booleans encoded in this way, of
type 1 + 1, then their conjunction is

(2.44) let x be left u. left〈〉 | right u. y,
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Expressions Γ ` E : T (additional)

Γ ` E : T1
+ I

Γ ` left E : T1 + T2

Γ ` E : T2
+ I

Γ ` right E : T1 + T2

∆ ` E : T1 + T2 Γ[x : T1] ` E′1 : T ′ Γ[y : T2] ` E′2 : T ′
+E

Γ[∆] ` let E be left x. E′1 | right y. E′2 : T ′

Evaluation contexts C[ ] (additional)

C[ ]
C[left [ ]]

C[ ]
C[right [ ]]

C[ ] Γ1 ` E′1 : T ′1 Γ2 ` E′2 : T ′2
C[let [ ] be left x. E′1 | right y. E′2]

∆ ` E : T0 C[ ] Γ ` E′2 : T ′

C[let E be left x. [ ] | right y. E′2]
∆ ` E : T0 Γ ` E′1 : T ′ C[ ]

C[let E be left x. E′1 | right y. [ ]]

Computation E B E′ (additional)

C[let left E be left x. E′1 | right y. E′2] B C[E′1 {x 7→ E}]

C[let right E be left x. E′1 | right y. E′2] B C[E′2 {y 7→ E}]

Figure 2.24. Adding sums to the λ-calculus

and their disjunction is

(2.45) let x be left u. y | right u. right〈〉.

Figure 2.24 formalizes the rules for sum types, which correspond to dis-
junction formulas via the formulas-as-types correspondence. Types T are now
generated by the context-free grammar

(2.46) T F A | T → T | T × T | 1 | T + T ,

with a new case T + T at the end. We could also add an empty type, which would
correspond to the false formula in logic.

2.3.5. Recursion. If an integer like 2 is an expression of type int, then we
can use products to express a pair of integers (such as 〈2, 2〉, of type int × int), as
well as chain products to express longer tuples like a triple of integers (such as
〈2, 〈2, 2〉〉, of type int × (int × int)). To allow for a tuple of 0, 1, 2, or 3 integers,
we can use the sum type

(2.47) 1 + (int + ((int × int) + (int × (int × int)))),

in which we can express a pair of integers (right(right(left〈2, 2〉))) as well as a
triple of integers (right(right(right(left〈2, 〈2, 2〉)))). Alternatively, we can use the
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more concise sum type

(2.48) 1 + (int × (1 + (int × (1 + int)))),

in which again we can express a pair of integers (right〈2, right〈2, left〈〉〉〉) as well
as a triple of integers (right〈2, right〈2, right 2〉〉). This pattern of types lets us deal
with integer lists of any length, as long as a maximum length is specified. For
example, the type (following the pattern in (2.48))

(2.49) 1 + (int × (1 + (int × (1 + (int × (1 + (int × (1 + (int × 1)))))))))

accommodates up to 5 integers. If y is of this type, then the program

(2.50) let y be left u. 0 | right v. let v be 〈x, y〉. x + (
let y be left u. 0 | right v. let v be 〈x, y〉. x + (
let y be left u. 0 | right v. let v be 〈x, y〉. x + (
let y be left u. 0 | right v. let v be 〈x, y〉. x + (
let y be left u. 0 | right v. let v be 〈x, y〉. x))))

computes the sum of the integers in the list.
For programs in the real world as well as examples in this dissertation, we

seldom want to impose a maximum length limit on lists. Products and sums are
not enough to encode lists of arbitrary length. Roughly, we need an “infinite type”
like

(2.51) 1 + (int × (1 + (int × (1 + (int × (1 + (int × (1 + (int × · · · ))))))))),

where “· · · ” is a “miniature copy” of the whole type. In general, for any type T
(such as int), we can define the type list T by the recursive equation

(2.52) list T = 1 + (T × list T ).

Informally speaking, (2.52) defines the type of a list whose elements are of type T ,
by specifying that such a list is either empty or nonempty. If the list is empty, we
represent it by the unit type 1. If the list is nonempty, we represent it by a product
type T × list T , where the first component T represents the first element of the
list, and the second component list T represents the remainder of the list (which
in turn can be empty or nonempty, and so on). Because these are the only two
alternatives for a list, (2.52) defines list T to be a sum type that recursively refers
to list T itself. The type list T is hence called a recursive type.

For the sake of presenting example programs below, we informally introduce
recursive types and programs here. Pierce (2002) and Gapeyev et al. (2002) give
more formal introductions. In particular, this dissertation uses only inductive
types, which we can add to our programming language while preserving the
termination property (Greiner 1992).
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A second example of a recursive type is the type tree T of binary trees, defined
by

(2.53) tree T = T + (tree T × tree T ),

where T is the type of leaf labels. This recursive equation defines tree T to be
a sum type: a binary tree is either a leaf node (containing some data of type T )
or a branch (containing an ordered pair of type tree T × tree T , recursively). For
instance,

(2.54) right〈left 1, right〈left 2, left 3〉〉

is a binary tree, of type tree int. We can think of tree T as the “infinite type”

(2.55) T + ((T + (· · · × · · · )) × (T + (· · · × · · · ))),

where each “· · · ” is a “miniature copy” of the whole type. This “infinite type”
is produced by unrolling the recursion in (2.53)—that is, by repeatedly substi-
tuting (2.53) into itself. Another way to encode binary trees is to define tree T
by

(2.56) tree T = T + ((1 + 1)→ tree T ).

The tree in (2.54) is then encoded as

(2.57) right(λx. let x be left u. left 1
| right u. right(λy. let y be left u. left 2 | right u. left 3)).

As a third example, we can encode integers using a recursive type. An integer
is either 0, a positive integer (in other words, a natural number), or a negative
integer (in other words, the negation of a natural number). We write nat for the
type of natural numbers, defined by the recursive equation

(2.58) nat = 1 + nat

because a natural number is either 1 or the successor of a natural number. Un-
rolling the recursion gives the “infinite type”

(2.59) 1 + (1 + (1 + (1 + · · · ))),

where “· · · ” is a “miniature copy” of the whole type. Having defined nat, we can
then define the type int of integers by the (nonrecursive) equation

(2.60) int = 1 + (nat + nat).

Here 1 is the type of integers that are zero, the first nat is the type of integers
that are positive, and the second nat is the type of integers that are negative.
For example, we encode the integer 3 as right(left(right(right(left〈〉)))), where the
right(left(. . . )) outside means a positive integer, and the right(right(left〈〉)) inside
means the natural number 3.
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Some operations on recursive types can be expressed by ordinary programs.
For example, if E is of type list int, then the program (2.50) on page 42 computes
the sum of the first 5 integers in the list (or of the entire list, if it is shorter than 5
elements). Other operations on recursive types call for recursive programs. Like
a recursive type, a recursive program is defined by a recursive equation, and can
be thought of as the “infinite program” that results from unrolling the equation.
For example, the recursive equation

(2.61) F = λy. let y be left u. 0 | right v. let v be 〈x, y〉. x + Fy

defines an “infinite program” F, so that Fy computes the sum of the integers in
the list y. This “infinite program” (cf. (2.50))

(2.62) λy. let y be left u. 0 | right v. let v be 〈x, y〉. x + (
λy. let y be left u. 0 | right v. let v be 〈x, y〉. x + (
λy. let y be left u. 0 | right v. let v be 〈x, y〉. x + (
λy. let y be left u. 0 | right v. let v be 〈x, y〉. x + (
λy. let y be left u. 0 | right v. let v be 〈x, y〉. x + . . . y)y)y)y)y

is the result of unrolling (2.61). Here “. . . ” is a “miniature copy” of the whole
program.

2.4. Type-logical grammar

We now turn back to natural language. The combinatory structure of the
λ-calculus turns out to be extremely useful for modeling how utterances combine
with each other. For the basic intuition, consider a sentence like

(2.63) Alice saw Bob.

We want to model how the pronunciations and meanings of the individual words
Alice, saw, and Bob combine to form the pronunciation and meaning of the
complete sentence (2.63).

Syntactically, we treat a complex expression as a binary tree whose leaves are
atomic expressions. For example, we treat (2.63) as the binary tree

(2.64)

Alice

wwwwww

;;;;;;;

saw

������
Bob.

<<<<<

(We revisit this grouping below.) The sequence of leaves in a tree from left to right
is the tree’s fringe (also frontier or yield). For example, the fringe of (2.64) is
Alice saw Bob. If a grammar proves a tree well-formed (in other words, classifies,
admits, or generates the tree), then we also say that the grammar proves the tree’s
fringe well-formed.
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Semantically, we treat the verb saw as a function that takes two arguments,
Alice and Bob, to give the sentence (2.63). A simple (or simplistic) theory of
meaning goes as follows: Alice denotes the individual Alice; Bob denotes the
individual Bob; and saw denotes a relation among individuals, or equivalently, a
function from individuals to functions from individuals to Boolean values (true
or false). If Alice did see Bob, then the meaning of saw would be a function
that maps Bob to a function that maps Alice to true. (Note the argument order:
the meaning of saw first takes Bob as argument, then Alice.) A more sophis-
ticated theory of meaning might involve mental concepts, physical references,
or functions from possible worlds as in Section 1.5. For example, a sentence
might denote a propositional formula, a situation description, or a function from
possible worlds to Boolean values. But the basic idea of applying the meaning
of saw as a function to the meanings of Bob and Alice as arguments is the same.
Whatever meanings are, let us say that Alice means a, Bob means b, and saw
means f , so that Alice saw Bob denotes f ba.

To express the syntactic assertion that Alice is a noun phrase alongside the
semantic assertion that Alice means a, we write the λ-calculus judgment

(2.65) a : Alice ` a : np,

pronounced “Alice with the meaning a is an np with the meaning a”. We set
a above in Roman type because it is not in the syntax of the language under
discussion, namely English. In the same judgment, Alice and np are both (base)
types. That is because Alice and np are both (atomic) classifications of expressions:
an expression belongs to the type Alice just in case it is the word Alice, whereas
an expression belongs to the type np just in case it is a noun phrase.

As promised in Section 2.1, this representation of expressions tightly couples
semantics to syntax: each colon connects the semantic meaning of an expres-
sion (to the left) to its syntactic classification (to the right). For example, the
judgment (2.65) should feel natural because the antecedent a : Alice couples the
meaning a to the classification Alice, whereas a :np couples the same meaning a to
the less informative classification np. There is no way to represent an expression
that is well formed but meaningless or ill formed yet meaningful. The turnstile `
models entailment among linguistic classifications, so this judgment says that the
meaning a of every Alice-expression is the meaning of some np-expression. As in
Section 2.3.1, we can take each type to denote a set: we can take np to denote the
set of all individuals, and Alice to denote the singleton set of the individual Alice.

Analogously to (2.65), we write

(2.66) b : Bob ` b : np

to model the word Bob.
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f : saw ` f : np→ np→ s b : Bob ` b : np
→E

f : saw, b : Bob ` f b : np→ s a : Alice ` a : np
→E

( f : saw, b : Bob), a : Alice ` f ba : s
Exchange

a : Alice, ( f : saw, b : Bob) ` f ba : s

(a) Alice saw Bob

·
·
·

(a)
a : Alice, ( f : saw, b : Bob) ` f ba : s

Weaken
a : Alice,

(
( f : saw, b : Bob), c : Carol

)
` f ba : s

(b) *Alice saw Bob Carol

f : saw ` f : np→ np→ s a : Alice ` a : np
→E

f : saw, a : Alice ` f a : np→ s a : Alice ` a : np
→E

( f : saw, a : Alice), a : Alice ` f aa : s
Associate

f : saw, (a : Alice, a : Alice) ` f aa : s
Contract

f : saw, a : Alice ` f aa : s

(c) *saw Alice

Figure 2.25. Natural-language derivations in the simply-typed λ-calculus, using
structural rules to generate acceptable as well as unacceptable sentences

The verb saw is a bit more complicated. Syntactically, it combines with two
noun phrases (np) to form a complete sentence (s, or clause). Semantically, it
applies to two noun-phrase meanings (perhaps individuals) to form a complete-
sentence meaning (perhaps a Boolean). We write

(2.67) f : saw ` f : np→ np→ s

to capture and couple these assertions (Ajdukiewicz 1935). Here saw is a base
type that classifies just the word saw, whereas np→ np→ s is a function type that
classifies those expressions that combine with an np to form an expression that
combines with an np to form an s. This judgment says that the meaning f of every
expression of type saw is the meaning of some expression of type np→ np→ s.
As in Section 2.3, we can take each function type to denote a set of functions: the
type np→ np→ s denotes the set of functions from individuals to functions from
individuals to sentence meanings.

We can now combine these words into a sentence. Figure 2.25a derives Alice
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saw Bob (2.63) in the simply-typed λ-calculus (Figure 2.17). As promised at the
beginning of this chapter, each word in the sentence enters the proof as a premise.
Pairing models juxtaposition of utterances. For example, the judgment

(2.68) f : saw, b : Bob ` f b : np→ s

in the proof says that, if an expression is constituted of one part that can be
classified as saw and means f , followed by another part that can be classified
as Bob and means b, then it can be classified as np→ s and means the function
application f b. The formula np→ s here indicates that saw Bob is incomplete; it
must be applied to another np (in this case Alice) to form a complete sentence.
The final conclusion of the proof says not just that Alice saw Bob means f ba, but
with a particular ordering (Alice before saw before Bob) and grouping (saw with
Bob rather than Alice) of words.

As a model of the structure and meaning of utterances, the simply-typed
λ-calculus suffers from several obvious inaccuracies.

• Phrases cannot be reordered freely in natural language, yet that is pre-
cisely what the Exchange rule allows. One step before Figure 2.25a
concludes correctly that Alice saw Bob is well formed with some mean-
ing, it concludes incorrectly that *saw Bob Alice is also well formed
with the same meaning.
• Irrelevant phrases cannot be inserted in natural language, yet that is pre-

cisely what the Weaken rule allows. Figure 2.25b concludes incorrectly
that *Alice saw Bob Carol is well formed with the same meaning as
Alice saw Bob.
• Duplicate phrases cannot be merged in natural language, yet that is pre-

cisely what the Contract rule allows. Figure 2.25c concludes incorrectly
that *saw Alice is a well-formed sentence that means that Alice saw
herself.
• Phrases cannot be regrouped (that is, the binary tree of constituency

reparenthesized or rebracketed) freely in natural language, yet that is
precisely what the Associate rule allows. Much empirical evidence
indicates that grouping matters in natural language. To take an example
from English: Without grouping, the string ’s mother saw Bob would
have the type np→ s just as the verb phrases saw Bob and heard Carol
do. Yet, whereas the sentence Alice saw Bob and heard Carol means
that Alice saw Bob and Alice heard Carol, the sentence Alice’s mother
saw Bob and heard Carol does not mean that Alice’s mother saw Bob
and Alice heard Carol. We follow standard linguistics practice here in
grouping a transitive verb like saw more tightly with its object Bob than
with its subject Alice.
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Id
x : T ` x : T

Γ, x : T1 ` E : T2
/ I

Γ ` λx. E : T2/T1

x : T1, Γ ` E : T2
\ I

Γ ` λx. E : T1\T2

Γ ` F : T2/T1 ∆ ` E : T1
/E

Γ,∆ ` FE : T2

∆ ` E : T1 Γ ` F : T1\T2
\ E

∆,Γ ` FE : T2

Figure 2.26. The non-associative Lambek calculus without products, with seman-
tics

To deal with these problems, we remove all four structural rules (Weaken, Con-
tract, Exchange, Associate) from the grammar. However, Figure 2.25a uses
Exchange to derive correctly that Alice saw Bob is acceptable. This use of Ex-
change is crucial, because the→E rule in Figure 2.17 only allows a function to
take an argument to its right, yet saw Bob needs to take its argument Alice to
its left. Without Exchange, we need some other way to apply a function to an
argument to the left.

Lambek (1958), following Bar-Hillel (1953), solves the problem by splitting
functions into two groups: those that take arguments to the right (of type T2/T1,
pronounced “T2 from T1” or “T2 over T1”) and those that take arguments to the
left (of type T1\T2, pronounced “T1 into T2” or “T1 under T2”). Figure 2.26
shows the result of the split, with all structural rules removed. Each of the two
function connectives, / and \, has its own introduction and elimination rules. In
this new system, we can assign saw the type (np\s)/np and represent Alice saw
Bob (2.63) by the following proof.

(2.69) a : Alice ` a : np
f : saw ` f : (np\s)/np b : Bob ` b : np

/E
f : saw, b : Bob ` f b : np\s

\ E
a : Alice, ( f : saw, b : Bob) ` f ba : s

One way to understand the inference rules in Figure 2.26 is to think of each
word or phrase as a conserved resource. For example, the verb saw has the type
(np\s)/np because it first consumes an np to its right, then consumes an np to its
left, finally to give an s. Without structural rules, resources can no longer be freely
discarded, duplicated, reordered, or regrouped. Hence this is a substructural logic
(Restall 2000), more specifically multiplicative linear logic (Girard 1987) with
neither commutativity (the Exchange rule) nor associativity (the Associate rule).

By convention, the slashes / and \ associate towards the result type. For
example, c/b/a means the type (c/b)/a, whereas a\b\c means the type a\(b\c).

Figure 2.26 is called the non-associative Lambek calculus without products.
It is an instance of type-logical grammar (or categorial type logic) in that it
uses connectives like / and \ in types to classify utterances and govern their
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Id
T ` T

Γ, T1 ` T2
/ I

Γ ` T2/T1

T1, Γ ` T2
\ I

Γ ` T1\T2

Γ ` T2/T1 ∆ ` T1
/E

Γ,∆ ` T2

∆ ` T1 Γ ` T1\T2
\ E

∆,Γ ` T2

Figure 2.27. The non-associative Lambek calculus without products, without
semantics

combination in a substructural logic (Moortgat 1997). As noted earlier, one
distinguishing property of type-logical grammar is its tight coupling of syntax
and semantics: Via the formulas-as-types correspondence, the proof that classifies
an utterance as well-formed dictates the utterance’s meaning. In particular, the / I
and \ I rules build functions, whereas /E and \ E apply functions. This coupling is
so tight that, for brevity, we omit meanings in most derivations below. Figure 2.27
shows the same inference rules so abbreviated. This abbreviation should not
distract from the crucial constraints that semantics places on linguistic theory. As
we turn below to additional linguistic phenomena like quantification, we often
decide how to analyze them by considering what phrases can mean.

2.4.1. Multimodal type-logical grammar. Section 2.1 above gives three
reasons why context-free grammars are not ideal for modeling natural language.

• They do not exist for some languages.
• They are awkward for some linguistic phenomena.
• They enforce no correspondence between syntax and semantics.

So far we have only addressed the last point, using the formulas-as-types corre-
spondence. As for the first two points (in short, expressiveness), we actually still
cannot describe any set of strings that is not a context-free language: Context-free
grammars and non-associative Lambek grammars generate exactly the same string-
sets. In other words, they have the same weak generative capacity (Buszkowski
1986; see also Kandulski 1988 for the Lambek calculus with products, and Pentus
1993, 1997, 1996 for variations with associativity).

To go beyond context-free languages, we introduce additional modes of
combination besides juxtaposition (Moortgat 1997; Section 4 and references
therein). Most intuitive understanding for these modes comes from their use,
which abounds in Chapter 4. In this section, we just describe the machinery and
demonstrate it with a formal language alluded to in Section 2.1: the set of doubled
strings {ww | w ∈ Σ∗ }, which is not context-free.

The basic idea behind multimodal type-logical grammar is that utterances
may combine in more than one way, and some of these ways may not have arity
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two. For intuition, imagine that we are modeling not utterances pronounced over
time but visual elements laid out on a page (Henderson 1982) or musical notes
arranged in a score (Hudak et al. 1996). Two visual elements may be combined by
juxtaposing them horizontally or vertically (two binary modes of combination);
one visual element may be embellished by framing it with a box (a unary mode of
combination). Two musical notes may be combined by playing them at the same
time or one after another (two binary modes of combination); one musical note
may be embellished with dynamics like forte (a unary mode of combination).

While it may be less obvious at first glance, it is also useful to posit multiple
ways to combine utterances in spoken language: juxtaposition alone is often not
enough to encode the desired syntax and semantics. Indeed, our linguistic analyses
in Chapter 4 rely crucially on adding binary and unary modes and specifying how
they interact.

For example, to analyze the copular sentence

(2.70) Alice is a woman,

it is intuitive to take the noun woman to mean a function that applies to the
meaning of Alice to yield the meaning of the sentence: perhaps woman is a
function from individuals to Booleans that maps women to true and others to
false. In other words, woman is a noun that predicates of Alice. However, we
cannot assign the type np\s or s/np to woman, because neither *Alice woman nor
*woman Alice is an acceptable sentence in English. Rather, Section 4.3.1 below
introduces a new binary mode ,n (the subscript n being mnemonic for “noun”)
for combining something with a noun that predicates of it. We then assign the
type np\ns to woman, so that the judgment

(2.71) Alice,n woman ` s

is derivable, while the judgment

(2.72) Alice, woman ` s

remains not derivable.
To take another example, the wh-question who Alice saw in the sentence

(2.73) Bob knows who Alice saw

can be analyzed as the function λx. f xa, where f and a are the meanings of saw
and Alice as above. In general, we can analyze a wh-question to mean a function
from a short answer (such as Carol) to a proposition (such as that Alice saw
Carol) (Krifka 2001). However, who Alice saw cannot have the type np\s or
s/np, because neither *Carol who Alice saw nor *who Alice saw Carol is an
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Γ,m x : T1 ` E : T2
/m I

Γ ` λx. E : T2/mT1

x : T1,m Γ ` E : T2
\m I

Γ ` λx. E : T1\mT2

Γ ` F : T2/mT1 ∆ ` E : T1
/m E

Γ,m ∆ ` FE : T2

∆ ` E : T1 Γ ` F : T1\mT2
\m E

∆,m Γ ` FE : T2

Figure 2.28. Adding a binary mode m to the Lambek calculus without products

acceptable sentence in English, let alone one that means that Alice saw Carol.
Rather, Section 4.5.2 below introduces a new binary mode ,? for combining
something with a question that predicates of it. We then arrange for our grammar
to derive the type np\?s for who Alice saw, so that the judgment

(2.74) Carol,?
(
who, (Alice, saw)

)
` s

is derivable, while the judgment

(2.75) Carol,
(
who, (Alice, saw)

)
` s

remains not derivable.
For the linguistic applications in Chapter 4, yet another binary mode is crucial.

In Section 4.1, we treat a context as an expression in its own right. We then
introduce the continuation mode, which combines a subexpression with a context
to form a larger expression by plugging the subexpression into the context, or
equivalently, by wrapping the context around the subexpression. Informally
speaking, we arrange for the continuation mode to combine the subexpression
Bob with the context Alice saw [ ]’s mother to form the larger expression Alice
saw Bob’s mother.

Motivated by these examples, we now formalize multiple modes of combi-
nation. The non-associative Lambek calculus (without products) in Figures 2.26
and 2.27 (on pages 48–49) has a single, binary mode of combination, which
formally models the juxtaposition of expressions with grouping. Thus the syntax
of an expression is treated as a binary tree with a single kind of branch nodes,
unlabeled in (2.64) on page 44. This mode of combination is called the default
mode. In an antecedent, it is represented by the comma.

To add a new binary mode to type-logical grammar, we simply duplicate the
comma and the connectives / and \, as follows. We first pick a letter, say m, to
distinguish this new mode from others. We let two type environments Γ and ∆
be combined using a new comma “,m” into a larger type environment Γ,m ∆.
We also add types of the form T2/mT1 and T1\mT2, where T1 and T2 are types.
Finally, we add the inference rules in Figure 2.28. These rules are just the rules in
Figure 2.26 (except Id) with m subscripted everywhere. Just as the semantics in
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〈Γ〉m ` E : T
�↓m I

Γ ` E : �↓mT
Γ ` E : T

^m I
〈Γ〉m ` E : ^mT

Γ ` E : �↓mT
�↓m E

〈Γ〉m ` E : T
∆ ` E : ^mT0 Γ[〈x : T0〉m] ` E′ : T

^m E
Γ[∆] ` let E be x. E′ : T

Figure 2.29. Adding a unary mode m to the Lambek calculus

Figure 2.26 does not distinguish between / and \ in abstractions and applications,
the semantics here does not distinguish /m, \m, /, and \ from each other. This
choice reflects the popular intuition that different binary modes regulate just
syntactic combination.

To add a unary mode to type-logical grammar, we again pick a letter m. We
then let a type environment Γ be enclosed in a pair of angle brackets 〈 〉m to form
a larger type environment 〈Γ〉m. We also add types of the form ^mT and �↓mT ,
where T is a type. Finally, we add the inference rules in Figure 2.29. The unary
type connective ^m and the corresponding unary structural punctuation 〈 〉m
represent this new mode of combination in types and type environments, much
as the binary structural punctuation , (comma) represents juxtaposition in type
environments. By convention, unary connectives have higher precedence than
binary connectives, so ^ma/b means the type (^ma)/b rather than ^m(a/b).

The category theorist will recognize that these rules specify that ^m and �↓m
are a pair of functors that form an adjunction. The modal logician can take ^m

to mean “in some world accessible from here” and take �↓m to mean “in every
world accessible to here”. The reader who is more comfortable with binary modes
can treat 〈Γ〉m as t,m Γ, ^mT as t,m T , and �↓mT as t\mT , for some base type t and
binary mode m. The rules for the unary m mode then follow from Id and the rules
for the binary m mode (including for products).

The semantics shown in Figure 2.29 essentially forgets the unary mode; for
example, the premise and conclusion have the same meaning in the first three
rules. This choice reflects how the linguistic analyses in this dissertation use unary
modes, namely to regulate just syntactic combination as we now demonstrate
briefly. Moortgat (1997; Section 4.2.1) describes another semantics for unary
modes that attributes semantic significance to them, such as intensionality and
information structure.

A multimodal type-logical grammar can contain any number of modes, of any
arity (Dunn 1991), though we only need binary and unary modes. Each mode
can have its own structural rules. For example, if we want a binary mode m to be
associative but not the default mode, we can leave out the Associate rule for the
default mode in Figure 2.17, as discussed above, but add the corresponding rule
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for mode m:

(2.76)
Γ[(∆,mΘ),mΠ] ` E : T
====================== Associatem.
Γ[∆,m (Θ,mΠ)] ` E : T

Moreover, modes can interact through mixed structural rules, which are structural
rules that mention multiple modes. For example, if we want to allow reordering
certain phrases, we can introduce a unary mode m, and arrange for reorderable
phrases to have types of the form ^mT . The default (binary) mode and the new
unary mode m can then communicate through the following Exchange-like mixed
rule.

(2.77)
Γ[〈∆〉m, 〈Θ〉m] ` E : T
Γ[〈Θ〉m, 〈∆〉m] ` E : T

This rule allows a pair of juxtaposed phrases to be reordered as long as their types
are both enclosed by ^m.

With multiple modes of combination, we need to redefine what it means for a
grammar to generate a string. A multimodal grammar designates certain modes,
including the default mode, as external. We say that the grammar generates
a string if the grammar proves a tree well-formed whose fringe is the string,
and which is built up from atomic expressions using only external modes. For
example, because we do not designate the binary modes n and ? as external in
Chapter 4, deriving the judgments (2.71) and (2.74) on pages 50–51 does not
generate the strings *Alice woman and *Carol who Alice saw (that is, does not
predict the strings to be acceptable sentences). Informally speaking, a mode is
external just in case a speaker can pronounce it. Otherwise, it is internal.

To demonstrate all this machinery, Figure 2.30 shows a multimodal grammar
that generates the context-sensitive language of strings of the form ww, where w
is any string over the alphabet {a, b}. This grammar uses three modes: the default
binary mode (unnamed), a new binary mode d, and a new unary mode (unnamed).
Only the default mode is external.

The idea behind this grammar is to create structures ∆,d Θ such that ∆ and Θ
are identical. To achieve this, the lexical entries create and juxtapose copies of
the structures a,d a and b,d b. Structural rule 2 then lets the d mode “bubble up”
to the top level. Figure 2.30 derives the doubled string aabaab using structural
rule 2 twice. Finally (at the bottom of the derivation), structural rule 1 changes
the top-level composition mode from d to default, which renders the antecedent
pronounceable. Because the d mode only combines a with a and b with b in the
lexicon, this grammar generates only strings of the form ww.
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Lexicon
a ` �↓s/da a ` (�↓s\�↓s)/da b ` �↓s/db b ` (�↓s\�↓s)/db

Structural rules
Γ[〈∆,d Θ〉] ` E : T

1
Γ[∆, Θ] ` E : T

Γ[(∆1,d Θ1), (∆2,d Θ2)] ` E : T
2

Γ[(∆1, ∆2),d (Θ1, Θ2)] ` E : T

Sample derivation of aabaab

a ` �↓s/da
Id

a ` a
/d E

a,d a ` �↓s
a ` (�↓s\�↓s)/da

Id
a ` a

/d E
a,d a ` �↓s\�↓s

\ E
(a,d a), (a,d a) ` �↓s

b ` (�↓s\�↓s)/db
Id

b ` b
/d E

b,d b ` �↓s\�↓s
\ E

((a,d a), (a,d a)), (b,d b) ` �↓s
2

((a, a),d (a, a)), (b,d b) ` �↓s
2

((a, a), b),d ((a, a), b) ` �↓s
�↓ E

〈((a, a), b),d ((a, a), b)〉 ` s
1

((a, a), b), ((a, a), b) ` s

Figure 2.30. A multimodal type-logical grammar that generates the context-
sensitive language of doubled strings {ww | w ∈ {a, b}∗ }



CHAPTER 3

The analogy: delimited control and quantification

In Chapter 1, we saw two instances of similarity between a computational
side effect and a linguistic side effect: state can be analyzed like anaphora, and
environment can be analyzed like intensionality. Armed with the formal tools
from Chapter 2, we now consider a third instance: delimited control can be
analyzed like quantification. As in Chapter 1, we first present the two side effects
and how they have been treated in programming-language theory and linguistics.
We then make the new observation that the side effects are similar, so as to come
up with better treatments in Chapters 4 and 5.

3.1. Delimited control

The model of computation embodied by the λ-calculus of Section 2.3 is “hier-
archical”: two disjoint subexpressions of the same program execute in isolation.
For example, the program

(3.1) (λx. x)2 + (λy. y)3

contains two disjoint subexpressions (λx. x)2 and (λy. y)3. Either subexpression
can undergo β-reduction separately, in either order, without affecting the other or
changing the final result 5 of the program.

(λx. x)2 + (λy. y)3 B 2 + (λy. y)3 B 2 + 3 B 5(3.2)
(λx. x)2 + (λy. y)3 B (λx. x)2 + 3 B 2 + 3 B 5(3.3)

Whenever a context (like [ ] + (λy. y)3) waits to be plugged with an evaluation
result (like 2), only one subexpression (like (λx. x)2) may evaluate to provide that
evaluation result. This hierarchy of computation simplifies parallel execution:
should a second processor become available, it can evaluate a chosen subexpres-
sion concurrently and provide the result separately without interfering with or
being interfered with by the evaluation of the rest of the program, that is, the
context of the chosen subexpression.

Sometimes, however, we want multiple ways to plug a context. For example,
suppose that we have a list of integers, of type list int from Section 2.3.5, and
want to compute the product of its elements. The recursive function (cf. (2.61) on

55
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page 44)

(3.4) P1 = λy. let y be left u. 1 | right v. let v be 〈x, y〉. x × P1y

does the job. For example, applying P1 to the list

(3.5) L1 = right〈4, right〈3, right〈2, left〈〉〉〉〉

gives the program P1L1, which executes as follows. (Ellipsis below stands for
left u. 1 | right v. let v be 〈x, y〉. x × P1y.)

P1(right〈4, right〈3, right〈2, left〈〉〉〉〉)(3.6)
B let right〈4, right〈3, right〈2, left〈〉〉〉〉 be . . .
B let 〈4, right〈3, right〈2, left〈〉〉〉〉 be 〈x, y〉. x × P1y
B 4 × P1(right〈3, right〈2, left〈〉〉〉)
B 4 × let right〈3, right〈2, left〈〉〉〉 be . . .
B 4 × let 〈3, right〈2, left〈〉〉〉 be 〈x, y〉. x × P1y
B 4 × (3 × P1(right〈2, left〈〉〉))
B 4 × (3 × let right〈2, left〈〉〉 be . . . )
B 4 × (3 × let 〈2, left〈〉〉 be 〈x, y〉. x × P1y)
B 4 × (3 × (2 × P1(left〈〉)))
B 4 × (3 × (2 × let left〈〉 be . . . ))
B 4 × (3 × (2 × 1))
B 4 × (3 × 2)
B 4 × 6
B 24

However, this solution may compute the product for every suffix of the given list.
If we already know that 0 appears in the list, then we also know that the product
is 0, so we need not compute the product for any remaining suffix of the list. For
example, to compute the product for the list

(3.7) L2 = right〈4, right〈0, right〈3, right〈2, left〈〉〉〉〉〉,

there is no need to calculate 3 × 2, or even 4 × 0, once we see 0.
To make it easy to optimize computing the product of a list with 0 in it,

we extend our programming language with features for delimited control in
Section 3.1.1 below. Despite the familiarity of these features, our initial attempt
at these features makes the language dangerously nonconfluent. We then fix the
problem in Section 3.1.2 by restricting the computation relation using the notions
of values and evaluation contexts.
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3.1.1. A first attempt. To implement this optimization, we extend our pro-
gramming language with two constructs, # (pronounced “prompt” or “reset”) and
abort. The reader familiar with exception handling in programming languages
may think of abort as a primitive variant of throw, and # as a primitive variant of
try . . . catch.

If E is an expression, then so are #E and abort E. If we were working in the
untyped rather than simply-typed λ-calculus, then we would add to Figure 2.14
on page 31 the inference rules

(3.8)
Γ ` E
Γ ` #E

and

(3.9)
Γ ` E

Γ ` abort E
.

We leave it to Section 3.2.2, after describing the semantics of # and abort, to
extend the simply-typed λ-calculus with formal typing rules for these constructs.

With # and abort, we can write the recursive function

P2 = λy. #(P′2y)(3.10)

P′2 = λy. let y be left u. 1
| right v. let v be 〈x, y〉.

(if x = 0 then abort 0 else x) × P′2y

(3.11)

and apply P2 to the given list. In words, abort 0 means to replace the subexpres-
sion inside the innermost enclosing # by 0, that is, answer 0 to the #. By “the
subexpression inside the innermost enclosing #”, we mean the smallest subexpres-
sion #E that contains abort 0 in the running program when abort 0 takes effect,
not in the initial written program.

In a first attempt to formalize how # and abort execute, we could add the
following steps to the computation relation.

C[#E] B C[E](3.12)
C[#(D[abort E′])] B C[#E′](3.13)

The metavariable D[ ] stands for an evaluation subcontext, or subcontext for short:
an evaluation context whose [ ] is not enclosed in #. This proviso matches abort
to the innermost enclosing #. Because subcontexts are crucial to delimited control,
we formalize the notion in Figure 3.1. This figure defines a new judgment form
D[ ] : d, which means that D[ ] is a subcontext. The two inference rules at the
bottom of the figure redefine contexts C[ ] in terms of subcontexts; these two
rules are equivalent to Figures 2.17, 2.22, 2.23, and 2.24 taken together.
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Evaluation subcontexts D[ ] : d

[ ] : d
D[ ] : d

D[λx. [ ]] : d
D[ ] : d ∆ ` E : T1

D[[ ]E] : d
Γ ` F : T0 D[ ] : d

D[F[ ]] : d

D[ ] : d ∆ ` E2 : T2

D[〈[ ], E2〉] : d
Γ ` E1 : T1 D[ ] : d

D[〈E1, [ ]〉] : d
D[ ] : d Γ ` E′ : T ′

D[let [ ] be 〈x, y〉. E′] : d

∆ ` E : T0 D[ ] : d
D[let E be 〈x, y〉. [ ]] : d

D[ ] : d Γ ` E′ : T ′

D[let [ ] be 〈〉. E′] : d
∆ ` E : T0 D[ ] : d
D[let E be 〈〉. [ ]] : d

D[ ] : d
D[left [ ]] : d

D[ ] : d
D[right [ ]] : d

D[ ] : d Γ1 ` E′1 : T ′1 Γ2 ` E′2 : T ′2
D[let [ ] be left x. E′1 | right y. E′2] : d

∆ ` E : T0 D[ ] : d Γ ` E′2 : T ′

D[let E be left x. [ ] | right y. E′2] : d
∆ ` E : T0 Γ ` E′1 : T ′ D[ ] : d

D[let E be left x. E′1 | right y. [ ]] : d

Evaluation contexts C[ ]
D[ ] : d

D[ ]
C[ ]

C[#(D[ ])]

Figure 3.1. Defining evaluation subcontexts and redefining evaluation contexts

The intention of the new constructs # and abort is for the program P2L2 to ex-
ecute as follows. (Ellipsis below stands for 〈x, y〉. (if x = 0 then abort 0 else x)×
P′2y.)

P2 (right〈4, right〈0, right〈3, right〈2, left〈〉〉〉〉〉)
(3.14)

B #(let right〈4, right〈0, right〈3, right〈2, left〈〉〉〉〉〉 be left u. 1
| right v. let v be . . . )

B #(let 〈4, right〈0, right〈3, right〈2, left〈〉〉〉〉〉 be . . . )
B #((if 4 = 0 then abort 0 else 4) × P′2(right〈0, right〈3, right〈2, left〈〉〉〉〉))
B #((if false then abort 0 else 4) × P′2(right〈0, right〈3, right〈2, left〈〉〉〉〉))
B #(4 × P′2(right〈0, right〈3, right〈2, left〈〉〉〉〉))
B #(4 × let right〈0, right〈3, right〈2, left〈〉〉〉〉 be left u. 1 | right v. let v be . . . )
B #(4 × let 〈0, right〈3, right〈2, left〈〉〉〉〉 be . . . )
B #(4 × ((if 0 = 0 then abort 0 else 0) × P′2(right〈3, right〈2, left〈〉〉〉)))
B #(4 × ((if true then abort 0 else 0) × P′2(right〈3, right〈2, left〈〉〉〉)))
B #(4 × ((abort 0) × P′2(right〈3, right〈2, left〈〉〉〉)))
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B #0 by (3.13)
B 0 by (3.12)

The context #[ ] in P2 can be plugged in two ways—either by sequentially com-
pleting the recursion over the entire list, or by abort. The steps above take the
second way out before inspecting right〈3, right〈2, left〈〉〉〉 at all, as desired. We
say that the control operator abort transfers control in the program nonlocally,
from within P′2 to the control delimiter # (Felleisen 1987, 1988). Another way
to understand this behavior is that abort actively takes control over, rather than
passively reporting to, its evaluation subcontext: the subcontext D[ ] in (3.13)
expects to receive an evaluation result from abort E′, but is instead discarded by
abort E′ without receiving anything.

Unfortunately, our computation relation is too permissive for this approach
to work as is. Although the desired sequence of computation steps in (3.14) is
possible, so are many undesired sequences. First, because

(3.15) (λy. let y be left u. 1
| right v. let v be 〈x, y〉. (if x = 0 then [ ] else x) × P′2y)y

is an evaluation subcontext, abort 0 in P2 may take effect right away, before the
function is applied to any list y, with or without 0.

(3.16) P2 B λy. #0 B λy. 0

If y contains no 0, this premature evaluation of abort then produces the wrong
product. Second, according to (3.12) on page 57, the # in P2 may be removed at
any time, not necessarily as late as in (3.14).

(3.17) P2 B λy. P′2y

This premature evaluation of # then prevents abort 0 from matching the # in P2.
Third, because

(3.18) if x = 0 then abort 0 else [ ]

is an evaluation context, even when P2 encounters 0 in the list, it may not skip the
rest of the list. For example, an alternative ending to (3.14) is

P2L2 B
+ #(4 × ((abort 0) × P′2(right〈3, right〈2, left〈〉〉〉)))

B+ #(4 × ((abort 0) × 6))
B #0 by (3.13)
B 0 by (3.12).

(3.19)

In this scenario, abort 0 takes effect only after the partial product 6 is computed
for the rest of the list.
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Values Γ `V V : T

IdVx : T `V x : T
Γ, x : T1 ` E : T2

→ IV
Γ `V λx. E : T1→ T2

Γ `V V1 : T1 ∆ `V V2 : T2
× IV

Γ,∆ `V 〈V1, V2〉 : T1 × T2

1 IV
· `V 〈〉 : 1

Γ `V V : T1
+ IV

Γ `V left V : T1 + T2

Γ `V V : T2
+ IV

Γ `V right V : T1 + T2

Γ[∆] `V V : T
WeakenV

Γ[∆,Θ] `V V : T
Γ[∆,∆] `V V : T

ContractV
Γ[∆] `V V : T

Γ[∆,Θ] `V V : T
ExchangeV

Γ[Θ,∆] `V V : T
Γ[(∆,Θ),Π] `V V : T
==================== AssociateV
Γ[∆, (Θ,Π)] `V V : T

Figure 3.2. Defining values in the λ-calculus

Without # and abort, our programming language is confluent and strongly
normalizing, so every way to execute a given program yields the same outcome.
The new constructs give rise to some desirable computation sequences but also
some undesirable ones. To distinguish the baby from the bathwater and address the
problems illustrated above, we restrict the computation relation to a deterministic
one below.

3.1.2. Enforcing call-by-value, left-to-right evaluation. Following Fellei-
sen (1987) in this section, we define a new notion of values and modify our
existing notion of evaluation contexts, so as to shrink the computation relation
for our language to one that is deterministic in that it enforces call-by-value,
left-to-right evaluation.

Figure 3.2 defines certain expressions to be values. As in Section 2.2, a value
is the result of a successful computation, as opposed to an expression that can
still compute to a subsequent expression or that is stuck due to an error. (As
mentioned in Section 2.3.1, the last case is impossible for well-formed terms in
the simply-typed λ-calculus.) We introduce a new judgment form

(3.20) Γ `V V : T .

It means that V is a value expression of type T in the type environment Γ. The
metavariable V stands for an expression that is a value. It is easy to check that
Γ ` V : T is provable whenever Γ `V V : T is provable.

As the inference rules in Figure 3.2 indicate, a variable or an abstraction is
always a value, even if the body of the abstraction is not a value. An expression
that introduces a product, unit, or sum type—in other words, an expression of
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the form 〈E1, E2〉, 〈〉, left E, or right E—is a value just in case its parts E, E1, E2

are values. No other expression is a value. For example, λf . fx, 〈〉, and 〈f , left〈〉〉
are values in an appropriate environment, whereas let x be 〈y, z〉. 〈y, z〉, #〈〉, and
〈fx, left〈〉〉 are well-formed expressions in an appropriate environment, but not
values in any environment.

To execute a program call-by-value (Plotkin 1975) is to choose computation
steps so as to substitute only values for variables, and so as to never look under
a variable binding (that is, never examine the body of an abstraction or let-
expression) for a subexpression to evaluate. For example, the computation relation
that we have been using contains both

(λx. left x)((λy. right y)〈〉) = let (let 〈〉 be y. right y) be x. left x
B (λx. left x)(right〈〉) = let (right〈〉) be x. left x

(3.21)

and

(λx. left x)((λy. right y)〈〉) = let (let 〈〉 be y. right y) be x. left x
B left((λy. right y)〈〉) = left(let 〈〉 be y. right y)

(3.22)

as possible steps from the same program. Call-by-value evaluation eschews
(3.22) in favor of (3.21), in order to substitute only values for variables: (3.21)
substitutes the value 〈〉 for the variable y, whereas (3.22) substitutes the nonvalue
(λy. right y)〈〉 for the variable x. To take another example, this computation
relation contains both

(λy. (λx. left x)(right y))〈〉 = let 〈〉 be y. let (right y) be x. left x
B (λx. left x)(right〈〉) = let (right〈〉) be x. left x

(3.23)

and

(λy. (λx. left x)(right y))〈〉 = let 〈〉 be y. let (right y) be x. left x
B (λy. left(right y))〈〉 = let 〈〉 be y. left(right y)

(3.24)

as possible steps from the same program. Call-by-value evaluation eschews
(3.24) in favor of (3.23), in order to avoid looking under a variable binding for
a subexpression to evaluate: (3.23) β-reduces the top-level expression, whereas
(3.24) β-reduces a body under a binding for y. In the programming languages in
Chapter 2, such choices of computation steps are inconsequential, in the sense
that the computation relation is confluent: the programs above all compute to
left(right〈〉) eventually. But abort destroys confluence, as shown in Section 3.1.1
and below.

#((λx. abort 1)(abort 2)) B #2 B 2(3.25)
#((λx. abort 1)(abort 2)) B #1 B 1(3.26)
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Call-by-value evaluation rules out (3.26) and restores confluence in this case.
To execute a program left-to-right is to choose computation steps so as to

evaluate subexpressions of a branching expression (that is, an expression of the
form FE or 〈E1, E2〉) from left to right. For example, the computation relation
that we have been using contains both

〈(λx. x)〈〉, (λx. x)〈〉〉 B 〈〈〉, (λx. x)〈〉〉(3.27)

and

〈(λx. x)〈〉, (λx. x)〈〉〉 B 〈(λx. x)〈〉, 〈〉〉(3.28)

as possible steps from the same program. Both steps are consistent with call-
by-value, but left-to-right evaluation eschews (3.28) in favor of (3.27), in order
to evaluate the first component of the ordered pair before the second. To take
another example, this computation relation contains both

((λf . f )(λx. left x))((λy. right y)〈〉) B (λx. left x)((λy. right y)〈〉)(3.29)

and

((λf . f )(λx. left x))((λy. right y)〈〉) B ((λf . f )(λx. left x))(right〈〉)(3.30)

as possible steps from the same program. Both steps are consistent with call-by-
value, but left-to-right evaluation eschews (3.30) in favor of (3.29), in order to
evaluate the function before the argument of the top-level application expression.
The presence of abort destroys confluence in our language, as shown below.

#((abort 1)(abort 2)) B #1 B 1(3.31)
#((abort 1)(abort 2)) B #2 B 2(3.32)

Left-to-right evaluation rules out (3.32) and restores confluence for this program.
Call-by-value, left-to-right evaluation makes computation deterministic (and

hence trivially restores confluence): each expression either is in normal form or
computes to exactly one expression in a step under such discipline. Figure 3.3
enforces this discipline by restricting the computation relation.

The top part of Figure 3.3 replaces the inference rules for evaluation sub-
contexts in Figure 3.1 on page 58. The new rules are fewer and stricter: To
avoid looking under a variable binding for a subexpression to evaluate, contexts
like λx. [ ] are no longer allowed. To evaluate subexpressions of a branching
expression from left to right, contexts like F[ ] and 〈E, [ ]〉 are only allowed when
F and E are values.
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Evaluation subcontexts D[ ] : d

[ ] : d
D[ ] : d ∆ ` E : T1

D[[ ]E] : d
Γ `V V : T0 D[ ] : d

D[V[ ]] : d

D[ ] : d ∆ ` E : T2

D[〈[ ], E〉] : d
Γ `V V : T1 D[ ] : d

D[〈V, [ ]〉] : d

D[ ] : d
D[left [ ]] : d

D[ ] : d
D[right [ ]] : d

D[ ] : d Γ ` E′ : T ′

D[let [ ] be 〈x, y〉. E′] : d

D[ ] : d Γ ` E′ : T ′

D[let [ ] be 〈〉. E′] : d
D[ ] : d Γ1 ` E′1 : T ′1 Γ2 ` E′2 : T ′2
D[let [ ] be left x. E′1 | right y. E′2] : d

Computation E B E′

C[(λx. E′)V] B C[E′ {x 7→ V}]

C[let 〈V1, V2〉 be 〈x, y〉. E′] B C[E′ {x 7→ V1} {y 7→ V2}]

C[let 〈〉 be 〈〉. E′] B C[E′]

C[let left V be left x. E′1 | right y. E′2] B C[E′1 {x 7→ V}]

C[let right V be left x. E′1 | right y. E′2] B C[E′2 {y 7→ V}]

C[#V] B C[V]

C[#(D[abort E′])] B C[#E′]

Figure 3.3. Restricting the computation relation to enforce call-by-value, left-to-
right evaluation in a λ-calculus with # and abort

The bottom part of Figure 3.3 replaces the computation relation defined in
Section 2.3 on page 30. The new computation relation is smaller: it substitutes
only values V , V1, V2 for variables x, y, z.

With these restrictions, the recursive function P2 in (3.10) on page 57 now
works reliably on all integer lists. However, at least two fundamental issues
remain.

First, we have presented the syntax for # and abort only informally, without
providing formal rules that specify when an expression using these constructs
is well-formed. It is not trivial to add these inference rules while preserving the
crucial property of subject reduction, because we want to classify the same abort
expression as well-formed or ill-formed depending on the program it appears in.
For example, abort 2 should be allowed in

1 + #(let abort 2 be 〈x, y〉. x + y) B 1 + #2 B 1 + 2 B 3(3.33)
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bxc = x

bλx. Ec = λx. JEK
b〈V1, V2〉c = 〈bV1c, bV2c〉

b〈〉c = 〈〉

bleft Vc = leftbVc
bright Vc = rightbVc

Figure 3.4. The evaluation result bVc of values V in the λ-calculus

because the computation concludes in a value, but disallowed in

let #(1 + abort 2) be 〈x, y〉. x + y B let #2 be 〈x, y〉. x + y
B let 2 be 〈x, y〉. x + y

(3.34)

because the computation gets stuck. What should the type of abort 2 be?
Second, to assign a denotational semantics to this programming language that

is sound and compositional, we can no longer just let each expression denote its
evaluation result. For one thing, any abort expression without a matching # is
stuck: it neither is a value nor computes to an expression, so it has no evaluation
result to speak of or denote. Yet, replacing one abort expression by another
as part of a larger expression can obviously affect the outcome of the larger
expression. For example, the outcome of 1 + #(abort 2) is 3, but the outcome of
1 + #(abort 3) is 4. Thus, as in Section 1.4, each expression can no longer just
denote its evaluation result.

Strictly speaking, it makes sense to assign denotations to well-formed expres-
sions only once it is defined what well-formed expressions are. For exposition,
however, we address denotations first, then return to typing.

3.2. Continuations for delimited control

In this section, we give a well-known denotational semantics and correspond-
ing type system for abort, then generalize them to other control operators. We use
the repeatedly rediscovered (Reynolds 1993) concept of continuations (Strachey
and Wadsworth 1974; Plotkin 1975).

With the addition of # and abort, not every program in our language has an
evaluation result; for example, abort〈〉 is stuck. Still, every expression that is
a value has an evaluation result; for example, the syntactic expression 〈〈〉, 〈〉〉
results in the semantic pair 〈〈〉, 〈〉〉. We write bVc for the evaluation result of
a value V , specified in Figure 3.4. The right-hand side of this definition is the
λ-calculus of Section 2.3, without # and abort. Although one could program
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in this target language, we use it merely as a metalanguage in which to notate
evaluation results bVc as semantic objects. For example, we write 〈left〈〉, right〈〉〉
in Roman type to mean an ordered pair in the set-theoretic sense. (The second line
of Figure 3.4 defines the evaluation result of λx. E in terms of the denotation JEK
of an expression E, which we leave unspecified until Section 3.2.1 below.)

Every program of the form #( . . . ) also has an evaluation result; for example,
#(abort〈〉) results in 〈〉. Every evaluation context C[ ] thus corresponds to a
continuation dC[ ]e: a function that maps the evaluation result bVc of a value V to
the evaluation result of #(C[V]). For example, corresponding to the evaluation
context

(3.35) 1 + [ ] + 4

is the continuation

(3.36) λx. 1 + x + 4,

the function that maps each number x to x+5. (This λ-abstraction is set in Roman
type, because the continuation lies in not the syntax but the semantics of the
programming language under discussion.) Informally, we may write the type
equation

(3.37) continuation = plugged-value→ intermediate-answer.

For example, the continuation (3.36) is a function from numbers to numbers,
reflecting the fact that plugging a numeric value into #(1 + [ ] + 4) gives (in other
words, sends to the #) a numeric intermediate answer.

For an evaluation subcontext D[ ], the function dD[ ]e is sort of a denotation.
More precisely, every syntactic rule in the top part of Figure 3.3 on page 63 for
building subcontexts D[ ] corresponds to a semantic rule for building continua-
tions dD[ ]e. For example, the first rule for building subcontexts is that [ ] is a
subcontext.

(3.38) [ ] : d
Because the evaluation result of #V is V for any value V , the corresponding
continuation d[ ]e is the identity function λx. x: the plugged value is the same as
the evaluation result.

To take a second example, the fifth rule for building subcontexts is that,
whenever D[ ] is a subcontext and V is a value, D[〈V, [ ]〉] is again a subcontext.

(3.39)
Γ `V V : T1 D[ ] : d

D[〈V, [ ]〉] : d

Given two values V1 and V2, the evaluation result of #(D[〈V1, V2〉]) is

(3.40) dD[ ]eb〈V1, V2〉c
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by the definition of dD[ ]e. Because

(3.41) b〈V1, V2〉c = 〈bV1c, bV2c〉,

this evaluation result is also

(3.42) dD[ ]e〈bV1c, bV2c〉.

Therefore,

(3.43) dD[〈V1, [ ]〉]ebV2c = dD[ ]e〈bV1c, bV2c〉.

In other words,

(3.44) dD[〈V1, [ ]〉]e = λy. dD[ ]e〈bV1c, y〉.

Thus the continuation for D[ ] and the evaluation result for V1 together determine
the continuation for D[〈V1, [ ]〉].

To calculate the continuation for a subcontext that contains a nonvalue expres-
sion, such as for a subcontext built using the fourth rule

(3.45)
D[ ] : d ∆ ` E : T2

D[〈[ ], E〉] : d
in Figure 3.3 on page 63, we need to assign denotations to nonvalue expressions E.
We now turn to these denotations.

3.2.1. The continuation-passing-style transform. As we saw in Section
3.1.1, an abort expression actively takes control over, rather than passively report-
ing an evaluation result to, its evaluation subcontext. Semantically speaking, it
does not provide an argument to the continuation for its evaluation subcontext. To
model this denotationally, we follow Strachey and Wadsworth (1974) and let each
expression E denote not its evaluation result (which may not even exist) but a
function that maps the continuation dD[ ]e for each evaluation subcontext D[ ] to
the evaluation result of #(D[E]). The idea is that an expression takes a subcontext
as argument, whereas a subcontext only takes a value as argument. The rest of
this section formalizes this idea.

For example, we let 2 denote not the number 2 but the function λc. c(2),
because dD[ ]e(2) is the evaluation result of #(D[2]) for any D[ ]. By contrast, we
let abort 2 denote the constant function λc. 2, because 2 is the evaluation result of
#(D[abort 2]) for any D[ ].

Informally, we may write the type equation (cf. (3.37) on page 65)

(3.46) denotation = continuation→ intermediate-answer.

Thus, a plugged value and an expression denotation combine semantically in
opposite ways with a continuation to give an intermediate answer: whereas a
continuation applies to a plugged value to produce an intermediate answer, an
expression denotation applies to a continuation to produce an intermediate answer.
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JVK = λc. cbVc

J〈E1, E2〉K = λc. JE1K(λx. JE2K(λy. c〈x, y〉))

Jleft EK = λc. JEK(λx. c(left x))

Jright EK = λc. JEK(λx. c(right x))

JFEK = λc. JFK(λ f . JEK(λx. f xc))

Jlet E be 〈x, y〉. E′K = λc. JEK(λv. let v be 〈x, y〉. JE′Kc)

Jlet E be 〈〉. E′K = λc. JEK(λv. let v be 〈〉. JE′Kc)

Jlet E be left x. E′1 | right y. E′2K = λc. JEK(λv. let v be left x. JE′1Kc | right y. JE′2Kc)

J#EK = λc. c(JEK(λx. x))

Jabort EK = λc. JEK(λx. x)

Figure 3.5. The continuation-passing-style transform JEK for expressions E in
the λ-calculus with # and abort, under call-by-value, left-to-right evaluation

Figure 3.5 makes this idea precise in the form of a translation, called a
continuation-passing-style transform.1 As in Figure 3.4, the translation maps the
λ-calculus extended with # and abort to the λ-calculus of Section 2.3, without #
and abort. As before, although one could program in the target language, we use it
merely as a metalanguage in which to notate the meaning JEK that our denotational
semantics assigns to each source-language expression E. For example, we write
λx. x in Roman type to mean an identity function in the set-theoretic sense.

Figure 3.5 specifies the denotation JEK of an expression E in terms of the
evaluation result bVc of a value V . (Recall that the translation from V to bVc is
specified in Figure 3.4; in particular, bλx. Ec is defined to be λx. JEK, so Figures
3.4 and 3.5 are mutually recursive.) Because every value is an expression, JVK is
defined whenever bVc is defined. When V is a value, and D[ ] is an evaluation
subcontext, the evaluation result of #(D[V]) must be equal to dD[ ]ebVc by the
definition of dD[ ]e, and to JVKdD[ ]e by the first paragraph of this section. Hence
JVKdD[ ]e must be dD[ ]ebVc, so we must define JVK to be λc. cbVc for a value V ,
which we do in the first line of Figure 3.5.

Similar reasoning explains the continuation-passing-style transform for pairs,

(3.47) J〈E1, E2〉K = λc. JE1K(λx. JE2K(λy. c〈x, y〉)).

The type equations (3.37) and (3.46) say that the denotation of a pair expres-

1Strictly speaking, this translation (like its extension in Figure 3.9 on page 76) maps expres-
sions (in particular #E) to continuation-composing style (Danvy and Filinski 1990) rather than
continuation-passing style.
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sion 〈E1, E2〉 should be a function from functions from pairs to answers to an-
swers. To see this, let D[ ] be a subcontext that is waiting to be plugged with a
pair. For any value V1, the evaluation result of #(D[〈V1, E2〉]) must be equal to
JE2KdD[〈V1, [ ]〉]e by the definition of JE2K. Hence

(3.48) dD[〈[ ], E2〉]e = λx. JE2K(λy. dD[ ]e〈x, y〉)

by the definition of dD[〈[ ], E2〉]e and the conclusion (3.44) on page 66. Whether
or not E1 is a value, the evaluation result of #(D[〈E1, E2〉]) must be equal to
J〈E1, E2〉KdD[ ]e by the definition of J〈E1, E2〉K, and to JE1KdD[〈[ ], E2〉]e by the
definition of JE1K. By (3.48), J〈E1, E2〉KdD[ ]e must be

(3.49) JE1K(λx. JE2K(λy. dD[ ]e〈x, y〉)),

so J〈E1, E2〉K must be

(3.50) λc. JE1K(λx. JE2K(λy. c〈x, y〉)).

Figure 3.5 specifies the denotation of some expressions multiple times, con-
sistently. That is, if E is a value of the form 〈V1, V2〉, left V , or right V , then we
can compute JEK either using the first line of Figure 3.5 (shown below on the left)
or using other lines of Figure 3.5 (shown below on the right).

J〈V1, V2〉K = λc. cb〈V1, V2〉c J〈V1, V2〉K = λc. JV1K(λx. JV2K(λy. c〈x, y〉))(3.51)

Jleft VK = λc. cbleft Vc Jleft VK = λc. JVK(λx. c(left x))(3.52)

Jright VK = λc. cbright Vc Jright VK = λc. JVK(λx. c(right x))(3.53)

It is easy to check that the results above on the right β-reduce to those on the left,
so the two ways give the same denotation. For example, we can compute the
denotation of the source expression

(3.54) 〈left〈〉, right〈〉〉

in two ways (among others). On one hand, because this expression is a value, we
can use its evaluation result bleft〈〈〉, right〈〉〉c.

J〈left〈〉, right〈〉〉K = λc. cbleft〈〈〉, right〈〉〉c
= λc. c〈bleft〈〉c, bright〈〉c〉
= λc. c〈leftb〈〉c, rightb〈〉c〉
= λc. c〈left〈〉, right〈〉〉

(3.55)

This denotation is a function from continuations to evaluation results. It makes
sense because dD[ ]e〈left〈〉, right〈〉〉 is the result of #(D[〈left〈〉, right〈〉〉]) for any
D[ ]. On the other hand, we can also use the continuation-passing-style transform
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for pairs.

J〈left〈〉, right〈〉〉K
= λc. Jleft〈〉K(λx. Jright〈〉K(λy. c〈x, y〉))
= λc. (λc1. c1bleft〈〉c)(λx. (λc2. c2bright〈〉c)(λy. c〈x, y〉))
= λc. (λc1. c1(leftb〈〉c))(λx. (λc2. c2(rightb〈〉c))(λy. c〈x, y〉))
= λc. (λc1. c1(left〈〉))(λx. (λc2. c2(right〈〉))(λy. c〈x, y〉))

(3.56)

We get the same denotation: the last line of (3.56) β-reduces to the last line
of (3.55).

The continuation-passing-style transform for pairs is necessary to compute
the denotation of a pair whose components are not both values. For example,
given

Jabort(left〈〉)K = λc. Jleft〈〉K(λx. x)
= λc. (λc′. c′bleft〈〉c)(λx. x)
= λc. left〈〉,

(3.57)

we can compute the denotation of

(3.58) 〈abort(left〈〉), abort(right〈〉)〉

as follows.

J〈abort(left〈〉), abort(right〈〉)〉K
= λc. Jabort(left〈〉)K(λx. Jabort(right〈〉)K(λy. c〈x, y〉))

= λc. (λc1. left〈〉)(λx. Jabort(right〈〉)K(λy. c〈x, y〉))
= λc. left〈〉

(3.59)

This denotation is again a function from continuations to evaluation results. It
makes sense under left-to-right evaluation, in that left〈〉 is the result of

(3.60) #(D[〈abort(left〈〉), abort(right〈〉)〉])

for any D[ ]. In particular, when D[ ] is the null context [ ], this denotational
semantics tells us (correctly) that the outcome of

(3.61) #〈abort(left〈〉), abort(right〈〉)〉

is left〈〉 rather than right〈〉. The continuation-passing-style transform for pairs
thus enforces left-to-right evaluation. For right-to-left evaluation instead, we
would change Figure 3.5 to replace (3.47) on page 67 by

(3.62) J〈E1, E2〉K = λc. JE2K(λy. JE1K(λx. c〈x, y〉)).
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The expression translation for FE enforces left-to-right evaluation analogously,
for example so that

(3.63) (abort(left〈〉))(abort(right〈〉))

denotes λc. left〈〉 rather than λc. right〈〉.
The denotation in (3.59) also enforces call-by-value evaluation: It specifies

that the outcome of the program

(3.64) #(let 〈abort(left〈〉), abort(right〈〉)〉 be 〈x, y〉. 〈〉)

(which is the expression (3.58) plugged into the evaluation context #(let [ ] be
〈x, y〉. 〈〉)) is left〈〉 rather than 〈〉. In other words, it prohibits substituting the
nonvalues abort(left〈〉) and abort(right〈〉) for x and y in 〈〉. If we wanted to
relax this prohibition, the denotation of (3.58) would have to be of a different
type, such as a pair of functions from continuations rather than a function from
continuations to pairs. The other equations in Figure 3.5 similarly embody call-
by-value evaluation in the source language (Plotkin 1975; Sabry and Felleisen
1993; Sabry 1994, 1996): for example, the expression

(3.65) (λx. abort(left〈〉))(abort(right〈〉))

denotes λc. right〈〉 rather than λc. left〈〉.
Having enriched denotations to be functions from continuations rather than

just evaluation results, we can assign meanings to # and abort expressions, as
shown in Figure 3.5 and repeated below.

J#EK = λc. c(JEK(λx. x))(3.66)

Jabort EK = λc. JEK(λx. x)(3.67)

These equations are explained by the fact that the null context corresponds to the
identity continuation: formally, d[ ]e = λx. x. By the definition of JEK, the evalua-
tion result of #E is JEK(λx. x). Inspecting the computation relation in Figure 3.3
on page 63 shows that D[#E] B D[#E′] whenever #E B #E′, for any expressions
E and E′ and any subcontext D[ ]. By the definition of dD[ ]e, then, the evalua-
tion result of any D[#E] is dD[ ]e(JEK(λx. x)), so J#EK must be λc. c(JEK(λx. x)).
Meanwhile, the equation (3.67) makes sense because #(D[abort E]) computes to
#E, whose evaluation result is JEK(λx. x).

To illustrate, we can compute the denotation of

(3.68) (λv. abort〈〉)(#〈abort(left〈〉), abort(right〈〉)〉)
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as follows.

Jλv. abort〈〉K = λc. cbλv. abort〈〉c

= λc. c(λv. Jabort〈〉K)

= λc. c(λv. λc′. J〈〉K(λx. x))
= λc. c(λv. λc′. (λc′′. c′′b〈〉c)(λx. x))
= λc. c(λv. λc′. (λc′′. c′′〈〉)(λx. x))
= λc. c(λv. λc′. 〈〉)

(3.69)

J#〈abort(left〈〉), abort(right〈〉)〉K
= λc. c(J〈abort(left〈〉), abort(right〈〉)〉K(λx. x))
= λc. c((λc′. left〈〉)(λx. x))
= λc. c(left〈〉)

(3.70)

J(λx. abort〈〉)(#〈abort(left〈〉), abort(right〈〉)〉)K

= λc. Jλx. abort〈〉K
(λ f . J#〈abort(left〈〉), abort(right〈〉)〉K(λx. f xc))

= λc. (λc1. c1(λv. λc′. 〈〉))(λ f . (λc2. c2(left〈〉))(λx. f xc))
= λc. 〈〉

(3.71)

As one expects from call-by-value, left-to-right evaluation, the denotation λc. 〈〉
is equal to that of abort〈〉 alone.

We have seen that adding delimited control to a programming language forces
us to revise our denotational semantics, and how to model delimited control using
functions from continuations (in other words, functions from functions from
results to results to results) as denotations.

3.2.2. Types for continuations. As the target language of our continuation-
passing-style transform, the simply-typed λ-calculus provides not just a denota-
tional semantics for the source language but also a type system: via the transform,
not only do denotations for the simply-typed λ-calculus pull back to provide deno-
tations for delimited control, but the typing rules for the simply-typed λ-calculus
also pull back to provide typing rules for delimited control. In this section, we
spell out the latter type system, due to Danvy and Filinski (1989).

Recall from (2.46) on page 41 that types in Section 2.3 are generated by the
following context-free grammar.

T F A | T → T | T × T | 1 | T + T(3.72)
AF a | b | c | · · ·(3.73)

The metavariable T ranges over types; the metavariable A ranges over base types.
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Expressions Γ ` E : W( (T)W0)

Γ `V V : T
Value

Γ ` V : W0( (T)W0)
Γ ` E1 : W( (T1)W1) ∆ ` E2 : W1( (T2)W0)

× I
Γ,∆ ` 〈E1, E2〉 : W( ((T1 × T2))W0)

Γ ` E : W( (T1)W0)
+ I

Γ ` left E : W( ((T1 + T2))W0)
Γ ` E : W( (T2)W0)

+ I
Γ ` right E : W( ((T1 + T2))W0)

Γ ` F : W( ((T1→W1( (T2)W0)))W2) ∆ ` E : W2( (T1)W1)
→E

Γ,∆ ` FE : W( (T2)W0)

∆ ` E : W( ((T1 × T2))W1) Γ[x : T1, y : T2] ` E′ : W1( (T ′)W0)
×E

Γ[∆] ` let E be 〈x, y〉. E′ : W( (T ′)W0)

∆ ` E : W( (1)W1) Γ[·] ` E′ : W1( (T ′)W0)
1 E

Γ[∆] ` let E be 〈〉. E′ : W( (T ′)W0)

∆ ` E : W( ((T1 + T2))W1)
Γ[x : T1] ` E′1 : W1( (T ′)W0)
Γ[y : T2] ` E′2 : W1( (T ′)W0)

+E
Γ[∆] ` let E be left x. E′1 | right y. E′2 : W( (T ′)W0)

Γ ` E : W( (T)T )
#

Γ ` #E : W0( (W)W0)
Γ ` E : W( (T)T )

abort
Γ ` abort E : W( (T0)W0)

Γ[∆] ` E : W( (T)W0)
Weaken

Γ[∆,Θ] ` E : W( (T)W0)
Γ[∆,∆] ` E : W( (T)W0)

Contract
Γ[∆] ` E : W( (T)W0)

Γ[∆,Θ] ` E : W( (T)W0)
Exchange

Γ[Θ,∆] ` E : W( (T)W0)
Γ[(∆,Θ),Π] ` E : W( (T)W0)
============================= Associate
Γ[∆, (Θ,Π)] ` E : W( (T)W0)

Figure 3.6. Defining expressions in the λ-calculus with # and abort

To deal with delimited control operators in the programming language, we change
function types from the binary construction T1→T2 to the quaternary construction
T1 → W( (T2)W0), where T1, W, T2, W0 are four types. A type of this form is
pronounced “T1 to W outside T2 inside W0”. Here T1 is the usual argument type
and T2 is the usual return type, while W and W0 are types that record the context in
which a function may be applied, as described below. Types T are now generated
by the context-free grammar

(3.74) T F A | T → T( (T)T ) | T × T | 1 | T + T
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Figure 3.6 replaces the judgment form

(3.75) Γ ` E : T

for expressions in the simply-typed λ-calculus with a new judgment form

(3.76) Γ ` E : W( (T)W0)

for expressions in our programming language with # and abort. Again,( is
pronounced “outside”, and ) is pronounced “inside”. This judgment form means
that, given any evaluation subcontext D[ ] such that a value of type T can be
plugged into #(D[ ]) to yield an evaluation result of type W0, we can plug the
expression E into #(D[ ]) to yield an evaluation result of type W.

The types W0 and W are known as answer types. This terminology reflects
the intuition that W0 and W are types of the evaluation result of an expression
of the form #(D[E]). In other words, W0 and W are types of an intermediate
answer provided to a control delimiter. In the simply-typed λ-calculus, the
continuation dD[ ]e for the subcontext D[ ] has the type bT c → bW0c, indicating
that the evaluation result of #(D[E]) has type W0 whenever E is a value of type T .
For E to satisfy (3.76) means that the evaluation result of #(D[E]) has the type W
in the end. Therefore, if E is a value, then the two answer types W0 and W are the
same. Indeed they are in the Value rule in Figure 3.6.

Informally speaking, then, a judgment of the form (3.76) means that E is an
expression that behaves locally like the type T , but takes control over its delimited
evaluation context, changing the intermediate answer type from W0 to W. In other
words, when we put E inside a subcontext D[ ] that expects an evaluation result
of type T so as to produce an intermediate answer of type W0, the expression E
does not report an evaluation result to D[ ] as a value would. Rather, it takes
(the continuation for) D[ ] as a semantic argument. Similarly, a function type
of the form T1→W1( (T2)W0) means that applying the function to something
of type T1 behaves locally like the return type T2, but takes control over the
delimited evaluation context of the application, changing the intermediate answer
type from W0 to W1.

With this new judgment form for expressions, we also change the→ IV rule
in Figure 3.2 on page 60 from

(3.77)
Γ, x : T1 ` E : T2

→ IV
Γ `V λx. E : T1→ T2

to

(3.78)
Γ, x : T1 ` E : W( (T2)W0)

→ IV.
Γ `V λx. E : T1→W( (T2)W0)

Here W0 and W are types that record the context in which the expression E
may be evaluated. The expression judgment form (3.76) and the value judgment
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form (3.20) on page 60 are designed for the continuation-passing-style transform
to translate. To make this statement precise, let us recursively define a map b·c
from each type T of the form (3.74) to a type bT c of the form (3.72).

bAc = A(3.79)

bT1→W( (T2)W0)c = bT1c → (bT2c → bW0c)→ bWc(3.80)
bT1 × T2c = bT1c × bT2c(3.81)

b1c = 1(3.82)
bT1 + T2c = bT1c + bT2c(3.83)

Given a type environment Γ where the types are of the form (3.74), we write
bΓc to mean applying b·c to each type in Γ to form a type environment in the
simply-typed λ-calculus. The inference rules in Figures 3.2 and 3.6 are reverse-
engineered from Figures 3.4 and 3.5 to satisfy two properties that are easy to
check by mutual structural induction on source-language derivations.

• Whenever Figure 3.2 (with (3.78) in place of (3.77)) derives Γ `V V : T ,
the simply-typed λ-calculus derives bΓc ` bVc : bT c.
• Whenever Figure 3.6 derives Γ ` E : W( (T)W0), the simply-typed
λ-calculus derives bΓc ` JEK : (bT c → bW0c)→ bWc.

For example, let us check the first property for when V is an abstraction: suppose
that V = λx. E for some x and E. A derivation of Γ `V V : T must conclude with
(3.78) or one of the structural rules in Figure 3.2. If the derivation concludes
with (3.78), then T is of the form T1→W( (T2)W0), and Figure 3.6 must derive

(3.84) Γ, x : T1 ` E : W( (T2)W0).

By the induction hypothesis, the simply-typed λ-calculus must derive

(3.85) bΓc, x : bT1c ` JEK : (bT2c → bW0c)→ bWc.

The inference

(3.86)
bΓc, x : bT1c ` JEK : (bT2c → bW0c)→ bWc

→ I
bΓc ` λx. JEK : bT1c → (bT2c → bW0c)→ bWc

in the simply-typed λ-calculus then derives bΓc ` bVc : bT c, as desired. If the
derivation concludes with a structural rule instead, the corresponding structural
rule in the simply-typed λ-calculus completes the induction.

To illustrate this type system, let us derive two sample expressions. First,
Figure 3.7a proves that 〈left〈〉, right〈〉〉 (from (3.54) on page 68) is a well-formed
expression. (We omit structural inferences in this proof and those following.)
This proof works for any answer type W. The final judgment

(3.87) · ` 〈left〈〉, right〈〉〉 : W( (((1 + a) × (b + 1)))W)
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1 IV
· `V 〈〉 : 1

Value
· ` 〈〉 : W( (1)W)

+ I
· ` left〈〉 : W( ((1 + a))W)

1 IV
· `V 〈〉 : 1

Value
· ` 〈〉 : W( (1)W)

+ I
· ` right〈〉 : W( ((b + 1))W)

× I
· ` 〈left〈〉, right〈〉〉 : W( (((1 + a) × (b + 1)))W)

(a) Using the Value rule twice at the top

1 IV
· `V 〈〉 : 1

+ IV
· `V left〈〉 : 1 + a

1 IV
· `V 〈〉 : 1

+ IV
· `V right〈〉 : b + 1

× IV
· `V 〈left〈〉, right〈〉〉 : (1 + a) × (b + 1)

Value
· ` 〈left〈〉, right〈〉〉 : W( (((1 + a) × (b + 1)))W)

(b) Using the Value rule once at the bottom

Figure 3.7. Proving that 〈left〈〉, right〈〉〉 is well formed

1 IV
· `V 〈〉 : 1

+ IV
· `V left〈〉 : 1 + a

Value
·` left〈〉:(1+a)( ((1+a))(1+a))

abort
·`abort(left〈〉):(1+a)( (T1)(b+1))

1 IV
· `V 〈〉 : 1

+ IV
· `V right〈〉 : b + 1

Value
·`right〈〉:(b+1)( ((b+1))(b+1))

abort
·`abort(right〈〉):(b+1)( (T2)W)

× I
· ` 〈abort(left〈〉), abort(right〈〉)〉 : (1 + a)( ((T1 × T2))W)

Figure 3.8. Proving that 〈abort(left〈〉), abort(right〈〉)〉 is well formed

says that, given any subcontext D[ ] such that a value of type (1 + a) × (b + 1)
can be plugged into #(D[ ]) to yield an evaluation result of type W, we can plug
the expression 〈left〈〉, right〈〉〉 into #(D[ ]) to yield an evaluation result of type W.
This conclusion is not surprising because 〈left〈〉, right〈〉〉 is itself a value of type
(1 + a)× (b + 1). Consequently, we can derive the same judgment using the Value
rule just once, as Figure 3.7b does.

Second, Figure 3.8 shows a proof that 〈abort(left〈〉), abort(right〈〉)〉 (from
(3.58) on page 69) is well formed. The final judgment says that, given any
evaluation context D[ ] such that a value (of any product type T1 × T2) can be
plugged into #(D[ ]) to yield a result (of any type W), we can plug 〈abort(left〈〉),
abort(right〈〉)〉 into #(D[ ]) to yield an evaluation result of type 1+a. This last type
is 1 + a rather than b + 1, because the × I rule in Figure 3.6 enforces left-to-right
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Types T

T F A | T → T( (T)T ) | T × T | 1 | T + T | T)T

Expressions Γ ` E : W( (T)W0) (additional)

Γ, c : T)W0 ` E : W( (T)W0)
Plug

Γ ` #(cE) : W0( (W)W0)
Γ, c : T0)W0 ` E : W( (T)T )

Shift
Γ ` ξc. E : W( (T0)W0)

Computation E B E′ (additional)

C[#(D[ξc. E′])] B C[#E′ {c[ ] 7→ D[ ]}]

Continuation-passing-style transform JEK (additional)

Jξc. EK = λc. JEK(λx. x)

Figure 3.9. Abstracting control

evaluation by chaining the answer types W0, W1, and W among its conclusion and
two premises. In particular, enclosing this expression in #[ ] gives an evaluation
result of type 1 + a (namely left〈〉).

(3.88)

·
·
·

Figure 3.8
· ` 〈abort(left〈〉), abort(right〈〉)〉 : (1 + a)( ((T1 × T2))(T1 × T2))

#
· ` #〈abort(left〈〉), abort(right〈〉)〉 : W( ((1 + a))W)

3.2.3. Higher-order delimited control. So far, we have
• added # and abort to the syntax of the λ-calculus (in Figure 3.2 on

page 60 with (3.78) on page 73 in place of (3.77) on page 73, and in
Figure 3.6 on page 72);
• specified their operational semantics using evaluation contexts (in Fig-

ure 3.3 on page 63); and
• provided them with a denotational semantics based on continuations (in

Figure 3.4 on page 64 and Figure 3.5 on page 67).
This setup supports another delimited control operator, shift (Danvy and Filinski
1989, 1990, 1992). Shift is higher-order in that it allows passing continuations
as functional values (Felleisen 1987, 1988). It subsumes the first-order operator
abort, which only discards continuations. We first describe the syntax and
semantics of shift, then demonstrate its use in programming examples.

Figure 3.9 adds shift to our programming language. It is a binding construct:
the expression ξc. E (pronounced “shift c in E”) binds the variable c in the body E.
The variable c is special in that it is bound to a subcontext rather than a value.
This fact is indicated in the type environment by assigning to c a type of the
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(new) form T)W, which means that c is a subcontext that can be plugged with a
value of type T to produce an intermediate answer of type W. We prohibit the
IdV rule in Figure 3.2 on page 60 from accessing a variable of such a type in the
environment. Instead, the Plug rule must be used, which forces c to appear in the
form #(cE), which means to plug the expression E into the subcontext c. This
way, we distinguish between plugging E as a subexpression into a subcontext c
and feeding E as an argument to a function c, even though the concrete syntax
for Apply and Plug both juxtapose c and E. This new presentation of higher-
order delimited control becomes important in Chapter 5, where we introduce a
programming language in which an expression may be a subcontext (“coterm”)
or a subexpression (“term”), whether or not it is a function.

The surrounding # required by the Plug rule is a technical detail to make the
small-step operational semantics in Figure 3.9 match the continuation-passing-
style denotational semantics (Danvy and Filinski 1989, 1990, 1992). The intuition
lies in Section 3.2.1 why we restrict ourselves to plugging an expression E into a
subcontext D[ ] only when D[ ] is surrounded by #: the continuation for D[ ] only
tells us, given a value V , the evaluation result of #(D[V]), which is surrounded
by #. This # distinguishes shift from other delimited control operators, such as
Felleisen’s control (1987, 1988), which is the first delimited control operator in the
literature. Continuation-passing-style denotational semantics are also available for
these other operators, but they are trickier (Felleisen et al. 1987, 1988; Kiselyov
2005; Shan 2004c; Biernacki et al. 2005a; Dybvig et al. 2005).

The computation step in Figure 3.9 is defined in terms of a new kind of substi-
tution: instead of substituting a value V for a variable x in a body expression E′ to
yield the new expression E′ {x 7→ V}, we substitute a context D[ ] for a variable c
in a body expression E′ to yield the new expression E′ {c[ ] 7→ D[ ]}. This new
kind of substitution is defined just in case c appears in E′ only in subexpressions
of the form #(cE), that is, only by the Plug rule. To substitute D[ ] for c in such E′

is to replace each #(cE) by #(D[E]).
The syntactic rules, operational semantics, and denotational semantics for

ξc. E are all identical to those for abort E if we ignore the bound variable c.
Indeed, both constructs skip the rest of the computation until the innermost
enclosing #, and provide an intermediate answer directly to that #. If the body E
never mentions c, then ξc. E degenerates into abort E. That is, we can treat
abort E as just syntactic sugar for ξc. E, where c is a freshly chosen name that
does not appear in E.

(3.89) 1 + #(10 × ξc. 2) B 1 + #2 B 1 + 2 B 3

Unlike abort E, the expression ξc. E lets E use the captured evaluation con-
text (D[ ] in Figure 3.9). For example, ξc. #(c2) means to capture the current
continuation as c, then restore it right away, so ξc. #(c2) can be replaced by 2



78 3. The analogy: delimited control and quantification

without affecting the outcome of the program. Thus the following computation
sequences have the same result.

1 + #(10 × 2) B 1 + #20 B 1 + 20 B 21(3.90)
1 + #(10 × ξc. #(c2)) B 1 + ##(10 × 2)

B 1 + ##20 B 1 + #20 B 1 + 20 B 21
(3.91)

The expression ξc. #(c2) above captures its surrounding delimited context 10 × [ ]
(or semantically, the continuation λv. 10 × v) as c when evaluated.

Besides discarding the captured context and reinstating it right away, we can
also reuse it later. For example, the following program duplicates a captured
context.

1 + #(10 × ξc. #(c#(c2))) B 1 + ##(10 × #(10 × 2))
B 1 + ##(10 × #20) B 1 + ##(10 × 20)
B 1 + ##200 B 1 + #200 B 1 + 200 B 201

(3.92)

The captured context can also be reused outside the body E in ξc. E. For example,
the program below uses ξc. λv. #(cv) to suspend a computation as a function
containing a captured context, then resumes it (twice) outside the delimiting #.

let 〈2, #(10 × ξc. λv. #(cv))〉 be 〈x, f〉. 1 + f (fx)(3.93)
B let 〈2, #(λv. #(10 × v))〉 be 〈x, f〉. 1 + f (fx)
B let 〈2, λv. #(10 × v)〉 be 〈x, f〉. 1 + f (fx)
B 1 + (λv. #(10 × v))((λv. #(10 × v))2)
B 1 + (λv. #(10 × v))(#(10 × 2))
B 1 + (λv. #(10 × v))(#20)
B 1 + (λv. #(10 × v))20
B 1 + #(10 × 20) B 1 + #200 B 1 + 200 B 201

We conclude this discussion of delimited control with a more practical pro-
gramming example for shift: the classical same-fringe problem. The goal is to
write a (recursive) function F such that, given two binary trees of integers E1

and E2, the evaluation result of FE1E2 is a Boolean value that indicates whether
their fringes are the same.

The input trees E1 and E2 are represented by values of type tree int, defined
in Section 2.3.5 by the recursive equation (2.53) on page 43:

(3.94) tree int = int + (tree int × tree int).
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For example, the following two binary trees have the same fringe, namely the
sequence 1, 2, 3.

(3.95) right〈left 1, right〈left 2, left 3〉〉

1
uuuuu
IIIIII

2
uuuuu

3

IIIII

right〈right〈left 1, left 2〉, left 3〉
uuuuuu 3

IIIII

1
uuuuu

2

IIIII

By contrast, the following binary tree has a different fringe, namely the sequence
2, 3, 1.

(3.96) right〈right〈left 2, left 3〉, left 1〉
uuuuuu 1

IIIII

2
uuuuu

3

IIIII

For clarity, we write leaf and branch in place of left and right when using this
encoding of binary trees. For example, the trees in (3.95) are

(3.97) branch〈leaf 1, branch〈leaf 2, leaf 3〉〉

and

(3.98) branch〈branch〈leaf 1, leaf 2〉, leaf 3〉,

and the tree in (3.96) is

(3.99) branch〈branch〈leaf 2, leaf 3〉, leaf 1〉.

The output Boolean is represented by a value of type 1 + 1, as mentioned in
Section 2.3.4: either left〈〉 if the fringes are different, or right〈〉 if the fringes are
the same. For clarity, we write false and true for left〈〉 and right〈〉 when using
this encoding of Booleans.

One simple solution to the same-fringe problem is to first compute the fringes
of the input trees, then compare the two fringes as lists. To start, we represent
a fringe as a value of type list int, defined in Section 2.3.5 by the recursive
equation (2.52) on page 42:

(3.100) list int = 1 + (int × list int).

For clarity, we write nil and cons for left and right when using this encoding of
lists.

The Fringe1 function below computes the fringe of an input tree. It has the
type tree int→W( (list int)W) for any answer type W. It is defined in terms of a
recursive function Fringe′1, which takes two arguments.

(3.101) Fringe1 = λt . Fringe′1 t (nil〈〉)
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The expression Fringe′1 t l means to prepend the fringe of the tree t before the
list l. Thus Fringe′1 is of type tree int→ W( ((list int→ W ′( (list int)W ′)))W)
for any answer types W and W ′.

(3.102) Fringe′1 = λt . λl. let t be leaf x. cons〈x, l〉
| branch y. let y be 〈t1, t2〉.

Fringe′1 t1 (Fringe′1 t2 l)

The recursive function Same1 below checks whether two lists are equal. It has
the type list int→W( ((list int→W ′( ((1 + 1))W ′)))W) for any answer types
W and W ′.

(3.103) Same1 = λl1. λl2. let l1 be nil u1. let l2 be nil u2. true
| cons v2. false

| cons v1. let l2 be nil u2. false
| cons v2. let v1 be 〈x1, y1〉.

let v2 be 〈x2, y2〉.
if x1 = x2

then Same1 y1 y2

else false

Finally, we can put these two steps together into the desired function F. It has the
type tree int→W( ((tree int→W ′( ((1 + 1))W ′)))W) for any answer types W
and W ′.

(3.104) F = λt1. λt2. Same1(Fringe1 l1)(Fringe1 l2)

To check this solution against the examples in (3.95) and (3.96), we can
compute

F(branch〈leaf 1, branch〈leaf 2, leaf 3〉〉)
(branch〈branch〈leaf 1, leaf 2〉, leaf 3〉)

(3.105)

B+ Same1 (Fringe1(branch〈leaf 1, branch〈leaf 2, leaf 3〉〉))
(Fringe1(branch〈branch〈leaf 1, leaf 2〉, leaf 3〉))

B+ Same1 (cons〈1, cons〈2, cons〈3, nil〈〉〉〉〉)
(Fringe1(branch〈branch〈leaf 1, leaf 2〉, leaf 3〉))

B+ Same1 (cons〈1, cons〈2, cons〈3, nil〈〉〉〉〉)
(cons〈1, cons〈2, cons〈3, nil〈〉〉〉〉)

B+ true
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as well as

F(branch〈leaf 1, branch〈leaf 2, leaf 3〉〉)
(branch〈branch〈leaf 2, leaf 3〉, leaf 1〉)

(3.106)

B+ Same1 (Fringe1(branch〈leaf 1, branch〈leaf 2, leaf 3〉〉))
(Fringe1(branch〈branch〈leaf 2, leaf 3〉, leaf 1〉))

B+ Same1 (cons〈1, cons〈2, cons〈3, nil〈〉〉〉〉)
(Fringe1(branch〈branch〈leaf 2, leaf 3〉, leaf 1〉))

B+ Same1 (cons〈1, cons〈2, cons〈3, nil〈〉〉〉〉)
(cons〈2, cons〈3, cons〈1, nil〈〉〉〉〉)

B+ false.

The test in (3.106) reveals an inefficiency in this solution: even though the two
fringes differ at the very beginning (1 is not 2), this solution still computes the rest
of the fringes before Same1 returns false. We want to interleave the computation
of the two fringes with their comparison. In other words, we want to represent a
fringe as a lazy list, or a stream (Friedman and Wise 1976). Shift provides one
way to program such interleaving, by suspending the two fringe computations
and resuming them bit by bit during comparison (Biernacki et al. 2005b,c).2

A fringe is either empty or nonempty. The solution above represents a
nonempty fringe by an ordered pair whose components are the first element
of the fringe (an integer) and the rest of the fringe (a fringe, recursively). We
now change this representation to an ordered pair whose components are the first
element of the fringe (still an integer) and a suspended computation that, when
resumed, produces the rest of the fringe (a function from the unit type to a fringe,
recursively). Formally, we represent fringes using the recursive type (cf. (3.100)
on page 79)

(3.107) fringe = 1 + (int × (1→W( (fringe)W))),

where W is any answer type. The type of a suspended fringe computation

(3.108) 1→W( (fringe)W)

is the type of #(D[ξc. λv. #(cv)]), if #(D[〈〉]) has the type of a fringe. For clarity,
we write snil and scons for left and right when using this suspended encoding of
lists.

The Fringe2 function below computes the fringe of an input tree, using this
new representation of fringes. It relies on a recursive function Fringe′2, which

2Generalizing this technique, Kiselyov (2004) lets a suspended computation receive an
argument when it is resumed. Using this argument, he implements Huet’s zipper data-structure
(Huet 1997; Hinze and Jeuring 2001; Abbott et al. 2003) in terms of shift.
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traverses a given tree depth-first, stopping at each leaf.

Fringe2 = λt . #(let Fringe′2 t be 〈〉. snil〈〉)(3.109)

Fringe′2 = λt . let t be leaf x. ξc. scons〈x, λv. #(cv)〉
| branch y. let y be 〈t1, t2〉.

let Fringe′2 t1 be 〈〉.
Fringe′2 t2

(3.110)

The Fringe′2 function has the type tree int → fringe( (1)fringe). This means
that applying Fringe′2 to a tree behaves locally like the return type 1, but takes
control over the delimited evaluation context of the application, whose interme-
diate answer type is (and stays) fringe. Every time Fringe′2 encounters a leaf x,
it suspends the computation in c using ξc. , and returns the nonempty fringe
scons〈x, λv. #(cv)〉 to the innermost enclosing #, namely the # in Fringe2. The
Fringe2 function has the type tree int→W( (fringe)W) for any answer type W.
It provides Fringe′2 t with its initial delimited evaluation context

(3.111) #(let [ ] be 〈〉. snil〈〉),

which means that, once Fringe′2 finishes traversing t and returns 〈〉, the computa-
tion of the fringe completes with the empty fringe snil〈〉.

The Same2 function checks whether two fringes in the new representation
are equal. It is the same as Same1, except crucially the recursive application
Same1 y1 y2 is changed to Same2(y1〈〉)(y2〈〉), so as to resume the suspended com-
putations for the rest of the fringes.
(3.112)

Same2 = λl1. λl2. let l1 be snil u1. let l2 be snil u2. true
| scons v2. false

| scons v1. let l2 be snil u2. false
| scons v2. let v1 be 〈x1, y1〉.

let v2 be 〈x2, y2〉.
if x1 = x2

then Same2(y1〈〉)(y2〈〉)
else false

Putting these pieces together, we can define F in terms of Fringe2 and Same2,
just as in terms of Fringe1 and Same1.

(3.113) F = λt1. λt2. Same2(Fringe2 l1)(Fringe2 l2)

Like the old F in (3.104) on page 80, this new F solves the same-fringe problem,
but

(3.114) F(branch〈leaf 1, E1〉)(branch〈leaf 2, E2〉)
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now computes to false in the same number of computation steps, no matter how
large the trees E1 and E2 are.

This concludes our presentation of delimited control in programming lan-
guages. Before moving to quantification in natural languages, let us stress that
shift and reset, especially Danvy and Filinski’s type system for them (1989)
presented here, are but one instantiation of delimited control. This system has a
particularly strong connection to the continuation-passing-style transform, and
hence to natural-language quantification as explained below. Nevertheless, other
proposals abound (Felleisen 1987, 1988; Felleisen et al. 1987, 1988; Sitaram and
Felleisen 1990; Hieb and Dybvig 1990; Queinnec and Serpette 1991; Sitaram
1993; Gunter et al. 1995, 1998) and are also compatible with the transform (Kise-
lyov 2005; Shan 2004c; Biernacki et al. 2005a; Dybvig et al. 2005). In particular,
it can be useful to let an expression name an enclosing control delimiter—not
necessarily the innermost one—to capture the current continuation up to.

3.3. Quantification

The following sentences illustrate the linguistic phenomenon of quantification.

(3.115) Nobody saw Bob.
(3.116) Some student saw every professor.
(3.117) Alice consulted Bob before most meetings.

As with the previously encountered English sentences, the linguist wants to model
which sentences containing words like nobody, some, every, and most are
acceptable, and in what situations they are true. In type-logical grammar, it is
a non-starter to assign to the quantificational noun phrase nobody the type np
like Alice, for a semantic reason: Unlike Alice, the word nobody does not denote
an individual—not a real person; not an imaginary person; not even a concept
of a person. In other words, for nobody to denote an individual would make it
difficult to model the truth conditions of sentences with nobody.

3.3.1. Generalized quantifiers. We look naturally to first-order predicate
logic for inspiration. The beginning logic student is taught to translate a sentence
like (3.115) to a universally quantified logical formula like

(3.118) ∀x.¬saw(x, Bob),

which we regard as shorthand for

(3.119) ∀
(
λx.¬saw(x, Bob)

)
.

Here λx.¬saw(x, Bob) denotes the property of not having seen Bob, a function
from individuals to Boolean values. We apply to this property the function ∀,
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which is a function from properties to truth values. The truth value ∀(c) is true
just in case every individual has the property c.

Following the footsteps of the beginning logic student, we want our grammar
to derive the expression (3.115) with the meaning (3.118). One way to achieve
this goal is to assign to nobody the type s/(np\s), and let it denote the function
λc.∀x.¬cx. We can then derive (3.115).

(3.120) nobody ` s/(np\s)
saw ` (np\s)/np Bob ` np

/E
saw, Bob ` np\s

/E
nobody, (saw, Bob) ` s

Unlike the derivation of Alice saw Bob in (2.69) on page 48, this derivation feeds
saw Bob to nobody as an argument, rather than applying saw Bob as a function to
Alice. Reversing the direction of function application lets us generate the correct
denotation (3.118).

This analysis of nobody extends to many other sentences. For example, given
that left is a verb phrase like saw Bob, we can derive

(3.121) Nobody left

in the same way.

(3.122)
nobody ` s/(np\s) left ` np\s

/E
nobody, left ` s

Other quantificational noun phrases behave similarly to nobody, at least at first
glance. For example, we can assign the same type s/(np\s) to the words everyone
and someone, but let them denote the functions ∀ and ∃, respectively. Natural
language also expresses quantifiers that cannot be expressed in terms of ∀ and ∃
in first-order predicate logic, such as “most”: We can roughly analyze the phrase
most students in

(3.123) Most students saw Bob,

to denote the function that maps each given property c to true just in case the
number of students with the property c is more than half of the number of
students. A function from properties to truth values (or equivalently, a set of sets
of individuals) is called a generalized quantifier (Montague 1974b; Barwise and
Cooper 1981), or sometimes just “quantifier” for short, because these functions
generalize the first-order quantifiers ∀ and ∃.3

To model the difference between nobody and nothing, everyone and every-
thing, and someone and something, we can assume that some individuals are

3Often the term “generalized quantifier” is used to refer to a function from tuples of properties
(typically pairs of properties) to truth values.
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Alice ` np
thinks ` (np\s)/s

nobody ` s/(np\s)
saw ` (np\s)/np Bob ` np

/E
saw, Bob ` np\s

/E
nobody, (saw, Bob) ` s

/E
thinks, (nobody, (saw, Bob)) ` np\s

\ E
Alice, (thinks, (nobody, (saw, Bob))) ` s

Figure 3.10. Alice thinks nobody saw Bob

animate whereas others are not. To a first approximation, nobody denotes

(3.124) λc.∀x. animate(x)⇒¬cx

(that is, whether every animate individual lacks a given property), whereas nothing
denotes

(3.125) λc.∀x.¬animate(x)⇒¬cx

(that is, whether every inanimate individual lacks a given property). Similarly
for everyone versus everything, and someone versus something. The sen-
tence (3.115) on page 83 then denotes

(3.126) ∀x. animate(x)⇒¬saw(x, Bob).

When a generalized quantifier is applied to a property, the property (or the
expression that denotes it) is called the scope of that occurrence of the generalized
quantifier. For example, the scope of most students in (3.123) is the property of
having seen Bob, or the phrase saw Bob. The scope of nobody in (3.115) is the
same. The set of individuals to which a generalized quantifier applies a property,
or the expression that denotes the set, is called the restrictor of the generalized
quantifier. For example, the restrictor of most students is the property of being a
student, or the word students. The restrictor of nobody is the property of animacy,
or perhaps the suffix -body.

It may appear from the examples so far that the scope of a quantificational
noun phrase is always the rest of the sentence containing it, but that is not always
the case. For example, the sentence

(3.127) Alice thinks nobody saw Bob

means that Alice thinks the proposition (3.118) on page 83 is true. In this meaning,
the scope of the generalized quantifier nobody is the property of having seen Bob
(saw Bob), not the property of being thought by Alice to have seen Bob (Alice
thinks . . . saw Bob). We say that the quantifier nobody takes scope over the
embedded clause nobody saw Bob, or that it takes scope at the boundary between
the embedded clause and the rest of the sentence. Figure 3.10 derives this sentence
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using the same lexical entry for nobody as proposed above. The /E inferences
above apply nobody to its scope saw Bob, and thinks to the resulting meaning of
the embedded clause. Hence, as explained in Section 2.4, the formulas-as-types
correspondence assigns to this derivation the meaning for (3.127) with the desired
scope for nobody.

3.3.2. In-situ quantification. Unfortunately, the simplistic account presented
above handles only quantificational noun phrases that combine with their scope to
the right. In English and many other languages, quantifiers can occur in a variety
of locations throughout a clause. For example, nobody occurs to the right of saw
in (3.128), and to the left of ’s mother in (3.129) and (3.130).

(3.128) Alice saw nobody.
(3.129) Nobody’s mother saw Bob.
(3.130) Alice saw nobody’s mother.

The type s/(np\s) proposed above for nobody can combine neither with saw
(of type (np\s)/np) on the left nor with ’s mother (of type np\np) on the right.
Therefore, our straw-man analysis predicts erroneously that these sentences are
not acceptable.

Roughly speaking, these example sentences suggest that a quantifier in English
can occur anywhere in the clause where it takes scope, not just to the left at the
top level as in (3.115) on page 83. This flexibility is called in-situ quantification
because the quantifier can take scope “in place”, surrounded by its scope.

Starting with Montague’s seminal Proper Treatment of Quantification (1974b),
many ways to account for in-situ quantification have been proposed in the natural-
language syntax and semantics literature. Some proposals, such as May’s Logical
Form (1985) and Hobbs and Shieber’s (1987) and Moran’s (1988) quantifier
scoping algorithms, posit a level of representation where quantifiers move silently
to the edge of their scopes. For example, we could move nobody in (3.130) as
sketched below.

(3.131)
Alice

||||

BBBBBBB

saw

|||||

BBBBBBB

nobody

||||
’s mother

BBBB

=⇒

nobody

||||

BBBBBBB

Alice

||||

BBBBBBB

saw

|||||

BBBBBBB

RR

|||||| ’s mother

BBBB

The meaning of the sentence can then be computed from the latter representation,
where the quantifier nobody does occur to the left at the top level. Other proposals,
such as Cooper storage (1983) and Keller storage (1988), enrich the mechanism
for semantic interpretation to deal specifically with quantification. For example,
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nobody ` q(np, s, s)
Alice ` np

saw ` (np\s)/np

Id
np ` np ’s mother ` np\np

\ E
np, ’s mother ` np

/E
saw, (np, ’s mother) ` np\s

\ E
Alice, (saw, (np, ’s mother)) ` s

q E
Alice, (saw, (nobody, ’s mother)) ` s

Figure 3.11. Alice saw nobody’s mother

Hendriks’s Flexible Types system (1988) systematically generates an infinite
family of types to account for different surroundings in which a quantifier may
wake up from the lexicon to find itself.

Particularly relevant to us is Moortgat’s attractive proposal in type-logical
grammar of a ternary type constructor q (1988, 1995, 1996). If T , W0, and W
are types, then Moortgat proposes that q(T , W0, W) be a type as well. Moortgat
terms T the bound expression type, W0 the binding domain type, and W the
resultant expression type. A quantificational noun phrase canonically has the type
q(np, s, s). In terms of semantics, an expression of type q(T , W0, W) denotes a
function from functions from T to W0 to W, or formally, (T→W0)→W. In terms
of syntax, an expression of type q(T , W0, W) can plug into any context into which
an expression of type T can be plugged to produce a larger expression of type W0,
to produce a larger expression of type W. That is, we add the inference rule

(3.132)
∆ ` F : q(T , W0, W) Γ[x : T ] ` E : W0 q E.

Γ[∆] ` F(λx. E) : W
With the type q(np, s, s) for nobody and the same denotation as above, we
can derive the previously problematic sentences. For instance, Figure 3.11 de-
rives (3.130). (We give examples below where W0 and W differ.)

The q E rule in (3.132) suggests the following intuition behind the three
types T , W0, and W in the type q(T , W0, W). An expression of type q(T , W0, W)
behaves “locally” like type T . That is, it combines syntactically with phrases
(in Γ[ ]) with which a T can combine. But “behind the scenes”, it waits until
syntactic combination yields a W0. It then takes scope over that W0 to produce
a W finally. We call W0 and W the answer types in the type q(T , W0, W).

The W produced when a quantificational subexpression of type q(T , W0, W)
takes scope enters the rest of the derivation like any other W. In particular, another
quantificational subexpression (of type q(T ′, W, W ′), say) may take scope over it.
Hence we predict that multiple quantifiers may occur in the same sentence and
take scope over the same clause. Many examples bear out this prediction. For
example, we empirically observe that the sentence



88 3. The analogy: delimited control and quantification

(3.133) A man is robbed in New York every 11 seconds

is ambiguous between two readings due to the quantificational noun phrases a
man and every 11 seconds: one where a possibly different man is robbed each
time, and one where the same man is repeatedly robbed. The follow-up sentence

(3.134) Let’s interview him

disambiguates (3.133) in favor of the second reading. For simplicity, we consider
the sentence

(3.135) Someone saw everyone,

which is similarly ambiguous between two readings due to the quantificational
noun phrases someone and everyone. The linear scope (or surface scope)
reading corresponds to the logical formula

(3.136) ∃x.∀y. saw(x, y),

which we regard as shorthand for

(3.137) ∃
(
λx.∀

(
λy. saw(x, y)

))
.

To describe this reading, we say that someone takes wide scope over everyone,
which takes narrow scope. The inverse scope reading corresponds to the logical
formula

(3.138) ∀y.∃x. saw(x, y),

which we regard as shorthand for

(3.139) ∀
(
λy.∃
(
λx. saw(x, y)

))
.

We say that everyone takes inverse scope over someone in this reading because
the order between the quantifiers in the English sentence is the opposite of that in
the corresponding logical formula.

Our grammar correctly predicts that (3.135) is acceptable and ambiguous: it
provides two derivations for (3.135) that assign different denotations. Figure 3.12a
derives the linear-scope reading. As the two successive q E inferences indicate,
someone applies to the clausal meaning produced by everyone. Figure 3.12b
derives the inverse-scope reading, where everyone applies to the clausal meaning
produced by someone instead.

So far, we have only used q at the type q(np, s, s). The same formal mechanism
for in-situ quantification, be it q or another account, turns out to be applicable
to a wide range of linguistic phenomena, where the answer type is not always s.
In other words, if we generalize generalized quantifiers beyond those that take
scope over s to yield s, then many other linguistic phenomena reduce to in-
situ quantification. For example, Morrill (2000, 2003) proposes an analysis of
anaphora that essentially treats a pronoun and its antecedent both as quantifiers of
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someone
` q(np, s, s)

everyone
` q(np, s, s)

Id
np ` np

saw ` (np\s)/np
Id

np ` np
/E

saw, np ` np\s
\ E

np, (saw, np) ` s
q E

np, (saw, everyone) ` s
q E

someone, (saw, everyone) ` s

(a) Linear scope

everyone
` q(np, s, s)

someone
` q(np, s, s)

Id
np ` np

saw ` (np\s)/np
Id

np ` np
/E

saw, np ` np\s
\ E

np, (saw, np) ` s
q E

someone, (saw, np) ` s
q E

someone, (saw, everyone) ` s

(b) Inverse scope

Figure 3.12. Someone saw everyone

a sort. We return to this idea in Section 4.5.1, though without Morrill’s assumption
(problematic as explained in Section 2.4) that syntactic combination is associative.

To take another example, Carpenter (1994) and Morrill (1994) encode inten-
sionality with q. Given our discussion of intensionality in Section 1.5, we can
understand their idea as follows. Suppose that the type np denotes the set of
individuals, including planets. Then the verb thinks shows that the noun phrases
the morning star and the evening star cannot be of type np (and denote the same
planet). But if the type s denotes not the (two-element) set of truth values but the
set of functions from possible worlds to truth values (perhaps s is shorthand for
w→ s0, where w denotes the set of possible worlds and s0 denotes the set of truth
values), then we can assign to the morning star and the evening star the type
q(np, s, s). The denotation of the morning star would be

(3.140) λc. λw. c(the morning star in the world w)(w),

whereas the denotation of the evening star would be

(3.141) λc. λw. c(the evening star in the world w)(w).

An intensional verb, such as thinks, can then distinguish between these two
denotations. Informally speaking, the morning star and the evening star take
scope over a clause to access its possible world.
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Although q is versatile, its status as a logical connective raises concerns. We
have only provided the q E rule, which specifies how to consume a quantificational
expression (∆ in (3.132) on page 87). It is unclear what a corresponding q I rule
might be, with which to create a quantificational expression. Given the intuition
of plugging a subexpression into a context, we expect the judgments

T ` q(T , W, W)(3.142)

and

T ′/T , q(T , W, W) ` q(T ′, W, W)(3.143)

to be logical validities. Yet neither is derivable using q E alone, simply because q
appears to the right of ` in these judgments.

Concomitant with this proof-theoretic concern about q is a model-theoretic
one. Several different sets of inference rules for q have been proposed (Moortgat
1996; Barker 2005). What makes any given set of inference rules for q correct?
(That is, with respect to what class of semantic models do we want a set of
inference rules for q that is sound and complete?)

One reason why the empirical linguist cares for judgments like (3.142)
and (3.143) to be valid arises in the analysis of and. It would be nice to be
able to say that and can conjoin two phrases just in case they have the same type.
This natural idea explains why

(3.144) Alice saw Bob’s mother and Carol

is acceptable (because Bob’s mother and Carol both have type np), but not

(3.145) *Alice saw Bob’s mother and to Carol’s assassination

(because to Carol’s assassination does not have type np). Given that

(3.146) Alice saw Bob and someone’s mother

is acceptable, we would like Bob and someone’s mother to have the same
type. Using (3.142) and (3.143), we can derive the type q(np, s, s) for Bob and
someone’s mother respectively, as desired.

One way to strengthen the foundation for q is to reduce it to other logical
connectives that are better understood. Bernardi (2003) summarizes three imple-
mentations of q in multimodal type-logical grammar (Morrill 1994; Moortgat
1995, 2000); and Areces and Bernardi (2003) give a fourth solution using hybrid
logic. In Chapter 4, we propose yet another implementation of q, which unlike the
others is motivated by a computational (or operational, or dynamic, or processing)
interpretation based on continuations.
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3.4. Delimited control versus quantification

Delimited control in programming languages and in-situ quantification in
natural languages exemplify the same general pattern as in Section 1.6: the
program abort 2 does not evaluate to any result; the utterance nobody does not
refer to any individual. Yet we would like a sound and compositional theory that
explains how these expressions can take part in a complete program or utterance
that does evaluate to a result or refer to an individual or a truth value.

Programming-language theorists and linguists alike have responded to this
challenge by adding to denotations a new aspect of meaning beyond evaluation
results and reference, namely to let an expression take control over, or apply
to, its context. The meaning of the context is known as the continuation of an
expression in programming-language semantics and the scope of a quantifier
in natural-language semantics. With this addition, denotations become more
complex: they are now functions from functions from a value type T to an answer
type W0 to an answer type W.4 The scope of a natural-language quantifier is
analogous to the delimited context of a programming-language control operator
(Barker 2001, 2002; de Groote 2001). The analogy is as if nobody denotes the
shift-expression ξc. ∀x. ¬#(cx) (Shan 2005, 2004a; Barker 2004).

Ambiguity may result when a program contains multiple control operators
or an utterance contains multiple quantifiers. In Section 3.2, the denotation of
the control operator evaluated earlier applies to a continuation containing the
denotation of the control operator evaluated later. In Section 3.3.2, the denotation
of the quantifier taking wide scope applies to a scope containing the denotation
of the quantifier taking narrow scope. Thus evaluation order in programming
languages corresponds to scope order in natural languages: left-to-right evaluation
(as in the denotation (3.47) on page 67) corresponds to linear scope (as in the
denotation (3.137) on page 88); right-to-left evaluation (as in the denotation (3.62)
on page 69) corresponds to inverse scope (as in the denotation (3.139) on page 88)
(Barker 2001, 2002; de Groote 2001). Section 3.1.2 above removes nonconfluence
in a programming language by enforcing left-to-right evaluation. Sections 4.4
and 4.5 below explain empirical generalizations in linguistics, also by enforcing
left-to-right evaluation.

A popular view in programming-language theory holds that each computa-
tional side effect corresponds to a notion of computation expressed as a monad
or monad morphism (Moggi 1990, 1991; Wadler 1992a,b). Under this view,
delimited control turns out to subsume all computational side effects (Filinski
1994, 1996, 1999). Given our analogy between computational and linguistic side

4The traditional answer type is s in linguistics but ⊥ in logic and computer science, where
undelimited control was studied before delimited control. De Groote (2001) relates in-situ
quantification to undelimited control by identifying the types s and ⊥.
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effects, we then expect quantification to subsume all linguistic side effects (Shan
2001). Section 4.5 below confirms this expectation by using quantification to
account for a variety of linguistic side effects observed empirically.



CHAPTER 4

Evaluation order in natural languages

This chapter implements in-situ quantification in multimodal type-logical
grammar using an idea from the analysis of delimited control in programming
languages: the meaning of an evaluation context is a continuation (Section 3.2).
In type-logical grammar, Moortgat’s ternary type constructor q for in-situ quan-
tification (1988; 1996; 1995) already enjoys several proposed implementations
(Morrill 1994; Moortgat 1995, 2000), summarized by Bernardi (2003). Moreover,
both Barker (2001, 2002, 2004) and de Groote (2001) already relate quantifica-
tion to continuations. Nevertheless, our implementation improves over previous
linguistic theories in two ways, one theoretical and one empirical.

First, whereas previous implementations of q in type-logical grammar are
designed to move a quantifier to the edge of its scope as depicted in (3.131) on
page 86, our implementation does not move nearby constituents apart or distant
constituents together. Rather, as Section 4.1 explains, the structural rules that
we propose just encode symmetries inherent in a syntactic structure viewed as
a graph. In Section 4.2, we use this encoding to model how a quantifier such as
nobody combines with its scope outward, and how a scope such as Alice saw
[ ]’s mother combines with its gap inward, just as an intransitive verb such as
slept combines with its subject argument leftward, and as a transitive verb such as
saw combines with its object argument rightward. (Chapter 5 exploits the same
symmetries for programming-language theory.)

Second, we treat the order in which a human processes parts of an utter-
ance like the order in which a computer evaluates parts of a program. Just as
Section 3.1.2 specifies the evaluation order of a toy programming language by
restricting its evaluation contexts, Sections 4.3 and 4.4 specify the processing
order of a natural-language fragment by restricting its scope-taking contexts. In
Section 4.5, we use this new notion of order in natural language to unify the
preference for linear scope in quantification with empirical generalizations in
other linguistic side effects: crossover in anaphora, superiority in wh-questions,
and the effect of linear order on polarity sensitivity. In particular, Section 4.5.2
shows how this unified account of crossover and wh-questions predicts a complex
pattern of interaction between them, without any stipulation that mentions both
anaphora and interrogation. Section 4.5.3 then describes the first concrete pro-
cessing account of linear order in polarity sensitivity, linking it to linear scope in

93
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quantification.

4.1. Type environments as graphs

This section introduces a graphical interpretation of type environments in type-
logical grammar, in terms of graphs. Section 4.2 then applies this interpretation
to implement q for linguistic analyses.

Every type environment in type-logical grammar can be uniquely drawn as
a binary tree. It is crucial for us to view the root of the tree as just another leaf
node. Because this is not a conventional view of syntactic structure, let us be
pedantically specific and define a binary tree to be an acyclic graph in which
every node has either one or three edges, and every leaf node but one (the root) is
labeled with a type. For example, the type environment

(4.1) Γ = a,
(
(b, c), d

)
can be drawn as follows.

(4.2) a,
(
(b, c), d

)
⇐⇒

b
qqq

q
c

MMM
M

dqqqq
MMMMMa qqq

q

=

b
qqq

q
c

MMM
M

qqqqq d
MMM

M
MMMMMa qqq

q

In our graphs, edges are unoriented, so the following two graphs are identical.

(4.3)
a
=

a

However, we do orient nodes by designating, for each trivalent node, one of
the two cyclic orderings of its edges as counterclockwise. Hence each of the
following graphs are equal to two others, but not to their mirror images.

(4.4)
a MMMM

cqqqq

b

=

c MMMM
bqqqq

a

=

b MMMM
aqqqq

c

,

a MMMM
bqqqq

c

=

b MMMM
cqqqq

a

=

c MMMM
aqqqq

b

Together, these two conventions ensure that each type environment corresponds
to only one graph.

Suppose now that Γ and Θ are two type environments, such that Θ appears
as part of Γ. For instance, Γ might be the type environment a,

(
(b, c), d

)
as above,

and Θ might be the type environment b, c. We write Γ = ∆[Θ], where ∆[ ] is
informally the context in Γ of the subexpression Θ; that is, ∆[ ] = a, ([ ], d).
Graphically speaking, we have decomposed Γ into two parts, ∆[ ] and Θ, by
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Γ } x : T1 ` E : T2( I
Γ ` λx. E : T2( T1

x : T1 } Γ ` E : T2 ) I
Γ ` λx. E : T1)T2

Γ ` F : T2( T1 ∆ ` E : T1( E
Γ } ∆ ` FE : T2

∆ ` E : T1 Γ ` F : T1)T2 ) E
∆ } Γ ` FE : T2

Figure 4.1. Adding the binary mode } to the Lambek calculus without products

ripping apart the graph at an edge, calling the side that contains the root node ∆[ ],
and the other side Θ.

(4.5)

b
qqq

q
c

MMM
M

dqqqq
MMMMMa qqq

q

⇐⇒ b, c = Θ

⇐⇒ a, ([ ], d) = ∆[ ]

To represent such a decomposition as a graph, we insert a new, special node } in
the middle of the edge that connects the two components.

(4.6)

b
qqq

q
c

MMM
M
}

dqqqq
MMMMMa qqq

q

1

=
}

qqq
qqb MMMM

c

MMM
MM

d

qqqqq 1
MMM

M

a

This new node } connects the two components of the decomposition to a new
root node. The old root node becomes a leaf with the special label 1. We know
which side of the } corresponds to the context, since that is the side that contains
the 1 node marking the position of the old root. Starting at the } node, we always
put the context side right after the subexpression side (where “after” means
moving counterclockwise). The symbol } is pronounced “at”, because it puts a
subexpression at the hole of a context.

To convert the picture (4.6) back to a type environment, we introduce a
new binary mode (following Section 2.4.1), the continuation or context mode.
Instead of writing this new mode’s comma and slashes with subscripts as ,c ,
/c, and \c, we use the easier-to-read symbols } (again, pronounced “at”), (
(pronounced “outside”), and ) (pronounced “inside”). The new inference rules,
following Figure 2.28 on page 51, are shown in Figure 4.1. The graph in (4.6)
thus corresponds to the formula

(4.7) (b, c) }
(
d, (1, a)

)
.
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In the terminology of Section 2.4.1, this mode is internal (or unpronounceable).
The continuation mode } treats the decomposition Γ = ∆[Θ] as a type environ-

ment in its own right: if ∆ is the type environment that represents the context ∆[ ]
(for example, ∆ = d, (1, a) above), then Θ } ∆ decomposes Γ into the subexpres-
sion Θ and the context ∆[ ]. In the trivial case, the graph is ripped apart at the root
edge into two sides: the null context [ ], and the type environment Γ viewed as
its own (improper) subexpression. Because the null context is represented by the
type environment 1, we henceforth treat 1 as the right identity for }. That is, we
introduce the structural rule1

Γ[Θ] ` T
============= Root
Γ[Θ } 1] ` T

(4.8)

to make Θ } 1 logically equivalent to just Θ. Informally, this rule mandates the
equation

(4.9) Θ = Θ } 1

in an algebra of subexpressions and contexts.
In the original type environment Γ = a,

(
(b, c), d

)
in (4.1) on page 94, the

type d follows a and combines with b, c, whereas in the decomposition (b, c) }(
d, (1, a)

)
in (4.7), the type d precedes a and combines with 1, a. It appears

from (4.7) that ∆ represents a context ∆[ ] by turning it inside-out, but the graph-
ical view in (4.6) shows that we have simply inserted a continuation node }
into an edge, without pulling nearby constituents far apart or pushing distant
constituents close together. We have merely changed our perspective by placing
one subexpression in the foreground and backgrounding the rest—in Belnap’s
words (1982), displaying a subexpression. We can pronounce the environment
d, (1, a) as “a hole d”, because it is just what the context a, ([ ], d) looks like from
the perspective of the continuation node. In general, if an environment built up
using the default mode (the comma ,) contains a unique 1, then we can pronounce
it as what is to the right of the 1, followed by “hole”, followed by what is to
the left of the 1. Interpreting environments as graphs makes mapping between
contexts and environments as simple as rotating a graph as in (4.6).

Every implementation of in-situ quantification in multimodal type-logical
grammar represents a meta-level notion of context (like ∆[ ] = a, ([ ], d)) as
an object-level expression (like ∆ = d, (1, a)), in order to let an expression
access (that is, take scope over) its context. We want to represent contexts at the
object level, in order to preserve our logical machinery with its desirable meta-
theoretic properties (such as the finite-reading property: any expression can only
be ambiguous among a finite number of meanings). Our implementation is unique

1Restall (2000; pages 30–31) calls this rule Push when it is used to infer from top to bottom,
and Pop when it is used to infer from bottom to top.
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in representing contexts “inside-out”, just as the grammars for evaluation contexts
in Chapter 2 (starting with Figure 2.9 on page 27) represents contexts “inside-
out”. This view results from defunctionalizing (Reynolds 1972) continuations
(Danvy and Nielsen 2001a,b; Danvy 2004), and corresponds to Huet’s zipper
data-structure (Huet 1997; Hinze and Jeuring 2001; Abbott et al. 2003) for the
data type of binary trees. Section 4.5 uses this connection between contexts in
natural and programming languages to analyze empirical observations on natural
language.

We now introduce two structural rules to equate equivalent decompositions
of the same graph. If we find some type environment of the form Θ,Π inside a
context ∆[ ] (that is, given the type environment ∆[Θ,Π]), we can move either
Θ or Π from the subexpression part to the context part of the decomposition.
In other words, the environment ∆[Θ,Π] can be decomposed in three ways:
one that isolates Θ, one that isolates Θ,Π, and one that isolates Π. If the type
environment ∆ represents the context ∆[ ] (so that it contains 1 in place of the root
of ∆[Θ,Π]), then Figure 4.2 depicts these three decompositions. Since these are
three decompositions of the same graph, we want them to be logically equivalent,
so we add two structural rules.2

Γ[Θ } (Π,∆)] ` T
================= Left
Γ[(Θ,Π) } ∆] ` T

Γ[(Θ,Π) } ∆] ` T
================= Right
Γ[Π } (∆,Θ)] ` T

(4.10)

Informally speaking, these structural rules mandate the equation

(4.11) Θ } (Π,∆) = (Θ,Π) } ∆ = Π } (∆,Θ)

2Unfortunately, in the presence of the two structural rules in (4.10) and the right identity 1
for the } mode, the default mode becomes commutative.

Γ
[
Θ,Π
]
` T

================= Root
Γ
[
(Θ,Π) } 1

]
` T

================= Left
Γ
[
Θ } (Π, 1)

]
` T

====================== Root
Γ
[
Θ }
(
(Π, 1) } 1

)]
` T

====================== Left
Γ
[
Θ }
(
Π } (1, 1)

)]
` T

====================== Right
Γ
[
Θ }
(
(1,Π) } 1

)]
` T

====================== Root
Γ
[
Θ } (1,Π)

]
` T

================= Right
Γ
[
(Π,Θ) } 1

]
` T

================= Root
Γ
[
Π,Θ
]
` T

As explained in Section 2.4, we do not want the default mode to commute, because word order is
significant in natural language. In Section 4.4 below, to enforce left-to-right evaluation, we restrict
the Right rule to apply only when the environment Θ is surrounded by ^. With this restriction,
the Right inferences above (especially the upper one) no longer apply. (Barker and Shan (2005)
mention two other ways to prevent the default mode from commuting.) Therefore, we leave the
commutativity issue aside here.
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Π
MMMMMM

∆

Θ
}

qq
qq

11111

Θ
qqqqqq

Π
MMMMMM

∆

}

∆

Θ
qqqqqq

Π
}

MM
MM





Θ } (Π,∆) (Θ,Π) } ∆ Π } (∆,Θ)

Figure 4.2. Three ways to decompose ∆[Θ,Π] into a subexpression and a context

to relate the two modes , and } in an algebra of subexpressions and contexts.
Using these structural rules, any decomposition of a (connected) graph Θ can be
derived from the trivial decomposition Θ } 1, which represents Θ itself inside
the null context [ ] and is logically equivalent to just Θ by (4.8) on page 96. For
example, the decomposition in (4.6) on page 95 can be derived in three steps.3

(4.12)

Γ
[
a, ((b, c), d)

]
` T

======================== Root
Γ
[(

a, ((b, c), d)
)
} 1
]
` T

======================== Right
Γ
[(

(b, c), d
)
} (1, a)

]
` T

======================== Left
Γ
[
(b, c) }

(
d, (1, a)

)]
` T

The continuation mode } and its associated structural rules expand the ma-
chinery of abstraction and application built-in to type-logical grammar beyond
describing functions that apply leftward or rightward. We can now describe
functions that apply “inward” or “outward”. Such functions underlie in-situ
quantification, as Section 4.2 below shows.

4.2. Scopes apply inward; quantifiers apply outward

Let us apply the techniques developed above to types and expressions from nat-
ural language. As in Sections 2.1 and 2.4, we assume a type of noun phrases (more
precisely, proper nouns) np and a type of sentences (more precisely, clauses) s.
For example, Alice saw Bob is a clause: Syntactically, the phrase saw combines
with Bob to the right, then Alice to the left, using the default mode (the comma ,).
Semantically, the function saw takes Bob and Alice as arguments.

(4.13) Alice ` np
saw ` (np\s)/np Bob ` np

/E
saw, Bob ` np\s

\ E
Alice, (saw, Bob) ` s

3Whereas the steps for splay-tree rotation (Sleator and Tarjan 1985) move among different
trees that parenthesize the same fringe, our steps in (4.10) move among different decompositions
of the same tree.
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a : Alice ` a : np
f : saw ` f : (np\s)/np

Id
x : np ` x : np

/E
f : saw, x : np ` f x : np\s

\ E
a : Alice, ( f : saw, x : np) ` f xa : s

Root(
a : Alice, ( f : saw, x : np)

)
} 1 ` f xa : s

Right
( f : saw, x : np) } (1, a : Alice) ` f xa : s

Right
x : np }

(
(1, a : Alice), f : saw

)
` f xa : s

) I
(1, a : Alice), f : saw ` λx. f xa : np)s

Figure 4.3. Alice saw [ ]

In general, any two noun phrases with saw in between form a clause.

(4.14) Id
np ` np

saw ` (np\s)/np
Id

np ` np
/E

saw, np ` np\s
\ E

np, (saw, np) ` s

The context Alice saw [ ] has a hole [ ] where an np can be plugged in to yield
an s. In linguistic terms, it is a gapped clause. Following the graphical approach
in Section 4.1, we represent this context as a type environment, or equivalently, a
graph.

(4.15) (1, Alice), saw ⇐⇒

saw qqq
q

MMMMM

Alice MMMM
1qqqq

Figure 4.3 uses the structural rules in (4.10) on page 97 to prove that this context
is a gapped clause, in other words, that the type environment in (4.15) entails the
type np)s. The latter type is the type of something that gives s when combined
on the left with an np using }. In other words, a gapped clause is a context that
encloses an np to give an s.

Figure 4.3 shows the proof with meanings (λ-expressions to the left of :). As
explained in Section 2.4, the formulas-as-types correspondence determines these
meanings from the syntactic derivation: the /E and \ E inferences correspond
to function application; while the ) I inference at the bottom corresponds to
abstraction. Thus the meaning of the gapped clause Alice saw [ ] is the function
λx. f xa.

We can now treat quantificational noun phrases like everyone. As a syntactic
element, everyone combines with a gapped clause enclosing it to give a complete
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e : everyone ` e : s( (np)s)

·
·
·

Figure 4.3 on page 99
(1, a : Alice), f : saw ` λx. f xa : np)s

( E
e : everyone }

(
(1, a : Alice), f : saw

)
` e(λx. f xa) : s

Right
( f : saw, e : everyone) } (1, a : Alice) ` e(λx. f xa) : s

Right(
a : Alice, ( f : saw, e : everyone)

)
} 1 ` e(λx. f xa) : s

Root
a : Alice, ( f : saw, e : everyone) ` e(λx. f xa) : s

Figure 4.4. Alice saw everyone

clause. In terms of our context mode }, everyone gives s when combined on the
right with np)s. Thus we assign to it the type s( (np)s). Figure 4.4 uses this
type to prove the grammaticality of Alice saw everyone. This proof assigns the
denotation e(λx. f xa) to the sentence. This denotation is the desired outcome
under the standard view that the meaning e of everyone is a generalized quantifier
that maps the property of being seen by Alice to the proposition that Alice saw
everyone.

Just as the function-type constructors / and \ for the default mode , take
arguments from the right and from the left, the function-type constructors(
and ) for the continuation mode } take arguments from outside (that is, apply to
surrounding contexts) and from inside (that is, apply to enclosed subexpressions),
respectively. More generally, we can reconstruct the ternary type constructor q for
in-situ quantification in type-logical grammar: encode q(A, B, C) as C( (A)B).
The type for everyone in Figure 4.4 encodes q(np, s, s), as expected.

Informally speaking, Figure 4.3 derives the “judgment”

(4.16) Alice saw [ ] ` np)s

using a bureaucracy of structural rules. Omitting this bureaucracy from Figure 4.4
yields the “derivation” of Alice saw everyone in Figure 4.5.

As noted in Section 3.3.2, the English sentence

(4.17) Someone saw everyone

is ambiguous between a linear-scope reading

(4.18) ∃x.∀y. saw(x, y)

and an inverse-scope reading

(4.19) ∀y.∃x. saw(x, y).

Like any account of in-situ quantification implementing q, our system derives
both readings for the sentence, as shown in Figures 4.6 and 4.7. Ignoring the
structural rules Root, Left, and Right, these derivations correspond exactly to
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everyone ` s( (np)s)

·
·
·

Alice saw np ` s
) I

Alice saw [ ] ` np)s
( E

Alice saw everyone ` s

Figure 4.5. Alice saw everyone, without the formal bureaucracy

∃:someone`∃:s( (np)s)

∀:everyone`∀:s( (np)s)

·
·
·

(4.14) on page 99
x:np,( f :saw,y:np)` f yx:s

Root(
x:np,( f :saw,y:np)

)
}1` f yx:s

Right
( f :saw,y:np)}(1,x:np)` f yx:s

Right
y:np}

(
(1,x:np), f :saw

)
` f yx:s

)I
(1,x:np), f :saw`λy. f yx:np)s

( E
∀:everyone}

(
(1,x:np), f :saw

)
`∀(λy. f yx):s

Right
( f :saw,∀:everyone)}(1,x:np)`∀(λy. f yx):s

Right(
x:np,( f :saw,∀:everyone)

)
}1`∀(λy. f yx):s

Left
x:np}

(
( f :saw,∀:everyone),1

)
`∀(λy. f yx):s

)I
( f :saw,∀:everyone),1`λx.∀(λy. f yx):np)s

( E
∃ : someone }

(
( f : saw,∀ : everyone), 1

)
` ∃(λx.∀(λy. f yx)) : s

Left(
∃ : someone, ( f : saw,∀ : everyone)

)
} 1 ` ∃(λx.∀(λy. f yx)) : s

Root
∃ : someone, ( f : saw,∀ : everyone) ` ∃(λx.∀(λy. f yx)) : s

Figure 4.6. Linear scope for Someone saw everyone

ones using q in a system where q is built-in, such as with the q E rule in (3.132).
The quantifier that takes wider scope is the one that takes its context as argument
lower in the proof.

The derivations in this section illustrate the rule of 1 in our system. In formal
logic, 1 is a nullary mode, just as the empty type environment · in Section 2.3 is
a nullary mode, and as the default mode , and the continuation mode } are two
binary modes. The computational analogue of Θ} 1 is to enclose a programming-
language expression (corresponding to Θ) in a control delimiter: On one hand, the
top-to-bottom direction of the Root rule says that Θ } 1 entails Θ. Using Root to
infer from top to bottom, we can prove that the null context 1 denotes the identity
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∀:everyone`∀:s( (np)s)

∃:someone`∃:s( (np)s)

·
·
·

(4.14) on page 99
x:np,( f :saw,y:np)` f yx:s

Root(
x:np,( f :saw,y:np)

)
}1` f yx:s

Left
x:np}

(
( f :saw,y:np),1

)
` f yx:s

)I
( f :saw,y:np),1`λx. f yx:np)s

( E
∃:someone}

(
( f :saw,y:np),1

)
`∃(λx. f yx):s

Left(
∃:someone,( f :saw,y:np)

)
}1`∃(λx. f yx):s

Right
( f :saw,y:np)}(1,∃:someone)`∃(λx. f yx):s

Right
y:np}

(
(1,∃:someone), f :saw

)
`∃(λx. f yx):s

)I
(1,∃:someone), f :saw`λy.∃(λx. f yx):np)s

( E
∀ : everyone }

(
(1,∃ : someone), f : saw

)
` ∀(λy.∃(λx. f yx)) : s

Right
( f : saw,∀ : everyone) } (1,∃ : someone) ` ∀(λy.∃(λx. f yx)) : s

Right(
∃ : someone, ( f : saw,∀ : everyone)

)
} 1 ` ∀(λy.∃(λx. f yx)) : s

Root
∃ : someone, ( f : saw,∀ : everyone) ` ∀(λy.∃(λx. f yx)) : s

Figure 4.7. Inverse scope for Someone saw everyone

continuation λx. x, of type T)T for any T , as follows.

(4.20)

Id
x : T ` x : T

Root
x : T } 1 ` x : T

) I
1 ` λx. x : T)T

On the converse hand, the bottom-to-top direction of the Root rule says that Θ
entails Θ } 1, so Θ can apply outward to the null context. In other words, Root
from bottom to top inserts an expression in a control delimiter (like the # rule
in Figure 3.6 on page 72), while Root from top to bottom removes a control
delimiter (like the computation steps for # in (3.12) on page 57 and Figure 3.3 on
page 63). Together, the two directions of Root in this natural-language fragment
correspond to the null-context inference rule

(4.21) [ ]
in the small-step operational semantics in Chapters 2 and 3.

Whereas Root manages the null context 1, the other structural rules Left and
Right manage contexts of other forms. More precisely, Left manages contexts
of the form ∆[[ ],Π], and Right manages contexts of the form ∆[Θ, [ ]], where Θ
and Π are two (environments that represent) expressions. If we were to define
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contexts in the style of (4.21), Left and Right would correspond respectively to
∆[ ]
∆[[ ],Π]

∆[ ]
∆[Θ, [ ]]

.(4.22)

In words, a context may descend recursively into either branch of a constituent
built with the default mode.

The rules (4.21) (Root) and (4.22) (Left and Right) specify a notion of context
that lets [ ] appear anywhere in a type environment built up using the default mode.
In other words, they allow a graph to be decomposed at any edge. Hence this
treatment of gapped clauses and quantification (unlike several other type-logical
treatments) works uniformly no matter where the gap or quantifier appears in the
clause over which it takes scope: at the left as in Everyone saw Bob, at the right
as in Alice saw everyone, or in the middle as in Alice introduced everyone to
Bob. It also does not matter how or how deeply the gap or quantifier is embedded.
In particular, our system handles quantificational noun phrases in possessive
position without further stipulation, as in Everyone’s mother saw Bob. Every
type-logical treatment of quantification we are aware of (that is more sophisticated
than the straw-man proposal in Section 3.3.1) enjoys this success, but it is by no
means typical of linguistic frameworks other than type-logical grammar, which
associate syntax with semantics less tightly.

Compared to other type-logical treatments of quantification (especially other
implementations of q), ours uniquely represents the scope of a quantifier “inside-
out”, as explained in Section 4.1. We deal with in-situ quantification not by
moving the quantifier to the edge of its scope, as is standard, but by viewing the
same graph from the perspective of the continuation node. This view makes it
easy to come up with the structural rules Root, Left, and Right above as well as
the refinements and generalizations in the sections below.

4.3. Refining the analysis of quantification by refining notions of context

This section extends the analysis of quantification above to account for two
kinds of additional empirical observations. First, we discuss situations in which
one quantificational noun phrase contains another, as in every dean of a school.
The challenge is to understand how every can take scope over (or in computational
terms, be evaluated before) something it contains. Second, we discuss scope
islands: expressions that limit the scope of quantifiers they contain. For instance,
it is generally assumed that everyone in Someone thought everyone left cannot
take scope outside of the embedded clause everyone left, and hence cannot take
inverse scope over someone. If so, then the embedded clause is a scope island,
and the challenge is to enforce its islandhood.

In both cases, the empirical observations we discuss are well studied in the
literature. Our contribution is to relate them to the operational semantics of
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programming languages: We restrict what a quantificational expression can take
scope over by restricting what we allow as a legitimate context that the expression
can access. This is the same strategy by which Section 3.1.2 enforces evaluation
order in a toy programming language, and by which Section 4.4 below enforces
evaluation order in a natural-language fragment.

As explained in Section 4.2 above, the structural rules Root, Left, and Right
specify a notion of context by relating the continuation mode } to other modes. We
can change these rules to change what is allowed as a context: adding structural
rules broadens the notion to include more scope-taking possibilities; removing
structural rules constrains the notion to include fewer scope-taking possibilities.
(Different notions of context can be mixed in the same grammar by using one }-
like mode for each notion, though we have no need to do so here.) We demonstrate
each linguistic application of this flexibility by making a separate amendment to
the same basic system presented above. These amendments are compatible in the
sense that it is straightforward to combine them into one grammar that covers all
of the applications at once.

4.3.1. Restrictors. Having treated simple quantificational noun phrases like
everyone and someone in Section 4.2, we now turn to quantifiers that combine
with a common noun (like school) or a more complex restrictor constituent, as
in most schools or every dean of a school. (For simplicity, we ignore the
difference between plural and singular nouns, like schools and school. We also
treat dean of as a single word.) We assume that common nouns are predicates,
in that they denote functions from individuals (type np) to propositions or truth
values (type s). However, they cannot directly combine with noun phrases in the
default mode—that is why *Harvard school is unacceptable; it does not mean
that Harvard is a school. Thus, as promised in Section 2.4.1, we introduce a new
binary mode n (the letter n being mnemonic for “noun”) and assign common
nouns to the type np\ns.4 (For intuition, we can imagine that is a in Harvard is a

4We cannot reuse the continuation mode } for this new mode and assign common nouns to
the type np)s. If we did, then the Rightn rule that we are about to add in (4.26) would predict
incorrectly that the strings Alice is a dean of Harvard and *Harvard is an Alice dean of are
equally acceptable and have the same meaning, as follows.

Alice } (dean of, Harvard)
================================ Root(
Alice } (dean of, Harvard)

)
} 1

================================ Left(
(Alice, dean of) } Harvard

)
} 1

================================ RightnHarvard }
(
1 } (Alice, dean of)

)
================================ Left
Harvard }

(
(1, Alice) } dean of

)
================================ Right
Harvard }

(
Alice } (dean of, 1)

)
================================ Left
Harvard }

(
(Alice, dean of) } 1

)
================================ Root

Harvard } (Alice, dean of)
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e : every ` e :
(
s( (np)s)

)
/(np\ns)

s : school ` s : np\ns
/E

e : every, s : school ` es : s( (np)s)

Id
x : np ` x : np g : griped ` g : np\s

\ E
x : np, g : griped ` gx : s

Root
(x : np, g : griped) } 1 ` gx : s

Left
x : np } (g : griped, 1) ` gx : s

) I
g : griped, 1 ` λx. gx : np)s

( E
(e : every, s : school) } (g : griped, 1) ` es(λx. gx) : s

Left(
(e : every, s : school), g : griped

)
} 1 ` es(λx. gx) : s

Root
(e : every, s : school), g : griped ` es(λx. gx) : s

Figure 4.8. Every school griped

school converts school, of type np\ns as just described, to is a school, of type
np\s like an ordinary verb phrase.) The new mode n is internal, so the direction
of this slash is arbitrary, but we choose it for the notation to match the type np\s
of an intransitive verb like slept.

A quantifier like every combines with a noun to the right to form a quantifica-
tional noun phrase. Because nouns have the type np\ns and quantificational noun
phrases have the type s( (np)s), we let every take the type

(4.23)
(
s( (np)s)

)
/(np\ns).

Figure 4.8 straightforwardly derives the sentence every school griped. If we add
the lexical items

dean of ` (np\ns)/np,(4.24)
Harvard ` np,(4.25)

then essentially the same derivation generates Every dean of Harvard griped.
How does the new binary mode n interact with the continuation mode }? We

broaden our notion of context to allow descending recursively into either branch
of a constituent built with the n mode. To do so, we add the following rules
alongside those in (4.10) on page 97.

Γ[Θ } (Π,n ∆)] ` T
================== Leftn
Γ[(Θ,nΠ) } ∆] ` T

Γ[(Θ,nΠ) } ∆] ` T
================== Rightn
Γ[Π } (∆,nΘ)] ` T

(4.26)

If we were to define contexts in the style of (4.21) and (4.22), these new rules
would correspond respectively to

∆[ ]
∆[[ ],nΠ]

∆[ ]
∆[Θ,n [ ]]

.(4.27)
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a :a`a :
(
s( (np)s)

)
/(np\ns)

s :school` s :np\ns
/E

a :a, s :school`as :s( (np)s)

Id
x :np` x :np

d :dean of`d : (np\ns)/np
Id

y :np` y :np
/E

d :dean of, y :np`dy :np\ns
\n E

x :np,n (d :dean of, y :np)`dyx :s
Root(

x :np,n (d :dean of, y :np)
)
}1`dyx :s

Rightn(d :dean of, y :np)} (1,n x :np)`dyx :s
Right

y :np}
(
(1,n x :np), d :dean of

)
`dyx :s

)I
(1,n x :np), d :dean of`λy.dyx :np)s

( E
(a : a, s : school) }

(
(1,n x : np), d : dean of

)
` as(λy. dyx) : s

Right(
d : dean of, (a : a, s : school)

)
} (1,n x : np) ` as(λy. dyx) : s

Rightn(
x : np,n (d : dean of, (a : a, s : school))

)
} 1 ` as(λy. dyx) : s

Root
x : np,n

(
d : dean of, (a : a, s : school)

)
` as(λy. dyx) : s

\n I
d : dean of, (a : a, s : school) ` λx. as(λy. dyx) : np\ns

Figure 4.9. Letting a school take narrow scope within dean of a school

A welcome consequence of this revision is that a scope ambiguity between
two quantifiers is predicted even when one is located within the other’s restrictor.
This ambiguity is illustrated in the following sentence.

(4.28) Every dean of a school griped.

As Dalrymple et al. note (1999; Section 2.5.1), it can be tricky to account for
linear scope in this sentence because there is no pronounced clause (“syntactic
unit at the f-structure level”) over which a school can take scope in the restrictor
dean of a school. Nevertheless, the “imaginary clause” s in the type np\ns for
nouns suffices for a school to take scope over. Figure 4.9 proves that dean of a
school has the type np\ns, just like a common noun. The Rightn structural rule
is crucial to this derivation. As the use of( E in Figure 4.9 indicates, a school
takes scope entirely within the complex “noun” dean of a school, so inserting
this proof into a derivation for (4.28) generates the linear-scope reading. The
inverse-scope reading is also generated, without using either rule in (4.26). The
top of that derivation proves

(4.29)
(
every, (dean of, np)

)
, griped ` s.

4.3.2. Islands. If we add a new mode of combination to a grammar without
also adding any structural rule relating the new mode to the continuation mode },
then contexts would be unable to cross the new mode. That is, the new mode
would be an island.
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For example, many linguists believe that a quantificational noun phrase cannot
take scope outside of a tensed clause. A tensed clause is a clause whose main
verb is inflected for tense. For example, the clause everyone left in the sentence

(4.30) Someone thought everyone left

is tensed, but the clause everyone to leave in the sentence

(4.31) Someone asked everyone to leave

is untensed. The usual way in type-logical grammar to make tensed clauses into
scope islands is using an external unary mode i, whose unary connectives are
^i and �↓i . For instance, if the type of thought is

(
�↓i (np\s)

)
/s, then Someone

thought everyone left has only the linear-scope reading, on which someone takes
wides scope over everyone. This is because

(4.32) np,
(
thought, (np, left)

)
` s

is not derivable—only

(4.33) np, 〈thought, (np, left)〉i ` s

is derivable, using the �↓i E rule as follows.

(4.34)
Id

x : np ` x : np

t : thought ` t :
(
�↓i (np\s)

)
/s

Id
y : np ` y : np l : left ` l : np\s

\ E
y : np, l : left ` ly : s

/E
t : thought, (y : np, l : left) ` t(ly) : �↓i (np\s)

�↓i E
〈t : thought, (y : np, l : left)〉i ` t(ly) : np\s

\ E
x : np, 〈t : thought, (y : np, l : left)〉i ` t(ly)x : s

Without a structural rule relating the unary mode i to the binary mode }, everyone
in the embedded tensed clause cannot cross the i mode, which it must to access
its entire surrounding context np, 〈thought, ([ ], left)〉i. In other words, thought
everyone left is a scope island.

Another way to make tensed clauses be scope islands is to assign thought the
type (np\s)/^is, so that (4.32) is not derivable (nor is (4.33)) but

(4.35) np, (thought, 〈np, left〉i) ` s

is derivable, using the ^i I rule as follows.
(4.36)

Id
x : np ` x : np

t : thought ` t : (np\s)/^is

Id
y : np ` y : np l : left ` l : np\s

\ E
y : np, l : left ` ly : s

^i I
〈y : np, l : left〉i ` ly : ^is

/E
t : thought, 〈y : np, l : left〉i ` t(ly) : np\s

\ E
x : np, (t : thought, 〈y : np, l : left〉i) ` t(ly)x : s
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Again, without a structural rule relating the unary mode i to the binary mode },
everyone in the embedded tensed clause cannot access the context np, (thought,
〈[ ], left〉i). In other words, everyone left is a scope island.

Because we have only considered quantifiers that take scope over a clause
(type s), it makes no observable difference whether the verb phrase thought
everyone left or the clause everyone left is a scope island. If we have reason
to treat an expression E as a quantifier that takes scope over a verb phrase (type
np\s) rather than a clause—perhaps E is an adverbial phrase of some sort—then
we may be able to distinguish between the two kinds of scope islands by checking
whether E can take scope over the entire verb phrase thought Alice E left. We do
not pursue such a test here.

4.4. Linear order and evaluation order

The linear order of quantifiers in a sentence can affect its interpretation. For
example, it is frequently observed that Mandarin quantifiers tend to take linear
scope (Huang 1982; Aoun and Li 1993), and quantifier scope seems to be overtly
expressed by syntactic raising in Hungarian (Szabolcsi 1997). In this section,
we model quantifier order by restricting the notion of context, drawing from the
restriction of evaluation contexts in Section 3.1.2 to specify evaluation order in
a programming language. In Section 4.5 below, we apply the same concept of
evaluation order to other linguistic side effects, namely anaphora, interrogation,
and polarity sensitivity, which are also sensitive to linear order.

Figure 4.7 on page 102 successfully derives inverse scope for the sentence
Someone saw everyone because everyone can take as argument its context

(4.37) (1, someone), saw,

or equivalently,

(4.38) someone, (saw, [ ]).

In general, the scope of one quantifier contains another just in case the latter
appears in the context argument of the former. Imagine for the moment that we
are studying a language that resembles English but mandates linear scope. To
rule out inverse scope, we can refine our notion of context so as to rule out any
quantifier linearly located to the left of [ ]. Then (4.38), in which the quantifier
someone occurs to the left of [ ], would no longer be a legitimate context, whereas

(4.39) Alice, (saw, [ ])

and

(4.40) [ ], (saw, everyone)

would still be legitimate contexts. (The context (4.39) is used in Figure 4.3
on page 99 and Figure 4.4 on page 100 to derive Alice saw everyone. The
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context (4.40) is used in (4.14) on page 99 and Figure 4.6 on page 101 to derive
the linear-scope reading of Someone saw everyone.)

We implement this idea using a unary mode. Following terminology in the
study of computational side effects, we call an expression pure if it contains no
quantifier (that is, incurs no control effect), or impure otherwise. In particular, all
values (in the sense of Section 3.1.2) are pure. To distinguish pure expressions
from impure ones, we tag the types of pure expressions with a unary mode ^, or
equivalently, the unary structural punctuation 〈 〉. Any formula can be turned pure
by embedding it under 〈 〉 using the T rule.

(4.41)
Γ[〈∆〉] ` T

T
Γ[∆] ` T

The T rule is analogous to quotation or staging in programming languages, which
turns executable code into static data. Two quotations can be concatenated using
the K′ rule.

(4.42)
Γ[〈Θ,Π〉] ` T

K′
Γ[〈Θ〉, 〈Π〉] ` T

Whereas the other rules introduced so far allow inference from top to bottom as
well as from bottom to top, these rules only allow inference from top to bottom.
We do not allow the converse of T because we want to regulate when inverse
scope is available: we add a partial converse of T, called Unquote, in (4.47) on
page 112 below. The converse of K′ appears harmless but is unneeded, so we
leave it out.5

We consider a derivation complete if and only if it culminates in the type ^s,
rather than s as before. The type ^s signifies a pure clause rather than a quantifier
over clauses (propositions). By contrast, everyone and someone are impure:
their type ^s( (np)^s) is not surrounded by ^, though the propositions they
quantify over and finally produce are pure (hence the ^ in ^s).

To rule out inverse-scope contexts like (4.38), we modify our notion of context
to require that the left branch of a type environment built up using the default
mode be pure before descending recursively into the right branch. That is, we
revise our notion of context from (4.21) on page 102 and (4.22) on page 103 to

[ ]
∆[ ]
∆[[ ],Π]

∆[ ]
∆[〈Θ〉, [ ]]

(4.43)

In terms of structural rules, we replace the Right rule from (4.10) on page 97 with

5Moot (2002; pages 39 and 156) explains these rules and their names. Curiously, the present
work seems to be the first linguistic application of K′.
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someone ` ^s( (np)^s)

everyone ` ^s( (np)^s)

·
·
·

(4.14) on page 99
np, (saw, np) ` s

^ I〈
np, (saw, np)

〉
` ^s

K′
〈np〉, 〈saw, np〉 ` ^s

K′
〈np〉, (〈saw〉, 〈np〉) ` ^s

T
〈np〉, (〈saw〉, np) ` ^s

Root(
〈np〉, (〈saw〉, np)

)
} 1 ` ^s

Right′
(〈saw〉, np) } (1, 〈np〉) ` ^s

Right′
np }

(
(1, 〈np〉), 〈saw〉

)
` ^s

) I
(1, 〈np〉), 〈saw〉 ` np)^s

( E
everyone }

(
(1, 〈np〉), 〈saw〉

)
` ^s

Right′
(〈saw〉, everyone) } (1, 〈np〉) ` ^s

Right′(
〈np〉, (〈saw〉, everyone)

)
} 1 ` ^s

T(
np, (〈saw〉, everyone)

)
} 1 ` ^s

T(
np, (saw, everyone)

)
} 1 ` ^s

Left
np }

(
(saw, everyone) } 1

)
` ^s

) I
(saw, everyone) } 1 ` np)^s

( E
someone }

(
(saw, everyone) } 1

)
` ^s

Left(
someone, (saw, everyone)

)
} 1 ` ^s

Root
someone, (saw, everyone) ` ^s

Figure 4.10. Linear scope for Someone saw everyone, under left-to-right
evaluation. Bernardi (2002; page 50) shows the ^ I rule used in this derivation
(same as ^R in the Gentzen presentation (Moortgat 1997; Definition 4.16)), as
well as the other natural-deduction rules for the unary operators ^ and �↓, namely
^E, �↓ I (same as �↓ R), and �↓ E.

a more specific instance Right′.

Γ[Θ } (Π,∆)] ` T
================= Left
Γ[(Θ,Π) } ∆] ` T

Γ[(〈Θ〉,Π) } ∆] ` T
=================== Right′
Γ[Π } (∆, 〈Θ〉)] ` T

(4.44)

With these changes to the grammar, only the linear-scope reading for Some-
one saw everyone (of type ^s) remains derivable. Figure 4.10 shows the deriva-
tion. It is shaped exactly like Figure 4.6 on page 101, except the T, K′, and ^ I
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rules are used after (4.14) on page 99 to prove

(4.45) 〈np〉, (〈saw〉, np) ` ^s.

The inverse-scope derivation in Figure 4.7 on page 102 is no longer valid, because
someone is impure and so the Right′ rule in (4.44) does not apply.

What we have just seen is that a linguistic preference for linear scope reflects
a computational preference for left-to-right evaluation. Of course, in many
languages (including English), inverse scope is available. That does not mean that
order-of-evaluation effects are absent—it only means that, if they are present, they
are more subtle. In the rest of this section, we examine one way to reintroduce
inverse scope that accounts for additional empirical observations in Section 4.5
below.

The basic idea is to treat inverse scope as multistage programming (see
Calcagno et al. 2003, Taha and Nielsen 2003, and references therein). A multi-
stage program is a program that generates another program to be run later. The
generating program is said to execute in an earlier or outer stage, and the gener-
ated program is said to execute in a later or inner stage. More than two stages
are also possible. Evaluation in each stage is ordered separately: later-stage code
runs only after earlier-stage code generates it. Informally, then, we can treat the
inverse-scope reading of Someone saw everyone as the following outer-stage
program.

(4.46) Run the program consisting of the word someone, the word saw, and
everyone.

Serifs are significant here: The sentence above only uses one quantifier (everyone).
It also mentions a word (someone) that is a quantifier, but does not use it. If the
domain of people under discussion is Alice, Bob, and Carol, then (4.46) conjoins
the meanings of the sentences Someone saw Alice, Someone saw Bob, and
Someone saw Carol. These three sentences are the inner-stage programs.

A typical multistage programming language provides facilities for:

• creating programs (by quotation or staging);
• combining programs (by concatenation); and
• running programs (by unquotation or evaluation).6

Intuitively, a quoted value is an inactive piece of program text that does not
execute until the “wrapping” ^ (or equivalently 〈 〉) is removed. Removing the
wrapping turns inactive data into active code.

6We call this step “unquotation” despite the fact that “evaluation” or “eval” is the commonly
used term for the same concept in the staged programming literature, to avoid confusion with the
concept of evaluation order just discussed.
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The T and K′ rules in (4.41) and (4.42) are our facilities for quoting and
concatenating programs, respectively. To run programs, we add the Unquote rule.

(4.47)
Γ[〈∆〉u] ` T

Unquote
Γ[〈〈∆〉u〉] ` T

Because the type environment of a quoted program is enclosed in 〈 〉, to run a
program—to unquote it—is to remove that 〈 〉. Although quotation applies freely
(using T), unquotation does not. Rather, the Unquote rule above only unquotes
a type environment of the form 〈∆〉u. Here u is a unary mode that marks those
types that are allowed as the answer type of a quoted program; this mode can be
thought of as a feature (in the linguistic sense) checked by the Unquote rule. In
particular, we hereafter take the clause type s to be shorthand for ^us′ (or 〈s′〉u in
a type environment), where s′ is an atomic formula distinct from s, so that we can
derive s from the quoted clause type ^s using the Unquote rule.7

Figure 4.11 shows how to derive the inverse-scope reading of Someone
saw everyone once again using Unquote. (Because s and ^s entail each other
in the presence of Unquote, we can restore the lexical types of someone and
everyone from ^s( (np)^s) back to s( (np)s).) As noted above, the Unquote
rule is necessary to derive this reading using the Right′ rule in (4.44) on page 110.
More precisely, in order for one quantifier to take inverse scope over another, the
Unquote rule must apply to the clause produced by the narrower-scope quantifier
(here someone).

Our application of multistage programming to natural language is a new
contribution that builds on the idea of evaluation order. The unary modes ^
and ^u, which we use to encode this application, add considerable complexity to
the basic analysis of Someone saw everyone given above in Section 4.2. The
payoff, in the next section, is to account for fairly subtle and complex linguistic
phenomena by controlling evaluation order. In programming-language theory,
modal logic has also been used in type systems for quotation and staging (Davies
and Pfenning 1996; Davies 1996; Davies and Pfenning 2001; Goubault-Larrecq
1996a,b,c, 1997). It is unclear whether the uses of unary modes there and here
are related. In future work, we hope to investigate this possible relationship
and, perhaps through it, explain the structural rules T, K′, and Unquote more
systematically.

4.5. Beyond quantification

In this section, we survey continuation-based analyses of several linguistic
side effects and transliterate them into type-logical grammar. The phenomena

7In this paper, s is the only type that can be unquoted, that is, the only type of the form ^uA.
A treatment of polarity sensitivity that is less simplistic than the one in Section 4.5.3 calls for
multiple clause types that can be unquoted (Shan 2004b).
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everyone ` s( (np)s)

someone ` s( (np)s)

·
·
·

(4.14) on page 99
np, (saw, np) ` s

Root(
np, (saw, np)

)
} 1 ` s

Left
np }

(
(saw, np), 1

)
` s

) I
(saw, np), 1 ` np)s

( E
someone }

(
(saw, np), 1

)
` s

Left(
someone, (saw, np)

)
} 1 ` s

Root
someone, (saw, np) ` s

^ I〈
someone, (saw, np)

〉
` ^s

Id
s ` s

Unquote
〈s〉 ` s

^E〈
someone, (saw, np)

〉
` s

K′
〈someone〉, 〈saw, np〉 ` s

K′
〈someone〉, (〈saw〉, 〈np〉) ` s

T
〈someone〉, (〈saw〉, np) ` s

Root(
〈someone〉, (〈saw〉, np)

)
} 1 ` s

Right′
(〈saw〉, np) } (1, 〈someone〉) ` s

Right′
np }

(
(1, 〈someone〉), 〈saw〉

)
` s

) I
(1, 〈someone〉), 〈saw〉 ` np)s

( E
everyone }

(
(1, 〈someone〉), 〈saw〉

)
` s

Right′
(〈saw〉, everyone) } (1, 〈someone〉) ` s

Right′(
〈someone〉, (〈saw〉, everyone)

)
} 1 ` s

Root
〈someone〉, (〈saw〉, everyone) ` s

T
someone, (〈saw〉, everyone) ` s

T
someone, (saw, everyone) ` s

Figure 4.11. Inverse scope for Someone saw everyone, under left-to-right
evaluation, using unquotation

discussed are quite intricate, and we cannot hope to be comprehensive here—the
papers cited provide more details. Our point is that continuation-based analyses
account for more empirical observations and with more theoretical unity than
previous treatments of the same phenomena in type-logical grammar.

4.5.1. Anaphora and crossover. As alluded to in Section 1.3.1, we follow
the view of dynamic semantics (Groenendijk and Stokhof 1991; Heim 1982;
Kamp 1981) that anaphora is the storage and retrieval of discourse referents,
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analogous to the computational side effect of state. Under this view, anaphora
is an ideal arena in which to test the utility of continuations and our side-effect
analogy in linguistics, for two reasons. First, continuations model side effects,
including state, a prototypical computational side effect (Filinski 1994; Section
5.4). Second, continuations model how multiple side effects interact, and anaphora
interacts with quantification and interrogation.

Shan and Barker (2005) argue that evaluation order explains two distinct
phenomena in English, crossover and superiority. Here we express that analysis
in type-logical grammar and compare our approach to Jäger’s (2001) analysis
of crossover. We account for more empirical cases where crossover interacts
with wh-raising. We also argue that crossover in the linguistic side effect of
anaphora and superiority in the linguistic side effect of interrogation stem from
the same underlying mechanism, namely, left-to-right evaluation as implemented
in Section 4.4.

Crossover is the name for the fact that, if a quantificational noun phrase serves
as the antecedent of a pronoun, the antecedent usually must precede the pronoun
(Postal 1971).

(4.48) a. Everyonei saw hisi mother.
b. *Hisi mother saw everyonei.

We use standard linguistics notation above to indicate the relationship between
a pronoun and its antecedent: by attaching the same subscript (such as i) to
both. Thus (4.48) indicates that the sentence (4.48a) can correspond to the logical
formula

(4.49) ∀x. saw(x, mother(x)),

but (4.48b) cannot correspond to

(4.50) ∀x. saw(mother(x), x).

When anaphora succeeds, the antecedent is said to bind the pronoun. We
derive crossover by assuming that people evaluate expressions from left to right
by default, and that a quantifier must be evaluated before any pronoun it binds.

To explain crossover, we must first implement anaphora in our grammar.
Many implementations of anaphora exist for type-logical grammar and related
approaches (Szabolcsi 1989, 1992; Dowty 1992; Moortgat 1996; Morrill 2000;
Hepple 1990, 1992; Jacobson 1999, 2000). Jäger (2001) surveys these implemen-
tations. He then proposes a new logical connective “|” with special inference rules.
Pronouns have type np|np; more generally, T2|T1 means “I behave like something
of type T2, but need to be bound by something of type T1”. Jäger’s inference rules
allow any expression of type T1 to bind something of type T2|T1 as long as the
antecedent precedes the pronoun.
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Two features of Jäger’s proposal are most relevant to us: resource duplication
and linear order.

Resource duplication: In standard type-logical grammar, every linguistic
resource is used exactly once, never duplicated. By contrast, anaphora
uses a resource twice: once for the antecedent and then again for the
bound pronoun. For example, the variable x in (4.49) is used twice: once
as the seer and once as the offspring. To deal with this mismatch, the
inference rules for | incorporate a limited8 form of resource duplication.

Linear order: Like us but unlike in most accounts of anaphora based on
Logical Form (May 1985; Reinhart 1983), Jäger recognizes the role of
linear order. His system requires that the antecedent precede the pronoun
it binds, and he gives empirical arguments that anaphora is sensitive to
linear order. In particular, his system correctly predicts crossover facts
like those in (4.48).

In part because Jäger is primarily interested in resource duplication, he merely
stipulates linear order: it follows from nothing, and the rules could just as easily
have required that the antecedent follow the pronoun it binds. We explain the role
of linear order in anaphora in a deeper way: Our account rules out crossover by
assuming that people evaluate expressions from left to right by default.

To help compare our approach with Jäger’s (2001), we also accomplish
anaphora by means of a (single) inference rule that incorporates a limited form of
resource duplication. However, whereas Jäger extends type-logical grammar with
a new logical connective |, we express binding relationships with a new binary
mode b (mnemonic for “binding”). For example, the pronoun she has the lexical
entry

(4.51) she ` (np\bT )( (np)T ).

Conceptually, np\bT is the type of an expression that would otherwise count as
a T , but which contains a pronoun waiting to be bound by an np. The type for she
indicates that it behaves locally like an np, but turns an enclosing expression of
type T into something of type np\bT . For instance, Bob thought she left would
have type np\bs.

8Jäger details logical and linguistic reasons to limit resource duplication. Logically, Jäger’s
system preserves the finite-reading property alongside cut elimination, decidability, and the
subformula property. Linguistically, the sentence The claimi that someone saw everyone and
itsi negation are both true cannot possibly be true; to rule out the spurious reading where
someone saw everyone takes, say, linear scope in the antecedent but inverse scope in the bound
pronoun it, we must only duplicate formulas like np, not someone, (saw, everyone). Thus the |
connective must not obey contravariance: A ` B must not entail np|B ` np|A.
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Our binding rule says that a subexpression np within a context ∆[ ] can bind
into (that is, bind a pronoun inside) the larger expression ∆[np].

Γ[np,b (np } ∆)] ` T
Bind

Γ[np } ∆] ` T
(4.52)

This rule duplicates an np resource:9 it says that, whenever two nps in np,b (np}∆)
suffice to derive T , a single np in np } ∆ will do. In the former type environment
np,b (np } ∆), the second np is an antecedent in the context ∆, and the first np is
a copy of the antecedent that provides the bound meaning to the pronoun. Read
bottom-up, the Bind rule says that an np in a context ∆ can be duplicated to bind
into ∆[np].

To illustrate, Figure 4.12 derives Everyonei saw hisi mother, in which the
subexpression everyone binds into the context [ ] saw his mother. On our
analysis, the pronoun itself takes scope over its antecedent’s context. In Fig-
ure 4.12, everyone binds he, and the context of everyone is [ ] saw his mother.
(This context appears at the bottom of the derivation, where everyone enters, as
(saw, (he, ’s mother)), 1.) Thus he must take scope over this context—that is,
must take as its context np saw [ ]’s mother. (This context appears in the middle
of the derivation, where he enters, as ’s mother, ((1, 〈np〉), 〈saw〉).)

It is always easier to explain why a good derivation works than why a bad
sentence has no derivation, but let us offer a few words on why the crossover
example *Hisi mother saw everyonei (4.48b) does not have the reading indicated
by the subscripts. The crucial difference between (4.48a) and (4.48b) is that
everyone is now to the right of the pronoun it is trying to bind. In order for
everyone to take scope over the context his mother saw [ ], we must apply the
Right′ rule twice (just as in the inverse-scope derivation above in Figure 4.7 on
page 102). But the Right′ rule requires quoting his mother and saw with two
^s. Once ^s enter the picture, the only way to remove them is the Unquote rule.
But since Unquote only applies to expressions of type s, and there is no way to
arrive at the type s without first unquoting the pronoun, there is an unresolvable
standoff: once the non-unquotable np\bs gets quoted, the derivation is doomed.

9Like Dalrymple et al. (1999), we limit resource duplication to np only—Footnote 8 explains
why. This form of limited resource duplication is much more primitive than Jäger’s, but suffices
here because we focus on the role of linear order in anaphora and in other linguistic side effects that
do not duplicate resources. It would be nice to combine Jäger’s treatment of resource duplication
with our treatment of linear order, because the former unifies noun-phrase anaphora with verb-
phrase ellipsis while the latter unifies crossover with superiority, but we leave that to future work.
One promising bridge between the two treatments is Morrill’s account of anaphora in terms of
discontinuous constituency (2000, 2003): perhaps } is associative in nature with 1 as its left as
well as right identity, and Jäger’s |L and |R rules can be rephrased as follows.

Y ` B Γ[A } B] ` C
|L

Γ[(A|B) } Y] ` C
An } · · · } A1 } K ` B

|R
(An|C) } · · · } (A1|C) } K ` B|C
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everyone ` s( (np)s)

Id
np ` np

he ` (np\bs)( (np)s)

·
·
·

np, (saw, (np, ’s mother)) ` s
^ I〈

np, (saw, (np, ’s mother))
〉
` ^s

Id
s ` s

Unquote
〈s〉 ` s

^E〈
np, (saw, (np, ’s mother))

〉
` s

K′
〈np〉, 〈saw, (np, ’s mother)〉 ` s

K′
〈np〉, (〈saw〉, 〈np, ’s mother〉) ` s

T
〈np〉, (〈saw〉, (np, ’s mother)) ` s

Root(
〈np〉, (〈saw〉, (np, ’s mother))

)
} 1 ` s

Right′
(〈saw〉, (np, ’s mother)) } (1, 〈np〉) ` s

Right′
(np, ’s mother) }

(
(1, 〈np〉), 〈saw〉

)
` s

Left
np }

(
’s mother, ((1, 〈np〉), 〈saw〉)

)
` s

) I
’s mother, ((1, 〈np〉), 〈saw〉) ` np)s

( E
he }

(
’s mother, ((1, 〈np〉), 〈saw〉)

)
` np\bs

Left
(he, ’s mother) }

(
(1, 〈np〉), 〈saw〉

)
` np\bs

Right′
(〈saw〉, (he, ’s mother)) } (1, 〈np〉) ` np\bs

Right′(
〈np〉, (〈saw〉, (he, ’s mother))

)
} 1 ` np\bs

T(
np, (〈saw〉, (he, ’s mother))

)
} 1 ` np\bs

T(
np, (saw, (he, ’s mother))

)
} 1 ` np\bs

Left
np }

(
(saw, (he, ’s mother)), 1

)
` np\bs

\b E
np,b
(
np } ((saw, (he, ’s mother)), 1)

)
` s

Bind
np }

(
(saw, (he, ’s mother)), 1

)
` s

) I
(saw, (he, ’s mother)), 1 ` np)s

( E
everyone }

(
(saw, (he, ’s mother)), 1

)
` s

Left(
everyone, (saw, (he, ’s mother))

)
} 1 ` s

Root
everyone, (saw, (he, ’s mother)) ` s

Figure 4.12. Everyonei saw hisi mother

It is controversial whether the crossover constraint regulates anaphora ac-
cording to linear order or according to c-command relations between the quan-
tificational antecedent and the pronoun. We agree with Jäger that linear order
is the determining factor, contra Reinhart (1983). Thus we need to say nothing
more for our theory to deal with a sentence like Everyone’si mother saw himi , in
which the antecedent everyone precedes but does not c-command the pronoun
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him (cf. Büring 2001, 2004). One way in which we address Reinhart’s objections
to linear order is to distinguish linear order from evaluation order: Our claim is
that anaphora depends on evaluation order, which is based on linear order but may
differ from linear order due to certain syntactic constructions. For example, the
pied binding examples in Section 4.5.2 below illustrate that a raised-wh question
delays the evaluation of the raised wh-phrase. We discuss the role of c-command,
linear order, and evaluation order in more detail elsewhere (Shan and Barker 2005;
Sections 1.3 and 1.4).

4.5.2. Questions and superiority. We now turn to the linguistic side effect
of interrogation, in other words, questions. Given that (as explained in Section 1.1)
we measure the success of a natural-language semantic theory by how well it
models when an utterance is true, and a question seems neither true nor false,
it may be surprising that we consider questions at all. Indeed, questions are
one reason why we may need other ways to appraise a semantic theory, such
as whether it is felicitous to respond to a given question with a given answer.
Questions are also an area of natural language where the boundary between
semantics (meaning) and pragmatics (use) is less clear. Nevertheless, we can
embed a question in a larger utterance that is true or false to learn indirectly what
questions mean. For example, the wh-questions in (4.53) must have different
meanings in a sound and compositional semantics, because the sentences in (4.54)
may not be all true or all false.

(4.53) a. who saw Bob
b. who saw Carol
c. who saw what

(4.54) a. Alice knows who saw Bob.
b. Alice knows who saw Carol.
c. Alice knows who saw what.

Motivated by these examples, we restrict our attention in this section to embedded
wh-questions, such as those in (4.53). The linguistic generalizations and analyses
we discuss carry over to unembedded wh-questions, with minor adjustments to
deal with subject-auxiliary inversion and verb forms.

For concreteness, we follow the structured meaning approach (Krifka 2001)
and let a question (such as (4.53a)) denote a function from a short answer (such
as Alice) to a proposition (such as that Alice saw Bob).10 If the proper noun
Bob denotes the individual b, and the transitive verb saw denotes the two-place
function f , then we let the single-wh question (4.53a) denote the one-place

10Despite this choice of approach, our basic idea transfers to other approaches to question
denotations (Hamblin 1973; Karttunen 1977; Groenendijk and Stokhof 1984, 1997; Nelken and
Francez 2000, 2002; Nelken and Shan 2004).
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function λx. f bx. We also let the double-wh question (4.53c) denote the two-
place function λx. λy. f yx, in which the variable x corresponds to the wh-word
who, and the variable y to the wh-word what.

Just as we introduced a new binary mode b in Section 4.5.1 to express
anaphora in syntax, we add a new binary mode ? here to express interroga-
tion in syntax. Conceptually, if S is a type, then np\?S is the type of a question
function that maps a short answer of type np to a result of type S . For example, a
single-wh question such as (4.53a) has the type np\?s, and a double-wh question
such as (4.53c) has the type np\?np\?s.

As mentioned above, we explain superiority just as we explain crossover,
using left-to-right evaluation order. Superiority is the name (Chomsky 1973) for
the fact (Kuno and Robinson 1972) that a wh-trace usually must precede any
additional in-situ wh-phrase. For example, the acceptable question (4.55b) (as in
Alice knows who you think saw what) begins with the raised wh-phrase who. As
is typical, this raised wh-phrase precedes the gap indicated by , called a trace.
The trace is associated with the raised wh-phrase in the sense that who asks for
the seer. After the trace comes the in-situ wh-phrase what. In the unacceptable
questions (4.55c) and (4.55d), the in-situ wh-phrase who precedes the trace.11

(4.55) a. who saw what
b. who you think saw what
c. *what who saw
d. *what you think who saw

We suggest that the in-situ wh-phrase who in (4.55c) and (4.55d) prevents the
raised wh-phrase what from associating with its trace because a raised wh-phrase
can associate with a trace only if the trace takes widest scope over any additional
in-situ wh-phrase. As with crossover in anaphora, we appeal to linear order: we
show that a wh-trace can take scope over an in-situ wh-phrase only if the trace
comes first.

Of course, before we can explain superiority, we have to treat questions first.
A raised-wh question is a wh-question like (4.56), in which a wh-phrase raises to
the front and leaves behind a trace.

(4.56) whose mother Alice saw

In this example, not only does the wh-word whose raise to the front, but the larger
phrase whose mother raises together (technically, gets pied-piped) to the front.

11An unembedded question can have a so-called echo-question reading, which we exclude
from consideration. For example, despite the unacceptability indicated in (4.55c), the question
What did who see ? is perfectly acceptable in response to the question What did Alice see ?,
if the speaker of the first question does not know who Alice is or did not hear the word Alice.



120 4. Evaluation order in natural languages

Less standard in English is an in-situ-wh question: a wh-question like (4.57), in
which the wh-phrase stays in situ.

(4.57) Alice saw whose mother

We now provide lexical entries for who and what. (We analyze the phrase
whose mother as who followed by ’s mother.)

who ` (np\?S )( (np)S )(4.58)

what ` (np\?S )( (np)S )(4.59)

Here the type variable S ranges over all types, not just s, to accommodate multiple-
wh questions. The lexical entries above specify that wh-words take scope in situ,
so they by themselves generate in-situ-wh questions. To generate raised-wh
questions, we add two structural rules.12

Γ[A,? (Θ } (Π, ∆))] ` T
Trace Left

Γ[A,? (Θ, (Π } ∆))] ` T
(4.60)

Γ[A,? (Π } (∆, 〈Θ〉))] ` T
Trace Right′

Γ[A,? (Π, (〈Θ〉 } ∆))] ` T
(4.61)

Figure 4.13 shows the basic usage scenario for these additions to the grammar.
First, the( E inference near the top concludes with the in-situ-wh question (4.57).
Then, the entire derivation culminates in the raised-wh question (4.56).

Let us now examine the derivation of a double-wh question that abides by
superiority, so that we can see what goes wrong in an attempt to violate superiority.
Figure 4.14 derives the question who saw what in (4.55a), in which who is raised
and what remains in situ. (We say that who is raised, even though raising who
does not affect the sequence of words, because this derivation uses the Trace Left
rule near the end. We exemplify raised-wh questions with who saw what for
simplicity.) In Figure 4.14, Trace Left applies to the raised wh-phrase who in
the context [ ] saw what. In other words, the raised wh-phrase takes scope over
the rest of the sentence. Similarly, to derive the superiority violation *what who
saw in (4.55c), the raised wh-phrase what must take scope over the context who
saw [ ]. Just as in the previous section, taking scope over such a context requires
using the Right′ rule twice, which introduces two ^s and necessitates Unquote.

12These two rules are really the composition of the Left and Right′ rules with a single new
rule

Γ[A,? (Θ } ∆)] ` T
Trace,

Γ[A,? (Θ, ( } ∆))] ` T
where is the empty string, in other words the identity for the default mode. But the default
mode in standard type-logical grammar does not have an identity. If multimodal type-logical
grammar were to allow identities for all modes and use unary modes to enforce non-emptiness
when necessary, then we would be able to replace Trace Left and Trace Right′ with this Trace
rule—an appealing prospect.
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Id
np ` np

who ` (np\?s)( (np)s)

·
·
·
·
·

like the top of Figure 4.12
on page 117

’s mother, ((1, 〈Alice〉), 〈saw〉) ` np)s
( E

who }
(
’s mother, ((1, 〈Alice〉), 〈saw〉)

)
` np\?s

\? E
np,?
(
who } (’s mother, ((1, 〈Alice〉), 〈saw〉))

)
` s

Left
np,?
(
(who, ’s mother) } ((1, 〈Alice〉), 〈saw〉)

)
` s

Trace Right′
np,?
(
(who, ’s mother), (〈saw〉 } (1, 〈Alice〉))

)
` s
\? I

(who, ’s mother),
(
〈saw〉 } (1, 〈Alice〉)

)
` np\?s Right′

(who, ’s mother),
(
(〈Alice〉, 〈saw〉) } 1

)
` np\?s Root

(who, ’s mother), (〈Alice〉, 〈saw〉) ` np\?s T
(who, ’s mother), (Alice, 〈saw〉) ` np\?s T
(who, ’s mother), (Alice, saw) ` np\?s

Figure 4.13. Deriving whose mother Alice saw from Alice saw whose mother

But questions cannot be unquoted: their types are of the form A\?S , not ^uS .
Superiority is thus enforced.

For Jäger, a raised wh-phrase has the type q/(np ↑ s), where q is the type of
questions and np ↑ s is the type of an s with an np-trace. Because the mecha-
nism that associates a raised wh-phrase with its trace is separate from anaphora,
whatever might explain superiority in Jäger’s system will be independent of his
explanation for crossover. Our system uses continuations for anaphora as well
as to associate a raised wh-phrase with its trace. Hence evaluation order ex-
plains crossover as well as why an intervening in-situ wh-phrase prevents a raised
wh-phrase from associating with its trace.

It is debatable whether we should account for crossover and superiority with
a unified explanation. Further investigation may reveal empirical arguments that
these two phenomena are in fact distinct. One empirical observation that favors
our unified treatment is what we call pied binding, a pattern of interaction between
wh-raising and crossover. To start with, the typical raised wh-phrase can bind a
pronoun only if the trace of the wh-phrase precedes the pronoun.

(4.62) whoi saw hisi mother
(4.63) *whoi hisi mother saw

One popular explanation since Reinhart’s work (1983) is that it is the trace that
binds the pronoun. In Jäger’s system (his pages 124–125), the trace can indeed
bind the pronoun in examples such as (4.62). Jäger’s system also explains why



122 4. Evaluation order in natural languages

Id
np ` np

who `
(
np\?(np\?s)

)
(
(
np)(np\?s)

)

what ` (np\?s)( (np)s)

·
·
·

(4.14) on page 99
np, (saw, np) ` s

^ I〈
np, (saw, np)

〉
` ^s

Id
s ` s

Unquote
〈s〉 ` s

^E〈
np, (saw, np)

〉
` s

K′
〈np〉, 〈saw, np〉 ` s

K′
〈np〉, (〈saw〉, 〈np〉) ` s

T
〈np〉, (〈saw〉, np) ` s

Root(
〈np〉, (〈saw〉, np)

)
} 1 ` s

Right′
(〈saw〉, np) } (1, 〈np〉) ` s

Right′
np }

(
(1, 〈np〉), 〈saw〉

)
` s

) I
(1, 〈np〉), 〈saw〉 ` np)s

( E
what }

(
(1, 〈np〉), 〈saw〉

)
` np\?s Right′

(〈saw〉, what) } (1, 〈np〉) ` np\?s Right′(
〈np〉, (〈saw〉, what)

)
} 1 ` np\?s Left

〈np〉 }
(
(〈saw〉, what), 1

)
` np\?s T

np }
(
(〈saw〉, what), 1

)
` np\?s T

np }
(
(saw, what), 1

)
` np\?s ) I

(saw, what), 1 ` np)(np\?s)
( E

who }
(
(saw, what), 1

)
` np\?(np\?s)

\? E
np,?
(
who } ((saw, what), 1)

)
` np\?s Trace Left

np,?
(
who, ((saw, what) } 1)

)
` np\?s

\? I
who,

(
(saw, what) } 1

)
` np\?(np\?s)

Root
who, (saw, what) ` np\?(np\?s)

Figure 4.14. Who saw what

(4.63) is unacceptable: when the trace follows the pronoun, crossover rules
out (4.63).

However, more complex examples cast doubt on the hypothesis that it is the
trace that binds the pronoun.

(4.64) whosei father Alice said saw hisi mother
(4.65) *whosei father Alice said hisi mother saw

In (4.64) and (4.65), the trace is associated with the entire pied-piped wh-phrase
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whose father. That is, it is a father who is seeing or being seen. Yet, as the
subscripts in (4.64) indicate, the wh-word who alone can bind the pronoun. This
example suggests that the wh-word must be able to bind the pronoun directly after
all.

Interestingly, the second example (4.65) shows that wh-binding still requires
linear precedence of a sort: the wh-word who can bind the pronoun only if the
trace precedes the pronoun. In our system, a wh-phrase can bind a pronoun just as
a quantificational noun phrase does. However, just as it is a superiority violation
for an in-situ wh-phrase to interfere between a raised wh-phrase and its trace, it
is a crossover violation for a pronoun to interfere between an antecedent raised
wh-phrase and its trace. Put differently, the raised-wh question (4.65) violates
crossover because the corresponding in-situ-wh question Alice said hisi mother
saw whosei father violates crossover. In computational terms, the evaluation
of a raised wh-phrase is delayed until its corresponding wh-trace. This complex
pattern of interaction between wh-phrases and pronouns falls out from our unified
account without additional stipulation.

To recap, our analysis of anaphora and interrogation in terms of in-situ quan-
tification holds its own against Jäger’s robust previous analysis: we account for
both crossover and superiority, including the interaction between wh-raising and
crossover. Before us, many linguists have also noted and tried to explain that the
relation between an antecedent and a pronoun that violate crossover is similar to
the relation between a wh-trace and an in-situ wh-phrase that violate superiority.
Hornstein (1995) and Dayal (1996) separately argue that superiority reduces to
crossover, but they rely on encoding multiple-wh questions as functional-wh
questions (Chierchia 1991, 1993). O’Neil (1993) stipulates crossover and supe-
riority as two parts of his Generalized Scope Marking Condition, but he does
not unify them. By contrast, we unify crossover and superiority to a common
hypothesis, namely left-to-right evaluation. This common hypothesis applies
across linguistic side effects: not just to crossover in anaphora and superiority
in interrogation, but also to the preference for linear scope in quantification, as
explained in Section 4.4, and the effect of linear order on polarity sensitivity,
which we turn to next.

4.5.3. Polarity sensitivity. The sentences (4.66) and (4.67) have the same
truth conditions: knowing whether anyone slept and knowing whether someone
slept are both knowing whether there exists an x such that x slept.

(4.66) Alice knows whether anyone slept.
(4.67) Alice knows whether someone slept.

Examples like these make us want to analyze anyone as an existential quantifier
just like someone. Unfortunately for the simplicity of our theory, anyone and
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someone (and more generally, any and some) are not always interchangeable
in their existential usage. For example, whereas the sentence (4.68a) only has an
inverse-scope reading ∃y.∀x.¬saw(x, y) (following Section 3.3.1’s use of logical
formulas to indicate meaning), the sentence (4.69a) only has a linear-scope
reading ∀x.¬∃y. saw(x, y). Moreover, whereas the sentences (4.68b) and (4.68c)
are acceptable, their counterparts (4.69b) and (4.69c) with someone replaced by
anyone are unacceptable.

(4.68) a. Nobody saw someone.
b. Everyone saw someone.
c. Alice saw someone.

(4.69) a. Nobody saw anyone.
b. *Everyone saw anyone.
c. *Alice saw anyone.

These differences are termed polarity sensitivity, or polarity licensing, for the
following reason (Ladusaw 1979; Krifka 1995; inter alia). The word anyone is a
negative polarity item: to a first approximation, it can occur only in a downward-
entailing context, such as in the scope of a monotonically decreasing quantifier.
(Dually, the word someone is a positive polarity item, but we focus on anyone
here.) A quantifier q, of type (np→ s)→ s, is monotonically decreasing just in
case

(4.70) ∀s1.∀s2.
(
∀x. s2(x)⇒ s1(x)

)
⇒ q(s1)⇒ q(s2).

Here s1 and s2 are properties, that is, of type np→ s. According to this approxi-
mate generalization, the sentence (4.69a) has a linear-scope reading because the
quantifier nobody is monotonically decreasing: letting q be λc.∀x.¬c(x) in (4.70)
gives

(4.71) ∀s1.∀s2.
(
∀x. s2(x)⇒ s1(x)

)
⇒
(
∀x.¬s1(x)

)
⇒
(
∀x.¬s2(x)

)
,

which is a valid formula in second-order predicate logic. For example, let s1

be the property of seeing someone and s2 be the property of seeing a student:
because seeing a student entails seeing someone, if nobody has the property of
seeing someone then nobody has the property of seeing a student.

By contrast, the sentence (4.69a) has no inverse-scope reading, and (4.69b)
and (4.69c) have no reading whatsoever, because those contexts for anyone are not
downward-entailing. For instance, the quantifier everyone is not monotonically
decreasing: letting q be λc.∀x. c(x) in (4.70) gives

(4.72) ∀s1.∀s2.
(
∀x. s2(x)⇒ s1(x)

)
⇒
(
∀x. s1(x)

)
⇒
(
∀x. s2(x)

)
,

which is not a valid formula in second-order predicate logic.
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So far, we have presented the view that anyone is an existential quantifier that
can only be used in certain contexts. In fact, it has been controversial in linguistics
for decades whether anyone quantifies existentially, universally, both, or neither.
Below we avoid that semantic debate and concentrate on the syntactic relationship
between nobody and anyone in (4.69a). We say that nobody licenses anyone:
unlike everyone in (4.69b) and Alice in (4.69c), nobody in (4.69a) creates a
context in which anyone can occur.

Perhaps because it spans syntax and semantics, polarity sensitivity has been
a popular linguistic phenomenon to analyze in logically-motivated approaches
to grammar, such as the type-logical (Bernardi 2002; Bernardi and Moot 2001),
categorial (Dowty 1994), and lexical-functional (Fry 1997, 1999) traditions. Fry
(1997, 1999), Bernardi (2002), and Bernardi and Moot (2001) all split the clause
type s into several types, some of which entail others. Fry (1997, 1999) distin-
guishes between the types s and ` ( (s ⊗ `) in linear logic, the first of which
entails the second. Analogously, Bernardi (2002) and Bernardi and Moot (2001)
distinguish between different unary modes applied to s in multimodal type-logical
grammar.

A simplistic version of Bernardi’s analysis is to distinguish between the clause
types s (“neutral clause”) and �↓p^ps (“negative clause”). Here ^p is a new unary
mode (the letter p stands for “polarity”), and we abbreviate �↓p^ps to s−. We
choose the type �↓p^ps so that s ` s− is a theorem in multimodal type-logical
grammar.

(4.73)

Id
s ` s

^p I
〈s〉p ` ^ps

�↓p I
s ` �↓p^ps

Splitting the clause type like this helps us account for polarity sensitivity, because
we can now assign different types to different quantifiers in the lexicon.

everyone ` s( (np)s)(4.74)

nobody ` s( (np)s−)(4.75)

anyone ` s−( (np)s−)(4.76)

The type of everyone is unchanged: it takes scope over a neutral clause to form a
neutral clause. The types of nobody and anyone involve the newly introduced s−:
they both take scope over a negative clause, but nobody forms a neutral clause
whereas anyone forms a negative clause. As the proof (4.73) shows, a neutral
clause can be converted to a negative clause. Thus, as Figure 4.15 shows, anyone
can take scope in np, (saw, anyone) to form a negative clause s−, even though the
verb saw produces a neutral clause s initially. As before, we consider a derivation
complete if it culminates in the type s, not s−. The fact that np, (saw, anyone)
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anyone ` s−( (np)s−)

·
·
·

(4.14) on page 99
np, (saw, np) ` s

^p I〈
np, (saw, np)

〉
p ` ^ps

�↓p I
np, (saw, np) ` s−

Root(
np, (saw, np)

)
} 1 ` s−

Right′
(saw, np) } (1, np) ` s−

Right′
np }

(
(1, np), saw

)
` s−

) I
(1, np), saw ` np)s−

( E
anyone }

(
(1, np), saw

)
` s−

Right′
(saw, anyone) } (1, np) ` s−

Right′(
np, (saw, anyone)

)
} 1 ` s−

Root
np, (saw, anyone) ` s−

Figure 4.15. The negative clause (incomplete sentence) np saw anyone

only has the type s− (as derived above) and not s predicts that a clause like *Alice
saw anyone (4.69c) is not a grammatical sentence by itself. Moreover, because
there is no way to convert a negative clause to a neutral clause, everyone cannot
take scope over a negative clause, so *Everyone saw anyone (4.69b) is ruled
out as well. However, nobody (unlike Alice or everyone) can take scope over
anyone to form a complete (neutral) clause. Thus even our simplistic rendering
of Bernardi’s account predicts correctly that Nobody saw anyone (4.69a) has a
linear-scope reading (but no inverse-scope reading). We also predict correctly
that the sentence

(4.77) Nobody introduced everyone to anyone.

has no linear-scope reading, and that it does have an interpretation on which
nobody scopes over anyone, then everyone. (Kroch (1974), Linebarger (1980),
and Szabolcsi (2004) discuss such intervention cases.)

This picture is complicated by the empirical observation that the syntactic
relationship between the licensor and the licensee is restricted. For example,
(4.69a) above is acceptable—nobody manages to license anyone—but

(4.78) *Anyone saw nobody.

is not. As the contrasts below further illustrate, the licensor usually must precede
the licensee. (The examples in (4.80) show that c-command is not at issue, because
neither nobody nor anyone c-commands the other. The examples in (4.81) show
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that subject-object asymmetry is not the culprit either, because the only subject
is I.)

(4.79) a. Alice didn’t visit anyone.
b. *Anyone didn’t visit Alice.

(4.80) a. Nobody’s mother saw anyone’s father.
b. *Anyone’s mother saw nobody’s father.

(4.81) a. I gave nothing to anyone.
b. *I gave anything to nobody.
c. I gave nobody anything.
d. *I gave anyone nothing.

These and other examples show that the syntactic relationships allowed between
licensor and licensee for polarity are similar to those allowed between antecedent
and pronoun for anaphora.

Because Fry, Bernardi, and Bernardi and Moot focus on quantification and
scope, they easily characterize how nobody must take scope over anyone, but
they leave it a mystery why nobody must precede anyone. In particular, their
accounts wrongly accept all of (4.78)–(4.81). Ladusaw (1979) notes this mystery
in his Inherent Scope Condition: “If the negative polarity item is clausemate
with the trigger, the trigger must precede” (Section 4.4). Likewise, Fry (1999;
Section 8.2) faults current accounts of polarity sensitivity for ignoring linear
order. Ladusaw goes on to speculate that this left-right requirement is related to
quantifier scope and sentence processing:

I do not at this point see how to make this part of the Inherent
Scope Condition follow from any other semantic principle.
This may be because the left-right restriction, like the left-right
rule for unmarked scope relations, should be made to follow
from the syntactic and semantic processing of sentences . . . .
(Section 9.2)

This speculation is our claim: the preference for linear order in quantification
and the requirement that a polarity licensor precede its licensee are both due to
left-to-right evaluation order. Our type-logical treatment of in-situ quantification
and its application to multiple linguistic side effects provide precisely the missing
link between linear order and polarity sensitivity.

Recall from Section 4.4 that inverse scope can be generated, even under a
regime of left-to-right evaluation, using the Unquote rule in (4.47) on page 112.
The crucial step, as illustrated in Figure 4.11 on page 113, is to unquote the
clause produced by the narrower-scope quantifier. In that example, everyone
can take inverse scope over someone, because someone produces a neutral
clause s. A neutral clause can be unquoted because its type s is shorthand for
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^us′, which is enclosed in ^u. By contrast, a negative clause cannot be unquoted
because its type s− is shorthand for �↓p^p^us′, which is not enclosed in ^u. Given
that anyone produces s−, then, inverse scope over anyone is impossible. This
prediction correctly rules out the unacceptable examples in (4.78)–(4.81) while
leaving (4.77) available.

This explanation for linear order in polarity sensitivity is further developed
elsewhere (Shan 2004b), including treating someone as a positive polarity item.
We are not aware of any other account of polarity sensitivity that unifies its
syntactic properties with crossover as we do using left-to-right evaluation.

4.5.4. Reversing evaluation order. One way to check that our implementa-
tion of evaluation order unifies linear-order effects in crossover, superiority, and
polarity is to impose right-to-left evaluation and see what happens. Because our
Left and Right′ rules embody left-to-right evaluation order, we can reverse default
evaluation order while leaving all other aspects of the system unchanged.

Specifically, suppose that we replace the Left and Right′ rules in (4.44) on
page 110 with

Γ[Θ } (〈Π〉,∆)] ` T
=================== Left′
Γ[(Θ, 〈Π〉) } ∆] ` T

Γ[(Θ,Π) } ∆] ` T
================= Right,
Γ[Π } (∆,Θ)] ` T

(4.82)

and the Trace Left and Trace Right′ rules in (4.60) and (4.61) on page 120 with13

Γ[A,? (Θ } (〈Π〉, ∆))] ` T
Trace Left′

Γ[A,? (Θ, (〈Π〉 } ∆))] ` T
(4.83)

Γ[A,? (Π } (∆, Θ))] ` T
Trace Right.

Γ[A,? (Π, (Θ } ∆))] ` T
(4.84)

We can still derive linear and inverse scope for quantifiers, but the predictions
concerning the crossover examples in (4.48) on page 114, the superiority examples
in (4.55) on page 119, and the polarity examples in (4.78)–(4.81) on pages 126–
127 reverse: an antecedent must follow any pronoun it binds, a wh-trace must
follow any in-situ wh-phrase, and a polarity licensor must follow any polarity
item it licenses.

13As one would expect from Footnote 12.



CHAPTER 5

Delimited duality in programming languages

In this chapter, we apply the study of in-situ quantification in natural languages
to the study of delimited control in programming languages. We present a
programming language with delimited control and equip it with a duality, that is,
an involution on programs and their execution. This duality is of interest for two
reasons.

First, the duality exchanges call-by-value and call-by-name, two evaluation
orders long studied in programming languages. Thus, not only can call-by-value
and call-by-name be encoded in each other (Plotkin 1975), but the same encoding
works in both directions in a suitable language, so a programmer can choose more
easily between them. We are not the first to note that call-by-value and call-by-
name are dual to each other (Filinski 1989a,b; Danos et al. 1995; Curien and
Herbelin 2000; Selinger 2001; Wadler 2003). Rather, we are the first to construct
such a duality in the presence of delimited rather than undelimited control. This
difference arises because we draw our inspiration from quantification in natural
language: the context over which a quantifier takes scope is delimited.

Second, the duality is the first to exchange contexts using let (defined in (2.32)
on page 34) with expressions using shift (defined in Figure 3.9 on page 76).
Although both features are useful, let is much more familiar than shift to the
typical programmer, who can thus understand shift by way of let and use shift
more effectively. The intuition underlying this duality between let and shift is that
a shift-expression is a function that applies outward and a let-context is a function
that applies inward, like a quantifier and its scope in natural language.

Two ideas from type-logical grammar motivate the design of our programming
language. The first idea is that, given a decomposition of an expression into a
subexpression and a context, we can treat both the subexpression and the context
as binary trees and depict them as unitrivalent graphs. In particular, according
to the structural rules proposed in Section 4.1 in type-logical grammar, the same
default binary mode builds up subexpressions in an utterance as well as the
delimited contexts over which they may take scope.

The second idea is that, when two syntactic structures combine, either con-
stituent may be a function that takes the other as argument. In particular, the /E
and \ E rules in Section 2.4 both use the default mode to combine the premises’
type environments, so the direction of function application—that is, which con-

129
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stituent applies to which—can be ambiguous given only the conclusion’s type
environment.

For the default mode, which prepends one constituent to another, this bidirec-
tional function application yields a duality between left and right. That is, the
reversal involution − on types and type environments defined by

(5.1)

−A = A,
−(T2/T1) = −T1\−T2,
−(T1\T2) = −T2/−T1,
−(T2/mT1) = −T2/m−T1,
−(T1\mT2) = −T1\m−T2,

−(x : T ) = x : −T ,
−(Γ, ∆) = −∆, −Γ,
−(Γ,m ∆) = −Γ,m −∆

(for any non-default mode m) extends trivially to an involution on grammars and
their derivations, by flipping the direction of function application. For the }mode,
which plugs one constituent into another, the same bidirectionality yields a duality
between inside and outside: the context may apply to the subexpression, as well
as vice versa. That is, the reversal involution ¬ on types and type environments
defined by

(5.2)

¬A = A,

¬(T2( T1) = ¬T1)¬T2,

¬(T1)T2) = ¬T2( ¬T1,
¬(T2/mT1) = ¬T2/m¬T1,
¬(T1\mT2) = ¬T1\m¬T2,

¬(x : T ) = x : ¬T ,
¬(Γ } ∆) = ¬∆ } ¬Γ,
¬(Γ,m ∆) = ¬Γ,m ¬∆

(for any non-continuation mode m) again extends trivially to an involution on
grammars and their derivations, by flipping the direction of function application.
Our side-effect analogy enables us to transfer this involution to a programming
language with delimited control.

5.1. Call-by-value versus call-by-name

As mentioned in Section 2.3.1, the simply-typed λ-calculus is confluent, even
though the computation relation is not deterministic: the same expression can
execute in a variety of ways to yield the same result. We can make execution
deterministic by imposing an evaluation order, such as call-by-value, left-to-right
evaluation as enforced in Section 3.1.2. As explained in Section 3.1.1, evaluation
order affects the final outcome of programs with control operators like abort and
shift. Furthermore, in the untyped λ-calculus, not all programs terminate as in the
simply-typed λ-calculus, and evaluation order affects whether programs can or
must terminate. For example, the untyped program

(5.3) (λy. λz. z)((λx. xx)(λx. xx))
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Values Γ `V V

Γ, x ` E
Γ `V λx. E Γ, x `V x

Expressions Γ ` E

Γ `V V
Γ ` V

Γ ` E
Γ ` #E

Γ, cD ` E
Γ ` ξc. E

Γ ` F Γ ` E
Γ ` FE

Γ, cD ` E
Γ, cD ` #(cE)

Evaluation subcontexts D[ ] : d

[ ] : d
` F D[ ] : d

D[F[ ]] : d
D[ ] : d `V V

D[[ ]V] : d

Evaluation contexts C[ ]
D[ ] : d

D[ ]
C[ ] D[ ] : d

C[#(D[ ])]

Computation #E B #E′

#(C[(λx. E′)V]) B #(C[E′ {x 7→ V}])
#(C[#V]) B #(C[V])

#(C[#(D[ξc. E′])]) B #(C[#E′ {c[ ] 7→ D[ ]}])

Figure 5.1. An untyped λ-calculus with shift and reset, enforcing call-by-value,
argument-to-function evaluation

(based on (2.33) on page 35) computes to itself as well as the value

(5.4) λz. z.

Hence it initiates an infinite sequence of computation steps as well as finite ones
that conclude in a normal form. On one hand, if we restrict the computation
relation to rule out the step from (5.3) to (5.4), for example by enforcing call-by-
value evaluation, then we prevent the program from stopping. On the other hand,
if we rule out the step from (5.3) to itself, then we force the program to stop right
away.

In Sections 3.1 and 3.2, we introduced the delimited control constructs #E
(called prompt or reset) and ξc. E (called shift) in a programming language based
on the simply-typed λ-calculus. Figures 5.1 and 5.2 define two variants of the
untyped λ-calculus with shift and reset, with the same set of expressions but
different computation relations. Each of Figures 5.1 and 5.2 provides inference
rules for four judgment forms. The judgment Γ ` E classifies E as a well-formed
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Values Γ `V V

Γ, x ` E
Γ `V λx. E

Expressions Γ ` E

Γ `V V
Γ ` V Γ, x ` x

Γ ` E
Γ ` #E

Γ, cD ` E
Γ ` ξc. E

Γ ` F Γ ` E
Γ ` FE

Γ, cD ` E
Γ, cD ` #(cE)

Evaluation subcontexts D[ ] : d

[ ] : d
D[ ] : d ` E

D[[ ]E] : d

Evaluation contexts C[ ]
D[ ] : d

D[ ]
C[ ] D[ ] : d

C[#(D[ ])]

Computation #E B #E′

#(C[(λx. E′)E]) B #(C[E′ {x 7→ E}])
#(C[#V]) B #(C[V])

#(C[#(D[ξc. E′])]) B #(C[#E′ {c[ ] 7→ D[ ]}])

Figure 5.2. An untyped λ-calculus with shift and reset, enforcing call-by-name,
context-to-function evaluation

expression in the type environment Γ. As a special case, the judgment Γ `V V
classifies V as a value expression. A type environment Γ is a finite, possibly
empty set of variables, some subscripted by D (as in cD) to indicate a context
variable. The judgment D[ ] : d classifies D[ ] as an evaluation subcontext. The
judgment C[ ] classifies C[ ] as an evaluation context: essentially, a sequence of
subcontexts separated by control delimiters.

Compared to the programming language in Figure 3.9 on page 76, these
variants are more suitable for our purposes in this chapter because they incorporate
two changes. First, we consider an expression to be a complete program only if it
is enclosed by #.1 Thus we define the computation relation only for expressions

1If we were considering a delimited control operator (such as Gunter et al.’s cupto (1995,
1998)) that, unlike shift, allows removing a control delimiter around an expression that is not a
value, then for an expression to be enclosed by a delimiter would no longer guarantee that the
control operators in the expression execute successfully. It would then be no longer appropriate to
consider only an expression enclosed by a delimiter as a complete program.
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enclosed by #. Second, the two variants enforce two orders of evaluation. The
variant in Figure 5.1 enforces call-by-value but argument-to-function evaluation.
Argument-to-function evaluation means that, when a function F is applied to an
argument E, evaluation proceeds from E to F. Because we write F to the left of E
as usual, argument-to-function evaluation is right-to-left evaluation—the opposite
of left-to-right evaluation as in Chapters 3 and 4. We consider the argument-to-
function variant of call-by-value evaluation here because it turns out to be dual to
standard (“context-to-function”) call-by-name evaluation.2 The latter evaluation
order is shown in Figure 5.2. Although shift and reset have been proposed only
for call-by-value languages in the literature, we think the system in Figure 5.2
is a reasonable proposal for shift and reset under call-by-name: it extends the
call-by-name λ-calculus (Plotkin 1975) and otherwise tracks Figure 5.1.

As explained in Section 3.1.2, call-by-value evaluation means to substitute
only values for variables and never evaluate a subexpression inside a body (that
is, under a variable binding). By contrast, call-by-name evaluation means to
substitute any expressions for variables but never evaluate a subexpression inside
a body or an argument. For example, whereas call-by-value evaluation computes

(5.5) #((λy. λz. z)((λx. xx)(λx. xx)))

to itself only, call-by-name evaluation computes it to

(5.6) #(λz. z)

only. To take another example, the program

(5.7) #(let ξc. 1 be x. 2),

which is shorthand for

(5.8) #((λx. 2)(ξc. 1)),

computes to #1 under call-by-value evaluation, but #2 under call-by-name evalua-
tion.3

The analysis of in-situ quantification in Chapter 4 helps us understand the
difference between call-by-value and call-by-name, by treating the plugging of an
expression into a subcontext as a mode of syntactic combination (namely }) and
by visualizing syntactic combination in terms of unitrivalent graphs. To take a
simple example, the program (5.7) is the result of plugging the expression ξc. 1

2Call-by-value, function-to-argument evaluation is dual to a nonstandard (“function-to-con-
text”) kind of call-by-name evaluation.

3Often “call-by-name” is taken to mean that one may substitute any expressions for variables,
and may also evaluate a subexpression inside an argument or even a body. Call-by-name as
defined here is a more restrictive—in fact deterministic—computation relation.
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into the subcontext let [ ] be x. 2 inside a control delimiter. Using notation from
Chapter 4, we can write the program roughly as

(5.9) #(ξc. 1 } let [ ] be x. 2).

Intuitively, to the left of } is a structure with the syntactic type int( T : it combines
with any type T to the right (that is, outside) to produce 1. To the right of } is
a structure with the syntactic type T)int: it combines with any type T to the
left (that is, inside) to produce 2. Because T can be any type for each of these
constituents, they can combine by either the( E rule or the ) E rule. Semantically
speaking, the constant function returning 1 can apply to the constant function
returning 2, as well as vice versa. The duality in (5.2) on page 130 makes the
direction of function application ambiguous in (5.9), which we can visualize as
the following trivial graph.

(5.10)
let [ ] be x. 2

ξc. 1

To break the symmetry, we can restrict the direction of function application,
as follows. If we prohibit taking an argument whose type is of the form T2( T1,
then let [ ] be x. 2 can no longer apply to the non-value ξc. 1 by the ) E rule,
and (5.9) means 1 only, as call-by-value specifies. Dually, if we prohibit taking
an argument whose type is of the form T1)T2, then ξc. 1 can no longer apply
to the non-subcontext let [ ] be x. 2 by the( E rule, and (5.9) means 2 only, as
call-by-name specifies. Intuitively, a shift expression like ξc. 1 is a function that
applies outward to the subcontext it is plugged into, as a quantificational noun
phrase does. Dually, a let subcontext like let [ ] be x. 2 is a function that applies
inward to the subexpression plugged into it, as a gapped clause does. Call-by-
value means that the subexpression takes priority in applying to the subcontext,
whereas call-by-name means that the subcontext takes priority in applying to the
subexpression.

To visualize more complex programs, we need trivalent nodes in our graphs.
For example, the program (5.5) on page 133 corresponds to the graph below.

(5.11) [ ]
??

??
?

λy. λz. z

�����

???????

λx. xx

�����
λx. xx

?????

A trivalent node indicates function application. Because the λ-calculus (unlike
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the Lambek calculus) distinguishes a function applied by putting it to the left
of the argument, the trivalent nodes in this chapter (unlike those in Chapter 4)
also distinguishes a function applied, by putting its edge perpendicular to the two
other edges.

In general, a λ-expression corresponds to a “pipeline” that connects an argu-
ment at one end (such as λx. xx in the lower-right corner above) to a subcontext
at the other end (such as [ ] in the upper-left corner above). Along the pipeline
are zero or more functions (two above), which combine successively with the
end argument to yield what plugs into the end subcontext, or dually, combine
successively with the end subcontext to yield what the end argument plugs into.
Each of these functions in turn forms one side of another pipeline. For example,
a trivially short pipeline connects the function λy. λz. z above to the subcontext
[ ]((λx. xx)(λx. xx)). Similarly, depicting the program

(5.12) #((fx)(gy))

as the graph

(5.13) [ ]
??

??
?

f
??

??
?? �������

???????

x

�����
g

�����
y

?????

makes clear that a pipeline with just the function f connects x to the subcontext
[ ](gy).

One way to specify the order of evaluation in a graph like these is to orient the
pipelines: for each pipeline, pick one end as the start and the other as the finish.
For example, we could orient the graph (5.11) as

(5.14) [ ] __
??

??
?

λy. λz. z

??�����

???????

λx. xx

??�����
λx. xx

?????

(in which each arrowhead orients one or more colinear edges, which form a
pipeline), then consider the parts of the graph for evaluation from start to finish.
That is, we first consider the argument λx. xx (which is already a value), then
consider the function λx. xx (which applies). Because (λx. xx)(λx. xx) β-reduces
to itself, we never get to consider the function λy. λz. z further along the pipeline.
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Similarly, if we orient the graph (5.13) as

(5.15) [ ] __
??

??
?

f

��?
??

??
?

??�������

???????

x

�����
g

??�����
y,

?????

it means to apply g to y first, then apply f to x, and finally apply fx to gy. Roughly,
to orient every pipeline towards the “root node” [ ] is to mandate call-by-value,
argument-to-function evaluation.

Dually, we can orient every pipeline away from the root [ ]. In the case
of (5.11), it means to apply λy. λz. z first, yielding the value λz. z.

(5.16) [ ]
??

??
?

λy. λz. z
��

�����

???????

λx. xx
��

�����
λx. xx

��

?????

In the case of (5.13), it means to apply f first, then the function resulting from fx,
without inspecting gy.

(5.17) [ ]
??

??
?

f __

??
??

?? �������

???????

x
��

�����
g

��

�����
y

��

?????

Roughly, to orient every pipeline away from the “root node” [ ] is to mandate
call-by-name, context-to-function evaluation.

In the next section, we formalize these intuitions and make the duality between
call-by-value and call-by-name explicit in an extended programming language
with delimited control.

5.2. Delimited control in a dual calculus

Figure 5.3 defines the dual calculus, a programming language in which each
complete program, a statement G, is a pipeline in which zero or more intermediate
stages connect a left end to a right end. The intermediate stages and two ends
of a pipeline are separated by semicolons ; in between. Accordingly, we write a
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Leaf terms Γ `L E;

Γ, x;, ; c ` G
Γ `L x.(G).c; Γ, x; `L x; Γ `L [];

Γ ` E; Γ ` ; D
Γ `L (E; −; D);

Γ ` G
Γ `L #G;

Γ, ; c ` G
Γ `L (G).c;

Leaf coterms Γ `L ; D

Γ, x;, ; c ` G
Γ `L ; x.(G).c Γ, ; c `L ; c Γ `L ; []

Γ ` E; Γ ` ; D
Γ `L ; (E; −; D)

Γ ` G
Γ `L ; #G

Γ, x; ` G
Γ `L ; x.(G)

Terms Γ ` E;

Γ `L E;
Γ ` E;

Γ ` E; Γ ` E′;
Γ ` E; (E′; );

Γ ` E; Γ ` ; D′

Γ ` E; (; D′);

Coterms Γ ` ; D

Γ `L ; D
Γ ` ; D

Γ ` ; D′ Γ ` ; D
Γ ` ; (; D′); D

Γ ` E′; Γ ` ; D
Γ ` ; (E′; ); D

Statements Γ ` G
Γ ` E; Γ `L ; D
Γ ` E; D

(These two rules are equivalent.)
Γ `L E; Γ ` ; D
Γ ` E; D

Evaluation contexts C[ ]

[ ]
C[ ] Γ ` ; D

C[#[ ]; D]
Γ ` E; C[ ]

C[E; #[ ]]

Computation G1 B G2

C[E; (E′; ); D] B C[E′; (E; −; D)] C[#(E; []); D] B C[E; D]
C[E; (; D′); D] B C[(E; −; D); D′] C[E; #([]; D)] B C[E; D]

C[x.(G).c; (E; −; D)] B C[G {x 7→ E} {c 7→ D}] C[(G).c; D] B C[G {c 7→ D}]
C[(E; −; D); x.(G).c] B C[G {x 7→ E} {c 7→ D}] C[E; x.(G)] B C[G {x 7→ E}]

Figure 5.3. A dual calculus with delimited control operators

term E—an incomplete pipeline lacking a right end—with a dangling semicolon
to the right, and a coterm D—an incomplete pipeline lacking a left end—with
a dangling semicolon to the left. Each intermediate stage is in turn a term or a
coterm, so a generic statement might look like

(5.18) E1; (E2; ); (; (E3; ); D4); (E5; ); D6
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and be depicted as a graph like

(5.19)

E2

��

E5

��E1
//

��

D6.

E3
oo

D4

The statement (5.18) singles out the long horizontal pipeline in this graph as a
distinguished trunk.

We use the metavariable x for a term variable, and the metavariable c for a
coterm variable. This convention follows one of two possible, dual intuitions,
namely that terms correspond to expressions in the λ-calculus, and coterms to
subcontexts. A type environment Γ here is a finite set of variables, each marked
a term variable (x;) or a coterm variable (; c). As defined by the judgment form
Γ `L E;, the possible left ends E; are:

• an abstraction x.(G).c;,
• a variable x;,
• the unit [];,
• an activation (E; −; D);, related to subtraction (also known as coimplica-

tion) in logic (Crolard 2001, 2004),
• a delimited substatement #G;,
• a shift-term (G).c;.

Dually, the judgment form Γ `L ; D defines the possible right ends ; D to be:

• an abstraction ; x.(G).c,
• a variable ; c,
• the unit ; [],
• an activation ; (E; −; D),
• a delimited substatement ; #G,
• a let-coterm ; x.(G).

An abstraction always takes two arguments x and c at once, one from each
side of the pipeline. The abstraction can effectively take just one argument by
reinstating the other right away, as in x.(E; c).c and x.(x; D).c. This “dot” notation
for abstraction is inspired by Wadler’s (2003).

Be it as a term or a coterm, the unit [] represents the null subcontext [ ] in
the λ-calculus. On the other hand, an activation (E; −; D) represents a subcontext
of the form D[[ ]E] in the λ-calculus. It can be thought of as a stack frame for
invoking a function with two inputs E; and ; D, one of which is the argument and
the other is the return address or continuation.
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Translating expressions E to terms E

λx. E = x.(E; c).c;

x = x;

#(cE) = #(E; c);

ξc. E = (E; []).c;

FE = E; (F; );

#E = #(E; []);

Translating evaluation subcontexts D[ ] to coterms D[ ]

[ ] = ; []

D[F[ ]] = ; (F; ); D[ ]

D[[ ]E] = ; (E; −; D[ ])

Figure 5.4. Translating the λ-calculus to the dual calculus

Graphically speaking, each left or right end that is not an activation corre-
sponds to a leaf node in a graph. The leaf node corresponding to an abstraction, a
delimited substatement, a shift-term, or a let-coterm contains a child graph within.
An activation corresponds to coming to a stop at a T-intersection at the end of a
pipeline. For example, the statement

(5.20) (E1; (E2; ); −; (E5; ); D6); (E3; ); D4

corresponds to the same graph (5.19) as before, but with the long vertical pipeline
singled out as the distinguished trunk.

The judgment form Γ ` G defines statements G formally. A statement is
simply the result of plugging a term E; and a coterm ; D together to form a
complete pipeline E; D. Crucial to the notation and duality of our language is the
fact that concatenating incomplete pipelines is an associative operation. Thus, for
example, the statement (5.18) is the result of plugging together

• the term E1; (E2; ); (; (E3; ); D4); (E5; ); and the coterm ; D6 (using the first
rule for statements in Figure 5.3 on page 137),
• the term E1; (E2; ); (; (E3; ); D4); and the coterm ; (E5; ); D6,
• the term E1; (E2; ); and the coterm ; (; (E3; ); D4); (E5; ); D6, as well as
• the term E1; and the coterm ; (E2; ); (; (E3; ); D4); (E5; ); D6 (using the

second rule for statements in Figure 5.3 on page 137).
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Figure 5.4 translates the λ-calculus with shift and reset to the dual calculus.
More precisely, it translates expressions E to terms E and evaluation subcon-
texts D[ ] to coterms D[ ]. For example, the λ-expression (5.3) on page 130
translates to the term

(5.21) (λy. λz. z)((λx. xx)(λx. xx)) = x.(x; (x; ); c).c;
(x.(x; (x; ); c).c; );
(y.(z.(z; c).c; c).c; );.

Enclosing the expression (5.3) in # to form the program (5.5) on page 133 in the
λ-calculus corresponds to plugging together this term and the unit coterm ; [] in
the dual calculus. The resulting statement can execute in the call-by-value way,
yielding the following infinite loop of computation steps.

x.(x; (x; ); c).c; (x.(x; (x; ); c).c; ); (y.(z.(z; c).c; c).c; ); []
B x.(x; (x; ); c).c; (x.(x; (x; ); c).c; −; (y.(z.(z; c).c; c).c; ); [])
B x.(x; (x; ); c).c; (x.(x; (x; ); c).c; ); (y.(z.(z; c).c; c).c; ); []

(5.22)

It can also execute in the call-by-name way, concluding in a normal form.

x.(x; (x; ); c).c; (x.(x; (x; ); c).c; ); (y.(z.(z; c).c; c).c; ); []
B y.(z.(z; c).c; c).c; (x.(x; (x; ); c).c; (x.(x; (x; ); c).c; ); −; [])
B z.(z; c).c; []

(5.23)

We distinguish between call-by-value and call-by-name execution in the dual
calculus only informally here. Section 5.3 below formalizes the distinction.

For another example, the λ-calculus program (5.7) on page 133 corresponds
to the statement

(5.24) (1; []).c; (x.(2; c).c; ); []

if we take 1 and 2 to translate to themselves. The call-by-value way to execute
this statement binds c to the coterm ; (x.(2; c).c; ); [] and discards it.

(1; []).c; (x.(2; c).c; ); [] B 1; [](5.25)

The call-by-name way, on the other hand, binds x to the term (1; []).c; and discards
it.

(1; []).c; (x.(2; c).c; ); [] B x.(2; c).c; ((1; []).c; −; []) B 2; [](5.26)

Were we not to treat #(let ξc. 1 be x. 2) as just shorthand for #((λx. 2)(ξc. 1)), we
could translate the former expression more faithfully into the dual calculus as the
statement

(5.27) (1; []).c; x.(2; []),
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¬(x.(G).c;) = ; c.(¬G).x ¬(; x.(G).c) = c.(¬G).x;
¬(x;) = ; x ¬(; c) = c;
¬([];) = ; [] ¬(; []) = [];

¬((E; −; D);) = ; (¬D; −;¬E) ¬(; (E; −; D)) = (¬D; −;¬E);
¬(#G;) = ; #¬G ¬(; #G) = #¬G;
¬((G).c;) = ; c.(¬G) ¬(; x.(G)) = (¬G).x;

¬(E; (E′; );) = ; (;¬E′);¬E ¬(; (; D′);D) = ¬D; (¬D′; );
¬(E; (; D′);) = ; (¬D′; );¬E ¬(; (E′; );D) = ¬D; (;¬E′);

¬(E; D) = ¬D;¬E

Figure 5.5. Duality in the dual calculus

formed by plugging together the shift-term (1; []).c; and the let-coterm ; x.(2; []).
These examples demonstrate that the computation relation for the dual calculus is
not confluent.

The translations in Figure 5.4 on page 139 respect substitution: mutual induc-
tion on the structure of E′ and D′[ ] shows that

E′
{
x 7→ E

}
= E′ {x 7→ E}, E′

{
c 7→ D[ ]

}
= E′ {c[ ] 7→ D[ ]},(5.28)

D′[ ]
{
x 7→ E

}
= D′[ ] {x 7→ E}, D′[ ]

{
c 7→ D[ ]

}
= D′[ ] {c[ ] 7→ D[ ]}.(5.29)

The translation in Figure 5.4 is, as one would expect, only one of two dual
translations possible. Figure 5.5 inductively defines an obvious involution ¬
between terms and coterms of the dual calculus, and among its statements. This
involution respects the computation relation. Translating expressions E and
subcontexts D[ ] from the λ-calculus to coterms ¬E and terms ¬D[ ] in the dual
calculus works just as well as translating them to terms E and coterms D[ ].

5.3. Restoring confluence

Figure 5.6 shows a restriction of the dual calculus that makes it confluent.
It turns out that this restriction enforces call-by-value evaluation under the in-
tuition (Figure 5.4 on page 139) that terms are subexpressions and coterms are
subcontexts, but call-by-name evaluation under the dual (Figure 5.5 on page 141)
intuition that terms are subcontexts and coterms are subexpressions. The judg-
ment forms Γ `V V; and Γ `V ; U define certain terms and coterms, including
abstraction, to be values V; and covalues ; U. Furthermore, in an abstraction
(E; −; D), the term E; must be a value, even though the coterm ; D need not be a
covalue. The revised computation relation is crafted to only substitute a value
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Values Γ `V V;

Γ, x;, ; c ` G
Γ `V x.(G).c; Γ, x; `V x; Γ `V [];

Γ `V V; Γ ` ; D
Γ `V (V; −; D);

Covalues Γ `V ; U

Γ, x;, ; c ` G
Γ `V ; x.(G).c

Leaf terms Γ `L E;

Γ `V V;
Γ `L V;

Γ ` G
Γ `L #G;

Γ, ; c ` G
Γ `L (G).c;

Leaf coterms Γ `L ; D

Γ `V ; U
Γ `L ; U Γ, ; c `L ; c Γ `L ; []

Γ `V V; Γ ` ; D
Γ `L ; (V; −; D)

Γ ` G
Γ `L ; #G

Γ, x; ` G
Γ `L ; x.(G)

Terms Γ ` E;

Γ `L E;
Γ ` E;

Γ ` E; Γ ` E′;
Γ ` E; (E′; );

Γ ` E; Γ ` ; D′

Γ ` E; (; D′);

Coterms Γ ` ; D

Γ `L ; D
Γ ` ; D

Γ ` ; D′ Γ ` ; D
Γ ` ; (; D′); D

Γ ` E′; Γ ` ; D
Γ ` ; (E′; ); D

Statements Γ ` G
Γ ` E; Γ `L ; D
Γ ` E; D

(These two rules are equivalent.)
Γ `L E; Γ ` ; D
Γ ` E; D

Evaluation contexts C[ ]

[ ]
C[ ] Γ ` ; D

C[#[ ]; D]
Γ `V V; C[ ]

C[V; #[ ]]

Computation G1 B G2

C[V; (E′; ); D] B C[E′; (V; −; D)] C[#(V; []); D] B C[V; D]
C[V; (; D′); D] B C[(V; −; D); D′] C[V; #([]; U)] B C[V; U]

C[x.(G).c; (V; −; D)] B C[G {x 7→ V} {c 7→ D}] C[(G).c; D] B C[G {c 7→ D}]
C[(V; −; D); x.(G).c] B C[G {x 7→ V} {c 7→ D}] C[V; x.(G)] B C[G {x 7→ V}]

Figure 5.6. A dual calculus with delimited control operators, enforcing call-by-
value evaluation
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for a term variable, even though any coterm may still be substituted for a coterm
variable. The notion of a covalue U only governs when to remove the control
delimiter from a delimited substatement coterm. It is easy to check that this
computation relation is deterministic, hence confluent.

Let us revisit the example statements above. This restriction on the dual
calculus rules out the computation sequence (5.23) on page 140, leaving (5.22) on
page 140. It also rules out the computation sequence (5.26) on page 140 in favor
of (5.25) on page 140. The dual restriction (that is, conjugating Figure 5.6 by the
involution ¬ in Figure 5.5 on page 141) makes the opposite choices among these
computation sequences. Although the two dual restrictions of the dual calculus
do not have the same expressions—an abstraction must have a value term under
call-by-value, versus a covalue coterm under call-by-name—they both contain
the image of the translation from the λ-calculus to the dual calculus in Figure 5.4
on page 139 (and the dual of that image).

To formalize how the dual calculus simulates the λ-calculus, let C[ ] be a
call-by-value evaluation context in the λ-calculus enclosed by #, say

(5.30) C[ ] = #(Dn[. . . [#(D1[#(D0[ ])])] . . . ]).

We write Ch[ ] (h for “head”) for the subcontext D0[ ]. We also write Ct[ ]
(t for “tail”) for the context #(Dn[. . . [#(D1[ ])] . . . ]). Plugging a λ-expression E
into C[ ] gives the program C[E]. Correspondingly, we can plug the dual-calculus
statement E; Ch[ ] into the evaluation context Ct[ ][ ] defined by

(5.31) Ct[ ][ ] = #( . . . (#[ ]; D1[ ]) . . . ); Dn[ ].

(In particular, if n = 0 and Ct[ ] is just [ ], then Ct[ ][ ] is also just [ ].) We write
E@C[ ] for the resulting statement Ct[ ]

[
E; Ch[ ]

]
.

As a special case, if V is a value expression in the call-by-value λ-calculus,
then V; is a value term in the call-by-value dual calculus, and the statement V; []
is in normal form. As for computation, the following theorem maps each step in
the λ-calculus to one or more steps in the dual calculus.

T 5.1 (Call-by-value simulation). Let C1[E1] = C2[E2] in the call-by-
value λ-calculus; in other words, suppose that C1[E1] and C2[E2] are two ways
to decompose the same λ-expression. Suppose that C2[E2] B C′2[E′2] as follows,
by one of the three kinds of computation steps in Figure 5.1 on page 131.

E2 E′2 C′2[ ]

(λx. E′)V E′ {x 7→ V} C2[ ]
#V V C2[ ]

ξc. E′ E′ {c[ ] 7→ Ch
2[ ]} Ct

2[#[ ]]

Then E1@C1[ ] B+ E′2@C′2[ ] in the call-by-value dual calculus.
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P. Inspecting the definition of values and evaluation contexts in Figure 5.1
on page 131 shows that E1 and E2, and accordingly C1[ ] and C2[ ], are related in
one of three ways.

In the first case, C[E1] = E2 for some context C[ ]; that is, C1[ ] = C2[C[ ]]
for some context C[ ]. We consider a computation step of each kind in turn.

• If E2 = (λx. E′)V , then C[ ] must be [ ], [ ]V , or (λx. E′)[ ], so Ct
1[ ] =

Ct
2[ ]. The computation sequence

(5.32) E2@C2[ ] = Ct
2[ ]
[
V; (x.(E′; c).c; ); Ch

2[ ]
]
= V@C2[(λx. E′)[ ]]

B Ct
2[ ]
[
x.(E′; c).c; (V; −; Ch

2[ ])
]
= (λx. E′)@C2[[ ]V]

B Ct
2[ ]
[
E′
{
x 7→ V

}
; Ch

2[ ]
]

= E′ {x 7→ V}@C2[ ]
= E′2@C′2[ ]

in the dual calculus covers all three cases for C[ ]. The second-to-last
equality uses the fact that

(5.33) E′
{
x 7→ V

}
= E′ {x 7→ V},

from (5.28) on page 141.
• If E2 = #V , then C[ ] must be [ ] or #[ ]. In either case, we have

E1@C1[ ] = E2@C2[ ]

= Ct
2[ ]
[
#(V; []); Ch

2[ ]
]

B Ct
2[ ]
[
V; Ch

2[ ]
]

= E′2@C′2[ ].

(5.34)

• If E2 = ξc. E′, then C[ ] must be [ ], and we have

E1@C1[ ] = E2@C2[ ]

= Ct
2[ ]
[
(E′; []).c; Ch

2[ ]
]

B Ct
2[ ]
[
E′
{
c 7→ Ch

2[ ]
}
; []
]

= E′
{
c[ ] 7→ Ch

2[ ]
}
@Ct

2[#[ ]]
= E′2@C′2[ ].

(5.35)

The second-to-last equality uses the fact that

(5.36) E′
{
c 7→ Ch

2[ ]
}
= E′ {c[ ] 7→ Ch

2[ ]},

again from (5.28) on page 141.
In the second case, E1 = C[E2] for some context C[ ]; that is, C2[ ] = C1[C[ ]]

for some context C[ ]. We proceed by induction on the structure of E1 (with E2
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as the base case), in other words on the structure of C[ ] outside in (with [ ] as the
base case).

• If E1 is E2 and C[ ] is [ ], then we have the first case already dealt with
above.
• If E1 is F(C0[E2]) or #(C0[E2]), and C[ ] is accordingly F(C0[ ]) or

#(C0[ ]), then Figure 5.4 on page 139 confirms that E1@C1[ ] is the same
statement as C0[E2]@C1[F[ ]] or C0[E2]@C1[#[ ]]. Hence E1@C1[ ] B+

E′2@C′2[ ] by the induction hypothesis.
• If E1 is (C0[E2])V and C[ ] is (C0[ ])V , then

E1@C1[ ] = Ct
1[ ]
[
V; (C0[E2]; ); Ch

1[ ]
]

B Ct
1[ ]
[
C0[E2]; (V; −; Ch

1[ ])
]

= C0[E2]@C1[[ ]V].

(5.37)

By the induction hypothesis, C0[E2]@C1[[ ]V] B+ E′2@C′2[ ]. Hence
E1@C1[ ] B+ E′2@C′2[ ] as well.

In the third, final case, E1 is a value, and C2[ ] = C′1[C[ ]E1] and C1[ ] =
C′1[C[E2][ ]] for some context C[ ]. In this case, E1@C1[ ] is the same statement
as C[E2]E1@C′1[ ], and C[E2]E1@C′1[ ] B+ E′2@C′2[ ] by the first case already
dealt with above. �

C 5.2. Whenever C1[E1] B E′ in the call-by-value λ-calculus, there
exists an expression E′2 and an evaluation context C′2[ ] in the call-by-value
λ-calculus, such that E′ = C′2[E′2], and E1@C1[ ] B+ E′2@C′2[ ] in the call-by-
value dual calculus.

Conversely, the following theorems show how each computation step in the
dual calculus maps to either zero or one step in the λ-calculus.

T 5.3. If E1@C1[ ] B G in the call-by-value dual calculus, then
G = E2@C2[ ] for some expression E2 and some evaluation context C2[ ] in the
call-by-value λ-calculus, such that either C1[E1] = C2[E2] or C1[E1] B C2[E2].
In any infinite sequence of steps E1@C1[ ] B E2@C2[ ] B · · · , there is eventually
an index i where Ci[Ei] B Ci+1[Ei+1].

P. The first part of the theorem follows from inspecting the computation
relation in Figure 5.6 on page 142. Only the first kind of steps listed there, namely

(5.38) C[V; (E′; ); D] B C[E′; (V; −; D)],

may occur without guaranteeing that C1[E1] B C2[E2]. A step of this kind
increases the number of minus signs by 1 while keeping the same number of
semicolons in the statement. There is no infinite sequence of such steps because
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every minus sign must appear between two semicolons, and there are only finitely
many semicolons to start with. �

T 5.4. For any expression E and value V in the call-by-value λ-
calculus, we have #E B∗ #V if and only if E; [] B∗ V; []. Moreover, #E begins an
infinite sequence of computation steps if and only if E; [] does.

P. For any λ-expression E, by definition E; [] = E@#[ ].
[⇒] By induction via Corollary 5.2 on the number of computation steps in

the call-by-value λ-calculus.
[⇐] By induction via Theorem 5.3 on the number of computation steps

in the call-by-value dual calculus, and the fact that E2@C2[ ] = V; [] implies
C2[E2] = #V . �

The dual of the call-by-value dual calculus, the call-by-name dual calculus,
simulates the call-by-name λ-calculus with shift and reset. The analogous theo-
rems below substantiate this simulation and our claim of duality. Their proofs
follow the same structure as the call-by-value ones above, but are somewhat
simpler because evaluation contexts are simpler in the call-by-name λ-calculus.

T 5.5 (Call-by-name simulation). Let C1[E1] = C2[E2] in the call-by-
name λ-calculus. Suppose that C2[E2] B C′2[E′2] as follows, by one of the three
kinds of computation steps in Figure 5.2 on page 132.

E2 E′2 C′2[ ]

(λx. E′)E E′ {x 7→ E} C2[ ]
#V V C2[ ]

ξc. E′ E′ {c[ ] 7→ Ch
2[ ]} Ct

2[#[ ]]

Then E1@C1[ ] B+ E′2@C′2[ ] in the call-by-name dual calculus.

C 5.6. Whenever C1[E1] B E′ in the call-by-name λ-calculus, there
exists an expression E′2 and an evaluation context C′2[ ] in the call-by-name
λ-calculus, such that E′ = C′2[E′2], and E1@C1[ ] B+ E′2@C′2[ ] in the call-by-
name dual calculus.

T 5.7. If E1@C1[ ] B G in the call-by-name dual calculus, then
G = E2@C2[ ] for some expression E2 and some evaluation context C2[ ] in the
call-by-name λ-calculus, such that either C1[E1] = C2[E2] or C1[E1] B C2[E2].
In any infinite sequence of steps E1@C1[ ] B E2@C2[ ] B · · · , there is eventually
an index i where Ci[Ei] B Ci+1[Ei+1].

T 5.8. For any expression E and value V in the call-by-name λ-
calculus, we have #E B∗ #V if and only if E; [] B∗ V; []. Moreover, #E begins an
infinite sequence of computation steps if and only if E; [] does.
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5.4. The continuation-passing-style transform

Figure 5.7 translates the call-by-value dual calculus into the plain λ-calculus
without shift or reset. The translation consists of five sets of equations: from val-
ues V; to bV;c, from terms E; to dE;e, from covalues ; U to b; Uc, from coterms ; D
to d; De, and from statements G to JGK. A term or coterm translates to an abstrac-
tion or variable in the λ-calculus; a statement translates to an application. The
term translation is essentially Fischer’s continuation-passing-style transform for
the call-by-value λ-calculus (1972); the coterm transform is essentially Plotkin’s
continuation-passing-style transform for the call-by-name λ-calculus (1975).

The statement translation JGK allows multiple translations for the same state-
ment G because the same G can be decomposed into E; D in n + 1 different ways,
if the pipeline G has n intermediate stages. Fortunately, these different translations
all β-reduce to each other: it is easy to check that

dE; (E′; );ed; De B dE;ed; (E′; ); De, dE; (; D′);ed; De B dE;ed; (; D′); De.(5.39)

Hence, induction on the structure of E; gives dE;ed; De B∗ dE′;ed; D′e whenever
E′; is a leaf term and E; D = E′; D′. We henceforth let JE; DK be dE′;ed; D′e.

The translation of delimited substatements, shift-terms, and let-coterms in-
troduces complex expressions JGK that behave differently under a call-by-value
versus a call-by-name interpreter of the target language. Thus, strictly speaking,
this translation produces not continuation-passing-style code but continuation-
composing-style code. When the source program contains delimited substate-
ments, shift-terms, or let-coterms, we intend for the output of this translation
to be interpreted under call-by-value. To achieve indifference between call-by-
value and call-by-name interpretation, we could simply apply another pass of the
continuation-passing-style transform.

T 5.9. If G B G′ in the call-by-value dual calculus, then JGK B+ JG′K
in the call-by-value λ-calculus.

P. By inspection of Figures 5.6 and 5.7. �

As one would expect, it is easy to check that, given any value V; in the dual
calculus, its continuation-passing-style transform bV;c is a value in the λ-calculus,
and JV; []K B+ bV;c.

C 5.10. If G B∗ V; [] in the call-by-value dual calculus, then JGK B∗
bV;c in the call-by-value λ-calculus. If G begins an infinite sequence of computa-
tion steps, then JGK does too.
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Value translation bV;c

bx.(G).c;c = λc. λx. JGK
bx;c = x
b[];c = λ f . f

b(V; −; D);c = λ f . f d; DebV;c

Term translation dE;e

dV;e = λc. cbV;c

d#G;e = λc. cJGK
d(G).c;e = λc. JGK

dE; (E′; );e = λc. dE;e(λx. dE′;e(λ f . f cx))
dE; (; D′);e = λc. dE;e(λx. d; D′e(λ f . f cx))

Covalue translation b; Uc

b; x.(G).cc = λc. λx. JGK

Coterm translation d; De

d; Ue = λx. xb; Uc
d; ce = c
d; []e = λx. x

d; (V; −; D)e = λ f . f d; DebV;c

d; #Ge = λx. JGKx

d; x.(G)e = λx. JGK
d; (; D′); De = λx. d; D′e(λ f . f d; Dex)
d; (E′; ); De = λx. dE′;e(λ f . f d; Dex)

Statement translation JGK

JE; DK = dE;ed; De

Figure 5.7. A continuation-passing-style transform for the dual calculus



CHAPTER 6

Conclusion

We have identified a general analogy between side effects in programming
languages and in natural languages (Section 1.3). In particular, delimited con-
trol subsumes other computational side effects as quantification subsumes other
linguistic side effects (Section 3.4).

• On one hand, in the quest for a denotational semantics that is sound and
compositional, computational and linguistic side effects both make it
impossible for every expression to just denote its reference or evaluation
result (Section 1.6). In particular, in the standard denotational semantics
for delimited control and quantification, the meaning of an expression is
a function from a continuation (Section 3.2) or scope (Section 3.3).
• On the other hand, in the quest for an operational semantics that models

how a computer executes a program or how a human processes an
utterance, computational and linguistic side effects both make observable
the order in which parts of an expression are evaluated. In particular,
evaluation order governs what contexts can be accessed by a delimited
control operator (Section 3.1) or a quantificational phrase (Section 4.3).

For both kinds of languages, the relation between denotational and operational
semantics is a mind-body problem of sorts: how does an expression manage to be
both a static product that stands alone mathematically and a dynamic action that
takes place physically (Wadler 1997; Trueswell and Tanenhaus 2005)?

We have put this analogy to work in both directions. Drawing on the gen-
eral notion of computational side effects, our work on natural language extends
dynamic semantics (Groenendijk and Stokhof 1991; Heim 1982; Kamp 1981)
from whole sentences to parts of a sentence, and from anaphora and existen-
tial quantification to other linguistic side effects. Drawing on the continuation
semantics for delimited control, our new implementation of quantification in type-
logical grammar (Section 4.2) is graphically motivated and does not move nearby
constituents apart or distant constituents together (Section 4.1). Drawing on the
programming-language concepts of evaluation order and multistage programming,
our grammar unifies the preference for linear scope in quantification (Section 4.4)
with the prohibition against crossover in anaphora, the superiority constraint on
wh-questions, and the effect of linear order on polarity sensitivity (Section 4.5):

149
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• Our treatment of crossover uses left-to-right evaluation to deal with
problems for previous accounts based purely on c-command or linear
order. It correctly predicts a complex pattern of interaction between
anaphora and raised-wh questions, without any stipulation on both for
the first time.
• Our explanation for superiority unifies it with crossover yet need not

encode multiple-wh questions as functional questions.
• Our account of polarity sensitivity is the first to explain the effect of

linear order by appealing to processing.
Further connections remain to be drawn and strengthened:

• to other linguistic side effects, such as intensionality, focus, and presup-
positions (Section 1.6);
• to psycholinguistic evidence on human sentence processing, in particular

how raised-wh questions are processed (Section 4.5.2);
• to types for multistage programming, especially modal types (Sec-

tion 4.4); and
• to the philosophical notion of illocution.

These connections all serve a broader investigation of operational semantics for
natural language.

Drawing from the duality between inside and outside in our treatment of
linguistic quantification, our programming language with delimited control in
Chapter 5 is the first to make subexpressions and subcontexts dual to each other.

• The duality exchanges call-by-value and call-by-name, two long-studied
evaluation orders that had previously been shown dual in the presence of
undelimited but not delimited control.
• The duality also exchanges the familiar let construct and the less-familiar

shift construct, so that a programmer can understand the latter in terms
of the former.

It remains to turn our type-logical grammar for linguistic quantification into a
type system for this yet-untyped programming language. Such a type system
would answer the open question of how to interpret delimited control logically
under the formulas-as-types correspondence. We suspect that the answer will be
a noncommutative intuitionistic logic, like type-logical grammar.
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