
1

Implementation and Evaluation of Scientific

Simulations on High Performance Computing

Architectures

By

Bibrak Qamar (2007-NUST-BIT-106)

Jahanzeb Maqbool (2007-NUST-BIT-118)

A project report submitted in partial fulfilment of

the requirement for the degree of

Bachelors of Information Technology

School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

(2011)

2

Approval Page

It is certified that the contents and form of project report entitled “Implementation

and Evaluation of Scientific Simulations on HPC Architectures” submitted by

Bibrak Qamar and Jahanzeb Maqbool has been found satisfactory for the

requirement of the degree.

Advisors:

Mr. Mohsan Jameel ____________________

Dr. Leila Faiz Islamil ____________________

Mr. Akber Mehdi ____________________

Dr. Aamir Shafi ____________________

3

Dedication

Bibrak’s dedication:

Dedicated to Salman Taseer who showed me dream of equal Pakistan.

Jahanzeb’s dedication:

Dedicated to my beloved father Mr. Syed Maqbool Hussain Hashmi. Perhaps I

could not become the one you want, but I would try to be as perfect as one can be

in what I've chosen.

With Love,

Syed Jahanzeb Maqbool Hashmi

4

Acknowledgements

We thank Mr. Mohsan Jameel, Mr. Akbar Mehdi and Dr. Aamir Shafi from NUST
and Dr. Leila Islmail Faez from UAE University, for their kind support from idea
to design and development - for their precious time spent in the completion of the
project.

Moreover, we also thank Mr. Hammad Siddique and Mr. Umar Butt, system
administrators at High Performance Computing Lab, SEECS and UAE University
for providing access to Clusters and resolving technical issues.

5

Table of Contents

CHAPTER 1: INTRODUCTION ... 11

CHAPTER 2: HIGH PERFORMANCE COMPUTING ARCHITECTURES 13

HARDWARE .. 13

Shared Memory Architectures ... 13

Distributed Memory Architectures .. 15

Hybrid Distributed-Shared Memory Architectures ... 16

General Purpose Graphics Processing Units (GPGPUs) 17

SOFTWARE ... 18

Message Passing Interface ... 18

OpenMP ... 20

CUDA .. 22

CHAPTER 3: BACKGROUND AND LITERATURE REVIEW........................ 24

FLUIDANIMATE ... 24

Fluid Particle Simulation Methods .. 24

Fluidanimate Phases .. 25

Force Computation Methodologies ... 26

OIL RESERVOIR SIMULATION ... 27

Reservoir Simulation Process .. 27

SLE Solvers ... 28

Why Conjugate Gradient Method.. 31

The Conjugate Gradient Algorithm ... 32

BLACKSCHOLES .. 32

Blackscholes Algorithm .. 32

CHAPTER 4: CASE STUDY I: FLUIDANIMATE .. 33

6

FLUIDANIMATE ... 33

Fluidanimate On Distribute Memory Cluster .. 33

Fluidanimate On Shared Memory Architectures ... 43

Fluidanimate On Graphics Processing Units (GPUs) 51

CHAPTER 5: CASE STUDY II: OIL RESERVOIR SIMULATION 57

OIL RESERVOIR SIMULATION ... 57

Oil Reservoir Simulation on Distributed Memory Clusters 59

Oil Reservoir Simulation on Shared Memory Processors 80

Oil Reservoir Simulation on GPUs ... 90

CHAPTER 6: CASE STUDY III: BLACKSCHOLES ... 97

BLACKSCHOLES .. 97

Blackscholes On Distribute Memory Clusters .. 97

Blackscholes On GPUs .. 103

CHAPTER 7: VISUALIZATION ... 110

FLUIDANIMATE ... 110

OIL RESERVOIR SIMULATION ... 113

CHAPTER 8: CONCLUSION & FUTURE WORK .. 116

References ... 117

Appendix ... 121

A1 .. 121

B1 .. 121

B2 .. 121

B3 .. 121

B4 .. 122

7

List of Tables

Table 1 ..56

Table 2: Total Time, Computation Time, Memory Copy Time in sec98

8

LIST OF FIGURES

Figure 1: Shared Memory (UMA) .. 14

Figure 2: Shared Memory (NUMA) ... 15

Figure 3: Distributed Memory Architecture ... 16

Figure 4: Hybrid Distributed Shared Memory Architecture 17

Figure 5: CPU and nVidia GPU basic architecture .. 18

Figure 6: MPI Inter Process Communication ... 19

Figure 7: MPI program flow ... 20

Figure 8: Fork and Join model .. 21

Figure 9: Scalar vs. SIMD Operations .. 22

Figure 10: CUDA process flow .. 23

Figure 11: Reservoir Simulation Process .. 27

Figure 12: 32x32 Matrix representing a 2D reservoir in 1 Phase 29

Figure 13: Conjugate Gradient Method Algorithm .. 31

Figure 14: Fluidanimate Parallel Flow ... 34

Figure 15: Particles World Grid .. 35

Figure 16: Particles World Grid – 3D ... 35

Figure 17: FluidAnimate MPI work Division among processors 36

Figure 18: FluidAnimate MPI Communication of Ghost Cells 37

Figure 19: Fluidanimate OpenMP Optimized implementation Design 48

Figure 20: Fluidanimate CUDA Program Flow .. 52

Figure 21: Fluidanimate CUDA Design ... 52

Figure 22: Architecture Diagram of Oil Reservoir Simulator 58

Figure 23: Sample matrix A (sparsity view). .. 60

Figure 24: Matrix A decomposed into horizontal blocks among 4 processes 60

9

Figure 25: Test for Load Balance ... 61

Figure 26: Matrix Vector Multiplication – Naïve ... 62

Figure 27: Matrix A further divided into vertical blocks .. 68

Figure 28: Communication in a ring ... 69

Figure 29: Step 1 MVM .. 70

Figure 30: Step 2 MVM .. 71

Figure 31: Step 3 MVM .. 71

Figure 32: Step 4 MVM .. 72

Figure 33: Row Partition [left] and Block Partition [right] 80

Figure 34: Representation of matrix A in CSR format ... 81

Figure 35: How the different blocking storage formats split the input matrix into

blocks .. 81

Figure 36: Simple Sparse MVM in CSR format ... 82

Figure 37: MVM with Block Partitioning of matrix A ... 86

Figure 38: 32x32 Matrix representing a 2D reservoir in 1 Phase. Here offset from

central diagonal is nx = 4 .. 91

Figure 39: CUDA MVM kernel .. 92

Figure 40: VVM and Intra Block reduction .. 93

Figure 41: Graphical view of intra block reduction. ... 93

Figure 42: Global reduction, among 4 thread blocks .. 94

Figure 43: VV Addition .. 95

Figure 44: Percentage of time spent on different operations 95

Figure 45: Basic Flow of Blackscholes in distribute memory 98

Figure 47: MPI based parallelization approach to Blackscholes 100

Figure 47: GPU based parallelization approach to Blackscholes 103

10

Figure 48: Options in the form of Option Data Structure (Naïve approach)

assuming x, y option variables .. 104

Figure 50: Memory Accesses in non-coalesced fashion 106

Figure 50: Memory Accesses in Perfectly Coalesced fashion 106

Figure 51: Blackscholes GPU naïve implementation non-colaescing Problem ... 107

Figure 52: Blackscholes GPU Optimized implementation strategy 107

Figure 53: Blackscholes GPU Optimized Coalesced Memory Access 108

Figure 54: Initial stage, Fluidanimate demo ... 110

Figure 55: After 53 frames, Fluidanimate demo ... 111

Figure 56: After 90 frames, Fluidanimate demo ... 112

Figure 57: Initial stage, Oil Reservoir Simulation demo 113

Figure 58: After 350 days, Oil Reservoir Simulation demo 114

Figure 59: After 1125 days, Oil Reservoir Simulation demo 115

Figure 60: After 1975 days, Oil Reservoir Simulation demo 115

11

Chapter 1

INTRODUCTION

Computational Science is field of study in which computers are used to solve

challenging scientific problems. Real or imaginary world scientific problems are

converted into mathematical models and solved using numerical analysis

techniques with the help of high performance computing famously called scientific

computing.

As computer technology is advancing rapidly, computers are becoming

increasingly powerful and increasingly available, and with the advancement of

mathematics and other basic sciences, the use of robust computer simulation and

modelling techniques are being recognized as a key to the economic growth and

scientific advancement.

Computational science now constitutes what is famously called the third

pillar of science together with theory and physical experimentation. The 2005

Report to the President of US, Computational Science: Ensuring America's

Competitiveness, states that "the most scientifically important and economically

promising research frontiers in the 21st century will be conquered by those most

skilled with advanced computing technologies and computational science

applications." (1)

Scientific simulations are typically compute intensive in nature. It takes

week or days to obtain result if ordinary single processor system is used. For

example, in predicting weather the amount of computation is so large that it could

take ordinary computer weeks if not months. To make a simulation more feasible

the use of High Performance Computing (HPC) is essential.

HPC is the use of supercomputers and complex algorithms to do parallel

computing i.e. to divide large problems into smaller ones, distribute them among

computers so as to solve them simultaneously. In this project we have

12

implemented some widely used scientific simulations namely fluid dynamics (fluid

particles simulation), oil reservoir simulation and Black-Scoles (predicting price of

option – finance). The aim of the project is to analyze the performance

characteristics of compute intensive scientific applications on leading HPC

architectures, namely distributed memory (MPI), shared memory (threads or

cores) and GPUs. We have examined performance bottleneck on these

architectures, how to overcome these bottlenecks and what are the optimized ways

of programming these applications on HPC architectures.

In this document, after introduction we will be discussing High

Performance Computing Architectures in both hardware and software perspective.

Then we will describe the literature reviews of our proposed case studies. After

that we will propose the design and implementation of these applications on

different HPC architectures along with discussion on results. Finally we will show

some visualization of the simulation and conclude our work.

13

Chapter 2

HIGH PERFORMANCE COMPUTING

ARCHITECTURES

This chapter begins with an introduction to High Performance Computing

(HPC) architectures. We will also discuss how the emergence of these

architectures is affecting the mainstream hardware and software industry. Later, we

will discuss two major types of HPC architectures: Shared Memory Architectures

(SMA) and Distributed Memory Architectures (DMA). The emergence of

multicore technology has also become the root cause for emergence of General

Purpose Graphics Processing Units (GPGPUs) architectures. Moreover, recently

the focus is on hybrid programming models like combining SMAs with DMAs

along with GPUs to achieve the performance at its peak. Discussion has been

made, about our test application of variant domains for this project, in the context

of SMAs, DMAs and GPU accelerators.

HARDWARE

 In this chapter our focus will be on High Performance Computing

Architectures. The widely used HPC architectures are:

I. Shared Memory
II. Distributed Memory : clusters

III. Hybrid
IV. GPUs

Shared Memory Architectures

 Shared memory architectures (SMA) vary widely, but generally have in

common the ability for all processors to access all memory as global address space.

Multiple processors can operate independently but share the same memory

14

resource. In SMAs the changes in a memory location made by one processor are

visible to all other processors. SMAs can be further divided into two major classes

based upon memory access times

1. Uniform Memory Access (UMA)
2. Non Uniform Memory Access (NUMA)

In UMA, the main physical memory is accessed by all the processors. These

processors exhibit cache coherency which means if one of the processors updates a

location which is in shared memory, then rest of the processors know about the

update.

Figure 1: Shared Memory (UMA)

Source [https://computing.llnl.gov/tutorials]

The NUMA is often made by physically linking two or more symmetric

multiprocessors. In this case, all the processors do not necessarily have equal

access time to all the memories.

15

Figure 2: Shared Memory (NUMA)

Source [https://computing.llnl.gov/tutorials]

One of the major advantages of shared memory architectures is that global

address space provided by it gives a user friendly programming approach to

memory and the sharing of data between tasks is both fast and uniform.

On the other hand, the main disadvantage of SMAs is scalability between

memory and CPUs. If we add more CPUs then it can geometrically increase the

traffic on the shared memory CPU path. The programmer’s job becomes tough in

shared memory environment because of synchronization constructs to ensure the

consistent global memory access.

Distributed Memory Architectures

 In Distributed Memory Architectures (DMAs), each processor has its own

local memory. The memory addresses in one processor do not map to another

processor, so there is no concept of global address space shared by all the

processors. Distributed Memory systems require a communication network to

connect inter processor memory. Each processor operated independently on its

own local memory. The changes made by a processor to its local memory do not

apply to the memory of other processors. In DMAs whenever a processor need to

access data, which is present in the memory space of another processor’s memory,

a communication across the network is needed. It becomes the task of programmer

to explicitly define how and when data is communicated. The synchronization of

16

data among processors is also the programmer’s responsibility. The network fabric

which is used to transfer data between different processors in DMA can vary in

nature, but it can be as simple as Ethernet.

Figure 3: Distributed Memory Architecture

Source [https://computing.llnl.gov/tutorials]

The major advantage of using DMAs is memory scalability with number of

processors. If we go on increasing number of processors then the size of memory

increases. The cache coherency overhead is removed as each processor can rapidly

access its own memory without any interference.

On the other hand, the main problem with DMA is that programmer is

responsible of many of the details associated with the data communication between

processors. Existing data structures based on the global address space need to be

mapped to this memory organization.

Hybrid Distributed-Shared Memory Architectures

 A better approach in Parallel Computer Memory Architectures is to employ

both shared and distributed memory architecture. This is called Hybrid Distributed-

Shared Memory Architectures (DSMA).

In HDSMA, the shared memory component is usually a cache coherent

symmetric multiprocessor (SMP) machine which means the processors on that

17

machine can address that machine’s memory as global. The distributed memory

component is the network of multiple SMPs. In this case, SMPs know only about

their own memory not the memory of other SMPs. Therefore, a communication

through network is required to transfer data from one SMP to another SMP

machine on the network. From last few years, the data from top500.org showed

that HDSMAs have been prevailing.

Figure 4: Hybrid Distributed Shared Memory Architecture

Source [https://computing.llnl.gov/tutorials]

General Purpose Graphics Processing Units (GPGPUs)

 Few years back, GPUs were considered as specialized piece of hardware

that is designed for maximum performance in graphics applications. Today, GPUs

are considered as massively parallel many core processors easily available and

fully programmable. In GPU market nVidia is the leading manufacturer that

manufactures General Purpose GPU (GPGPU) i.e. Tesla, GeForce and Quadro

series. The nVidia’s proprietary programming model for GPU programming is

Compute Unified Device Architecture (CUDA). We will be discussing CUDA

more briefly in our programming model section. The basis for using GPUs in

parallel computing is (2):

 High throughput computation
 High bandwidth memory
 High availability to all

18

 More specifically, GPUs are well suited to address problems that can be

expressed as data parallel computations. In GPUs, same program is executed on

many data elements in parallel with high arithmetic intensity (3).

Figure 5: CPU and nVidia GPU basic architecture

SOFTWARE

Message Passing Interface

Message Passing Interface (MPI) is API specification used to program

compute Clusters by doing message passing between processors. MPI is a de-facto

standard of the industry and HPC community. The idea is to exchange data which

is stored in the address space of another process by means of simple routines, like

send and receive, see figure 6.

19

Figure 6: MPI Inter Process Communication

Source [https://computing.llnl.gov/tutorials/mpi/]

The goal of the Message Passing Interface is to provide portability,

efficiency and flexibility (4). There is no need to modify the source code when

shifting to different platforms which support MPI and communication logic is

decoupled from the program.

Parallelism is explicit, requiring the programmer to indentify and exploit

parallelism in the algorithm by using MPI routines.

The flow is a MPI program is shown in figure 7. The program need the mpi

header file (mpi.h or mpif.h), to initialize the environment MPI_Initialize() is

called and to terminate MPI_Finalize() is called, in between is the parallel region

where the programmer can use MPI routines.

20

Figure 7: MPI program flow

Source [https://computing.llnl.gov/tutorials/mpi/]

OpenMP

OpenMP (5) (Open Multi-Processing) is an API for programming shared

memory machines. OpenMP is a portable, scalable model that gives programmers

a simple and flexible interface for developing parallel applications for platforms

ranging from the desktop to the supercomputer.

21

OpenMP provides set of compiler pragmas, directives, function calls and

environment variables that explicitly instruct the compiler where to use

parallelism.

OpenMP is based on fork and join model, the program begins as single

main thread called the master thread. The master thread runs sequentially till

other threads are spawned with the help of the fork operation. The program starts

exploiting parallelism as the team works in parallel as shown in figure 8.

Fork: the master thread creates a team of parallel threads.

Join: When the team threads complete the statements in the parallel region

construct, they synchronize and terminate, leaving only the master thread

Figure 8: Fork and Join model

Source [https://computing.llnl.gov/tutorials/openMP/]

22

CUDA

In recent years there is a paradigm change observed with the advent of

Graphics Processing Units (GPU) for general purpose computing. NVIDIA CUDA

(Compute Unified Device Architecture) is a parallel computing architecture

developed by NVIDIA (6). Using CUDA the GPUs are accessible to programmer

for computation like CPU, that’s why GPUs are now being called “co-processors”

(7).

CUDA exploits Data Parallelism, where many threads perform the same

operation on different data concurrently, also called SIMD (Single Instruction

Multiple Data) illustrated in figure 9.

Figure 9: Scalar vs. SIMD Operations

Source [http://www.kernel.org/]

23

Figure 10: CUDA process flow

Source [http://en.wikipedia.org/wiki/CUDA]

A simple CUDA programs has the following flow, please refer to the figure 10

1. Copy data from main memory to GPU memory.

2. CPU instructs the process to GPU.

3. GPU execute parallel in each core.

4. Copy the result from GPU memory to main memory.

24

Chapter 3

BACKGROUND AND LITERATURE REVIEW

This chapter discusses the existing tools and technologies that are directly

or indirectly related to our domain. Main focus will be on our proposed simulations

(Fluidanimate, Oil Reservoir Simulation and Blackscholes,) and their existing

implementations and working of their algorithms. We will be discussing each of

the simulation one by one in depth.

FLUIDANIMATE

 Due to widely growing industry of animation and computer games, the

significance of fluid simulation has drastically increased. Different algorithms and

techniques are being used to animate the fluid so that a real impression can be

achieved. Fluid animate is a particle physics simulation used to animate flow of

incompressible fluids using SPH (Smoothed Particle Hydrodynamics) (8) method.

This treats fluid as small particles having properties like pressure, velocity,

acceleration, density and initial position vector in space. It is an Intel RMS

application from PARSEC benchmark. SPH method uses particles to model the

state of the fluid at discrete locations and interpolates intermediate values. The

main advantage of SPH is automatic conservation of mass due to a constant

number of particles.

Fluid Particle Simulation Methods

 There are various numerical approaches that are being used to simulate

fluid dynamics. Some widely used numerical approaches are mentioned below (9):

Grid Based (Eulerian)

o Stable Fluids
o Particle Level Set

25

 Particle Based (Lagrangian)

o SPH (Smoothed Particle Hydrodynamics)
o MPS (Moving-Particle Semi-Imlicit)

 Height Field

o FFT (Tessendorf)
o Wave Propagation – e.g. Kass and Miller
o Direct Simulation (Monte Carlo) (10)
o Gas dynamics Flows

In this implementation of fluidanimate problem, we would prefer Particle based

SPH technique due to several advantages (11).

 Conservation of Mass is trivial.
 Easy to track free surface.
 Only performs computation where necessary.
 Not necessarily constrained to a finite grid.

Fluidanimate Phases

 Below are the five major steps that fluidanimate algorithm performs in

each time step.

 Initialize Simulation: This is the first and foremost step involved in fluid
animate. In this phase, particle data is read from file and stored in data
structures associated to particles, cells and grids.

 Rebuild Grid: When the particle data is read in the initialization phase, then
a rebuild grid phase starts. In this phase, particles are arranged in a logical
data structure named cells and these cells further constitute a 3D grid.

 Compute densities and forces: The actual compute intensive work is
performed in this phase. In this phase, Particle-Particle interactions are
calculated which is done in two sub phases. In first phase, the densities of
the particles residing in Grid are calculated. The neighbour particles of each
particle are calculated and then their effect is computed. When the densities
of a particle and its neighbours are updated, then the second phase of force
computation begins. In this sub phase, same steps are performed as

26

compute densities and the force on each particle and its neighbours is
calculated.

 Process Collisions: In this phase a particle-particle and particle to scene
geometry collisions are calculated.

 Advance Particles: Finally, due to updated densities and forces along with
the collision of particles, the positions of these particles are updated. The
particles move in the specified direction in the grid they reside.

 Fluidanimate was implemented in PARSEC benchmark on shared memory

architectures using pthread. The SPH solver written by PARSEC uses localized

kernel, due to which a particle residing in a cell can be influenced by particles

residing at maximum of its neighbour cells.

Force Computation Methodologies

There are two approaches which can be used to solve Fluidanimate problem

 Tree Based Approach using Barnes Hut Algorithm

 Sub Grid Partition Based Approach by dividing large Grid into smaller sub
grids.

 Due to localized effect of particles, we will use second approach in

fluidanimate implementation because no far_field_force is being applied on

particles, only nearest_neighbour_force is to be calculated.

27

OIL RESERVOIR SIMULATION

Reservoir simulation combines use of mathematics, physics and computer

programming to develop a tool for predicting hydrocarbon-reservoir performance

under various operating conditions (12). In hydrocarbon-recovery projects capital

investment of hundreds of millions is at stack, so the risk associated with the

selected development plan must be assessed and minimized, therefore, need for

reservoir simulation arises.

The use of reservoir simulation is getting pivotal importance in the

petroleum industry. Such pervasive acceptance can be attributed to advances in the

computing facilities as discussed in chapter 1, advances in reservoir

characterization technique (13).

Reservoir Simulation Process

The reservoir simulation process is shown in figure 11 which starts with the

formation phase in which information about the reservoir’s geological properties is

gathers which is then converted into mathematical model in the form of Partial

Differential Equations (PDEs) with appropriate initial and boundary conditions.

These equations represent important physical processes taking place in the

reservoir for example, the flow of fluids partitioned into as many as three phases

(oil, water, gas), and mass transfer between the various phases, effect of viscosity

etc (12). PDEs obtained are then converted into set of Linear Algebraic Equations

or System of Linear Equations (SLEs) and are solved for the unknowns i.e.

pressure or saturation.

Figure 11: Reservoir Simulation Process

Formation PDEs
Linear Equations

[Ax = b]

Solve

[Ax = b]

Result

[Pressure,
Saturation]

28

SLE Solvers

The SLEs can be solved using two kinds of methods, below are few examples

of each.

I. Direct Methods:

a. Gauss Elimination

b. Cholesky decomposition

II. Iterative Methods:

a. Gauss Seidel

b. Jacobi Method

c. Conjugate Gradient

The most time consuming part in the reservoir simulation is the solution of

SLEs and this is what we aim to target in this project. For large simulations the

number of SLEs increases consequently increasing the size of the Matrix A which

represents the SLEs. In Oil Reservoir Simulation the matrix A is Symmetric

Positive Definite Matrix illustrated in figure 12. Notice that the matrix in figure 12

is a Sparse Matrix – many zero entries. Typically Matrix formed from these PDEs

is sparse symmetric positive definite matrices.

A matrix A is positive-definite if, for every nonzero vector x,

xT Ax > 0

A symmetric matrix is a square matrix that is equal to its transpose,

A = AT

29

Figure 12: 32x32 Matrix representing a 2D reservoir in 1 Phase

[Figure from Ashraful and Tazrian UAEU HPC Summer School 2010 report]

Direct methods

Direct methods attempt to solve the problem by a finite sequence of

operations. In the absence of rounding errors, direct methods would deliver an

exact solution (14).

The Direct Methods solve the system in fix number of steps. Direct

methods are not suitable for large sparse matrices since number of non zero

increases which increases computational complexity.

30

Iterative methods

Iterative method is a mathematical procedure that generates a sequence of

improving approximate solutions for a class of problems. A specific

implementation of an iterative method, including the termination criteria, is an

algorithm of the iterative method (14).

The iterative methods are faster than the direct methods as the aim is to

approximate the solution which depends on the termination criteria as how much

precise results we need.

The iterative methods are faster than the direct methods as the aim is to

approximate the solution which depends on the termination criteria as how much

precise results we need.

31

Why Conjugate Gradient Method

Considering this problem we chose to use an iterative method to solve the

SLEs, we chose the Conjugate Gradient Method (CG) figure 13, because of it

being highly optimized for symmetric positive definite matrices and being an

iterative method it can be applied to sparse systems to exploit the sparsity,

otherwise such systems are too large to be handled by direct methods.

Figure 13: Conjugate Gradient Method Algorithm

32

The Conjugate Gradient Algorithm

Within CG the most compute intensive operation is the Matrix Vector

Multiplication (line no. 8 in figure 13) which is O(n2). From the memory and

communication point of view the update of vector P at the end of each iteration

(line no. 14 in figure 13) in distributed environments is time consuming as P needs

to be shared by all processes (15). In the process of optimization these factors will

be considered vital.

BLACKSCHOLES

 The Blackscholes application is an Intel RMS benchmark used to calculate

the prices for a portfolio of European options by using Black-Scholes partial

differential equation. Black-Scholes formula is used in computing the value of an

option. In some cases, e.g. European options, it gives exact solutions, but for

others, more complex, numerical attempts are made in order to obtain an

approximation of the solutions. Several numerical methods are used for solving the

Black-Scholes equation, e.g. Finite element method (16) and Monte Carlo Option

Model.

Blackscholes Algorithm

 Blackscholes formula is widely used method for calculating the option

prices for a given portfolio of options. There are several assumptions underlying

the Blackscholes model of calculating options pricing (17). The Blackscholes

model also assumes stocks move in a manner referred to as a random walk; at any

given moment, they are as likely to move up as they are to move down. These

assumptions are combined with the principle that the options pricing should

provide no immediate gains to either seller or buyer.

33

Chapter 4

CASE STUDY I: FLUIDANIMATE

This chapter includes all the relevant details of the design and analysis of

the system, which comprises of main modules that will be implemented and

optimized. We will also discuss the significance of the approach followed in

parallelizing.

FLUIDANIMATE

 By performing the analysis of fluidanimate algorithm and profiling the

serial implementation of fluidanimate provided in PARSEC benchmark, we

concluded that its parallelization is somewhat more difficult due to 3D particle-

particle interaction and high data dependency. The algorithm follow particle-in-cell

approach, which means the particles reside in Cells and these Cells then combine

and form Grid. The challenge was to divide the Grid or cells into smaller chunks in

such a way that work load must be balanced.

Fluidanimate On Distribute Memory Cluster

 The parallelization of fluidanimate on DMC (Distribute Memory Cluster)

requires much effort. The input file for fluidanimate contains particles attributes

e.g. density, viscosity and external acceleration. The data is read from the files and

then Cells are formed which contain particles. This happens when simulation is

initialized, after that the effect of other particles like force and density are

calculated on current particles. Then, based on effect of these affects the particles

are moved to new location in 3D grid.

34

Fluidanimate programe flow for DMCs

 A basic flow of fluidanimate is shown in the figure 14 below; the most

compute intensive part of the code is highlighted with red colour.

Figure 14: Fluidanimate Parallel Flow

 The profiling of Fluidanimate serial implementation resulted that the most

compute intensive function is ComputeForcesDensities which needs to be

parallelized. We will discuss the details of parallel design of fluidanimate later in

this chapter.

InitSim

RebuildGrid

Compute Forces
& Densities

Process Collision

Advance
Particles

Save frame
output

F

w

in

fu

by

th

w

ap

Fluidanimat

As the

we need to un

In flu

nto further 3

urther contai

y the particl

han one cell

we stick to

pproach.

G0, G1, G2

Key:

Figure 16:

e design for

e particles re

nderstand the

uidanimate d

3D Sub Grid

ins actual flu

les residing i

and no far_f

the Grid ba

2, G3

Gho

Par

Sub

Particles Wo

r distribute

eside in the

e fluidanima

design, abov

ds. Each Sub

uid particles

in the neigh

_force is bein

ased partitio

ost Cells - Bo

rticle

b Grids – Part

orld Grid – 3

memory clu

cells which

ate design. C

e figures illu

b Grid conta

. The particl

hbouring cell

ng applied o

on approach

oundary

tition of World

3D

uster

are part of t

Consider the

ustrate that

ains multiple

les in a cell c

ls. The effec

on particles;

h rather than

d Grid

Figure 15:

the grid. So,

following hi

world Grid

e Cells, and

can only be

ct does not tr

that is the r

n tree based

Particles Wo

35

first of all

ierarchy.

is divided

d each Cell

influenced

ravel more

eason why

d partition

orld Grid

F

p

b

h

co

p

di

th

on

T

w

ar

Fluidanimat

As d

arallelization

oundary cell

ow we partit

 In M

orresponding

article resid

ivision amo

hat the partic

nly way to s

The processo

where they w

rranged in C

Fig

e mpi based

discussed in

n of fluidan

ls so that wo

tion the Wor

MPI based

g processor,

ding in its o

ong processo

cle data of o

share the da

ors in MPI im

will be shari

Cartesian Top

gure 17: Fluid

d implemen

n the design

imate is to d

ork load sho

rld Grid of c

parallelizati

 and each pr

own sub grid

ors the data

one processo

ata is to com

mplementati

ing their bou

pology (18).

dAnimate M

tation for D

n of fluida

divide Worl

ould be balan

cells into equ

ion, we as

rocessor wil

d. The chal

resides in d

or is not vis

mmunicate th

ion are arran

undary cells

MPI work Div

DMCs

animate tha

d Grid into

nced. We di

ual chunks o

sign each

ll be respons

llenge here

distributed m

ible to other

he required d

nged in Cart

s with their

vision amon

at the majo

sub grids an

iscussed in d

f Sub Grids.

of the Sub

sible for calc

is that after

memory wh

r processor’

data over th

tesian Topol

immediate n

ng processors

36

or task in

nd also the

design that

.

b Grid to

culation of

r the work

hich means

s cell. The

e network.

logy order,

neighbours

s

ou

co

B

m

an

fo

In figu

ur World G

orresponding

Boundary Ce

A cod

When

manner. Then

nd communi

ollowed by p

Fig

ure 17, we s

Grid into 4

g processor

lls that need

de snippet of

n the data is

n each proce

icate the list

processors, s

gure 18: Flu

ee that there

4-Sub Grid

. The Red b

d to be comm

f Grid distrib

s distributed

essor find its

t of ghost ce

see the comm

uidAnimate M

e were four p

s and assig

boundaries r

municated ov

bution among

d among the

s neighbour

ells. To unde

munication m

MPI Commu

processors av

gned each

represent G

ver the netwo

g processors

e processors

processors t

erstand the c

matrix shown

unication of

vailable, so w

of the Sub

host Cells a

ork.

s is shown be

in cartesian

through cart

communicati

n in figure 1

Ghost Cells

37

we divided

b Grid to

also called

elow.

n topology

tesian rank

ion pattern

8 below:

38

 Each processor will calculate its neighbour processors and then start

communicating ghost cell lists. For example, in this case, there were nine sub grids

assigned to nine processors. Each of them will calculate its peer processors e.g. P0

containing G0 will receive from none in x-direction but will send its boundary cell

lists to adjacent processor P1 which contains G1 and same happens with P1, but

here P1 will receive from its left neighbour and send to right neighbour P2.

Similarly, the same pattern happens in y-direction (in 2-D).

 When the communication of ghost cells is done, then each processor will

compute effect of particles on its own cells as well as neighbour cells in the form

of forces and densities. After that, when current frame finishes and next frame

starts, then in RebuildGrid the communication of ghost cells happens again. These

ghost cells are now updated in previous frame. RebuildGrid is responsible for

placement of particles in cells based on their updated attributes. One thing should

be kept in mind that all the communications that are happening are Blocking

Communications (19).

Fluidanimate MPI performance evaluation with blocking communication

 The benchmarks were conducted on Barq cluster at NUST-SEECS, see

appendix B2 for details of the machine.

The data sets for Fluidanimate were varying in nature. The maximum data

set was 0.5 million particles. When the experiments were performed, we obtained

these results.

39

Fluidanimate MPI Speed up Results on Varying Data Sets

 As we see that we achieve speedups as we increase the number of

processors. On smallest dataset of 35,000 particles of fluid, we see irregular

behaviour. The reason is that the computation to communication ratio decreases as

we increase the processors. Fluidanimate MPI design consists of necessary

communications which tend to decrease the performance on small datasets.

Although the speedup gain seems acceptable on largest data set of 0.5 million

particles but we can’t consider it a good speedup because on 16 processors, the

speedup gain is about 3.7 which is not enough.

No. of processors

Speed Ups

35,000 particles for 20 Iterations using

O3 Compiler optimization

300,000 particles for 20

Iterations using O3 Compiler

500,000 particles for 20 Iterations

using O3 Compiler optimization

Speed Ups

No. of processors

0.0000

0.5000

1.0000

1.5000

2.0000

1 2 4 8 16

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

1 2 4 8 16

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

1 2 4 8 16

40

Fluidanimate MPI optimization

 As we analysed the code, we concluded that we can overcome the blocking

communication by using non-blocking communication. Non-Blocking

communication in MPI has several advantages over blocking communication but

harder to implement in code (20).

 As we implemented the non-blocking communication, a code snippet of

non-blocking send is shown below:

 In this code, data distribution is being done in non-blocking manner.

Fluidanimate MPI performance evaluation with non-blocking communication

 As we implemented the code with non-blocking communication and

analysed it, we observed good speedups. We performed the experiments on Barq

(see appendix B2). The maximum data set was 0.5 million particles. When the

experiments were performed, we obtained these results.

41

Fluidanimate MPI Non-Blocking Speed up Results on Varying Data Sets

 Now as we see that using Non-Blocking communication the speedup is

increased from 3.7 to 7.6 on maximum data set of 500,000 particles. As we see that

we achieve speedups as we increase number of processors.

A comparison of fluidanimate Blocking and Non-Blocking approach is shown

inthe graph below:

No. of processors

Speed Ups

35,000 particles for 20

Iterations using O3 Compiler
300,000 particles for 20

Iterations using O3 Compiler

500,000 particles for 20 Iterations using O3

Compiler optimization

No. of processors

Speed Ups

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

1 2 4 8 16

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

1 2 4 8 16

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

1 2 4 8 16

42

Fluidanimate MPI blocking vs. Non-Blocking Time and Speedup comparison

 We clearly see that by using Non-Blocking communication in MPI

implementation of fluidanimate, we achieved significant time decrease and good

speedups. Hence prove our hypothesis; using non-blocking communication in

application with less computation to communication ratio causes significant

increase in speedups.

0

50

100

150

200

250

1 2 4 8 16

Comparision Time Graph of 500,000 particles for 20
Iterations using O3 Compiler optimization

Time in second (NON‐BLOCKING) Time in second (BLOCKING)

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

1 2 4 8 16

Speedups comparison Graph of 500,000 particles for
20 Iterations using O3 Compiler optimization

Speed Up (BLOCKING) Speed Up (NON‐BLOCKING)

43

Fluidanimate On Shared Memory Architectures

 The parallelization of fluidanimate on SMA (Share Memory Architecture)

can be done on different shared memory programming models like posix threads,

openmp and cilk++. We have chosen OpenMP to parallelize fluidanimate

application for SMAs due to fork-join model of OpenMP threads. The input file for

fluidanimate contains particles attributes e.g. density, viscosity and external

acceleration. The data is read from files and then Cells are formed which contains

particles. This happens when simulation is initialized, after that the effect of other

particles is calculated on current particles. Then, based on effect of these forces the

particles is moved to new location in 3D grid.

Deployment testbed for SMA

 We have conducted experiments on our test bed which we call Raad. – see

appendix [B3] for detail of the machine.

Fluidanimate OpenMP design and implementation

 By analysing the fluidanimate serial code, we suggest our first approach

which is default parallelization using OpenMp parallel for constructs for loop

parallelization. In this approach, OpenMP divides the total cells into chunk of cells

and then assigns each chunk to corresponding thread. Each thread will be

responsible for calculation on its chunk. There are different OpenMP scheduling

techniques are available e.g. static, dynamic, default and guided. We implemented

our proposed naïve implementation by using different scheduling techniques and

then chose the best scheduling technique out of it and performed experiments.

44

OpenMP Scheduling techniques Comparison on Fluidanimate

 The above results are from fluidanimate using different OpenMP

scheduling techniques. We observed different behaviour of application under

different scheduling algorithms. In fluidanimate, dynamic scheduling algorithm

was performing poorly because dynamic scheduling performs well when there are

non-uniform loops (21).

 Since, the static scheduling technique has the least runtime overhead (21)

as well as it is performing well in fluidanimate implementation so we will go with

static scheduling algorithm.

 A code snippet from ComputeForces of fluidanimate by OpenMP loop
parallelization approach is shown below:

0

50

100

150

200

250

300

350

400

1 2 4 8 16

Time Graph of 500,000 particles for 100 iterations using
O3 Compiler Optimization

Default

Guided

STATIC_CHUNK

STATIC_CYCLIC

DYNAMIC_CHU
NK

45

The most important thing to consider is that the memory is shared between

threads, so synchronization problem can happen in shared environment. The

section of the code which more likely needs synchronization is where cells are

updated. We need to take care of boundary cells like when we are updating cells

we have to check whether the cell is on boundary or not, if it is on boundary then

we must maintain some lock to prevent access by other threads.

46

Fluidanimate OpenMP performance evaluation by loop parallelization – naïve

approach

 The benchmarks were conducted on Raad SMP machine at NUST-SEECS,

see appendix B3 for details of the machine. The naïve approach results are given

below:

Fluidanimate OpenMP naïve implementation Time Graph on varying data sets

No. of processors

35000 particles for 100 iterations
using O3 compiler optimization

300,000 particles for 100 iterations
using O3 compiler optimization

500,000 particles for 100 iterations
using O3 compiler optimization

Time(s)

0

5

10

15

20

25

30

1 2 4 8 16

0

50

100

150

200

250

1 2 4 8 16

0

50

100

150

200

250

300

350

400

1 2 4 8 16

47

 We observe a significant decrease of execution time by increasing no. of

processors. The speed up graph is shown below:

Fluidanimate OpenMP naïve implementation Speedup on varying data sets

 As we see the speedups are increasing as the number of processors are

increased. But we see that the speedups are not too much as we expected. The main

reason behind it the cache locality. The analysis of the approach showed that the

speedups were not up to the expectation because of larger cache miss rate.

500,000 particles for 100
iterations using O3

No. of processors

Speedup

35000 particles for 100 iterations
using O3 compiler optimization

300,000 particles for 100 iterations
using O3 compiler optimization

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

1 2 4 8 16

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

1 2 4 8 16

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

1 2 4 8 16

F

lo

d

th

fi

Fluidanimat

With

ocal sub grid

o so, we wil

hread will be

igure 19 belo

Figure

e OpenMP

reference to

d based strat

ll partition t

e operating o

ow;

e 19: Fluidan

optimized i

o design of f

tegy to addr

the World G

on its localiz

nimate Open

implementa

fluidanimate

ress the prob

Grid into sma

zed sub grid

nMP Optimiz

ation

(see fig 15

blem of poo

aller Sub Gr

to better uti

zed impleme

& 16), we p

r cache utili

rids and each

ilize the cach

entation Des

48

proposed a

ization. To

h OpenMP

he. See the

sign

49

Fluidanimate OpenMP optimized implementation results

 We optimized the implementation and performed experiments on our Raad

TestBed [B3]. The results were better than the naïve approach that we

implemented earlier. Due to increased cache locality, application performed well

and the speed ups were close to the expectation. Consider following speedup

graphs:

35000 particles for 100
iterations using O3

300,000 particles for 100
iterations using O3

500,000 particles for 100
iterations using O3

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

1 2 4 8 16

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

1 2 4 8 16

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

1 2 4 8 16

50

Fluidanimate OpenMP Optimized implementation Speedup on varying data sets

 We see that using Sub Grid based partitioning approach and manually

launching threads on each sub grids improves the cache locality and hence

speedups are almost double than the naïve approach.

0

50

100

150

200

250

300

350

400

1 2 4 8 16

Time Graph of 500,000 particles for 100
iterations using O3 compiler optimization

Time in second (DEFAULT‐PARALLELIZATION)

Time in second (GRID BASED PARALLELIZATION)

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

1 2 4 8 16

Speedups Graph of 500,000 particles for 100
iterations using O3 compiler optimization

Speed Up (DEFAULT‐PARALLELIZATION)

Speed Up (GRID BASED PARALLELIZATION)

51

Fluidanimate OpenMP naïve vs. optimized Time and Speedup comparison

 We clearly see that by optimizing cache locality in share memory

application we can significantly increase the performance. The speedup graph of

fluidanimate at 16 processors using naïve approach does not scale well, but

optimized version is much scalable on greater number of processors.

Fluidanimate On Graphics Processing Units (GPUs)

 GPU based implementation of fluidanimate is done using cuda. As

discussed earlier in Design of fluidanimate that particles reside in Cells and then

these Cells form World Grid. In our Cuda implementation of fluidanimate, each

thread is being operated on a cell. It computes the forces and densities of residing

particles of cell.

Fluidanimate GPU implementation phases

A basic flow of CUDA based approach is shown in the figure 20. The most

compute intensive parts are highlighted with red colour.

Data Read and Initialization

Host and Device Memory Allocation

Data copy from CPU memory to GPU
memory

Kernel Configuration

RebuildGrid_kernel.cuh

ComputeForces_kernel.cuh

ProcessCollision_kernel.cuh

AdvanceParticles_kernel.cuh

Data copy from GPU to CPU

Free Memory & Save Result

F

fl

w

di

bl

an

d

m

an

Fluidanimat

The G

luidanimate

we need syn

ivide phases

locks is achi

The d

nd calculate

evice is shar

In im

memory on C

nd GPU resp

Figure

e GPU desig

GPU executi

is a smaller

nchronization

s into multip

ieved.

design of the

es the forces

red by all the

Fig

mplementatio

CPU as well

pectively:

20: Fluidani

gn and imp

ion kernel is

kernel. The

n of multipl

ple kernels,

e application

s on the par

e threads, so

gure 21: Fluid

on of fluid

l as on GPU

imate CUDA

lementation

s divided int

main reason

le thread bl

then synch

n is such tha

rticles of th

o locks are ne

danimate CU

danimate CU

U. Following

A Program F

n

to multiple k

n to further d

ocks after e

hronization a

at CUDA thr

hat cell. Sin

ecessary to a

UDA Design

UDA versio

g code alloc

Flow

kernels. Eac

divide the ke

each phase.

among multi

reads operat

ce Global m

avoid race co

n

on, we firs

cates memor

52

h phase of

ernel is that

When we

iple thread

te on Cells

memory of

onditions.

st allocate

ry on CPU

53

Memory Allocation on CPU

Memory Allocation on GPU

 After memory allocation, we read particles data in CPU memory. Then next

step is to copy data from host (CPU) memory to device (GPU) global memory

where CUDA threads can have access to it. Following code transfer memory from

host to device.

Then we launch Kernels which will do the computation of different phases of

fluidanimate.

54

A code snippet from ComputeForces_kernel is shown below:

 When all the phases of Fluidanimate are completed then finally the data

from device global memory is copied back to host memory.

co

F

ap

si

h

co

Finall

omputed.

Fluidanimat

The b

ppendix B4

The e

imsmall hav

aving 300,0

omparison to

ly, the fram

e GPU impl

enchmarks w

for details o

experiments

ving 35,000

00 particles

o CPU are sh

me output is

lementation

were conduc

of the machin

were perfor

particles, si

 and native

hown below

stored in a

n results

cted on CUD

ne.

rmed on thre

immedium h

having 500

w:

Table 1

an output fi

DA Test bed

ee different

having 100,0

,000 particle

file and nex

d at NUST-S

sized data s

000 particles

es. The spee

55

xt frame is

EECS, see

sets named

s, simlarge

edups with

56

Fluidanimate CUDA Speedup over CPU

 As we see in the speedup graph that on smaller data sets of 35k the time

difference between CPU and GPU is not big and hence the speed is just fine. But

as the data set increases from 100,000 particles to 500,000 particles, we see a

significant increase in speedups. Hence our GPU approach results better than that

of GPU.

Speed up

Number of Particles

0

100

200

300

400

500

600

35K 100K 300K 500K

Speed
Up x‐
times
(GPU vs
CPU)

57

Chapter 5

CASE STUDY II: OIL RESERVOIR SIMULATION

This chapter includes all the relevant details of the design and analysis of

the system, which comprises of main modules that will be implemented and

optimized. We will also discuss the significance of the approach followed in

parallelizing.

OIL RESERVOIR SIMULATION

` Oil Reservoir Simulation was implemented on all three HPC architectures

discussed in chapter 1. In this chapter we discuss the implementation of the

simulator with emphasizes on CG and its optimization and the study of benchmark

results.

The implementation can be divided in two parts,

I. The Simulator
II. The Solver

The simulator is portion of the code which models the reservoir on the basis of

grid dimensions, geological rock properties, properties of the fluids and forms

system of linear equations which is sent to the solver for the solution. If the

simulation is to be done for multiple time steps, the simulator prepares the system

of linear equations again and sends to the solver for solution. Once the solution till

desired time steps is found the simulator stores the results in a file, ready to be

analysed. See figure 22.

M

Fi

The sy

Market (MM)

igure 22: Ar

ystem of lin

) format, see

rchitecture D

near equation

e appendix A

Diagram of O

ns prepared

A1 for more

Oil Reservoir

by simulato

details on M

r Simulator

or is stored in

MM format.

58

n a Matrix

59

Oil Reservoir Simulation on Distributed Memory Clusters

The aim is to design and implement an efficient parallel CG with minimum

degrading effect of inter process communication and better load balancing.

There are two versions of CG in MPI,

I. Naive - with blocking communication.

II. Overlap computation and communication

Naive - with blocking communication

The first implementation is naive in a sense that the MPI inter process

communication is not done cleverly because at the end of each iteration of CG

vector P is gathered at root node and then broadcasted and this collective

communication is entirely blocking.

Domain Decomposition

Suppose the System of Linear Equations is the matrix A of figure 23. The

domain is decomposed in the form of horizontal blocks. The horizontal blocks are

rows distributed to processes on the basis of number of nonzeros, refer to figure

24, for the sake of demonstration there are 4 MPI processes. We achieved proper

load balancing; refer to the load balance test graph below, figure 25.

60

Figure 23: Sample matrix A (sparsity view).

[From the University of Florida Sparse Matrix Collection]

Figure 24: Matrix A decomposed into horizontal blocks among 4 processes

61

Figure 25: Test for Load Balance

Compute Intensive Sections

As discussed earlier the most compute intensive section of the matrix-

vector multiplication (MVM, line no. 8 in figure 13, v = A.p) which is O(n2), and

there are four vector-vector multiplications (VVM, line no. 9 and 13 in figure 13)

which is O(n). For the VVM every process calculates its own chunk of vector-

vector product which is a scalar and a reduction is performed at the root node.

Likewise the MVM is performed on every process which calculates its own chunk

i.e. a portion of vector; this process is illustrated in figure 26.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15

Broadcast(S)

Broadcast(W)

Broadcast(A)

Broadcast(B)

Broadcast(C)

Figure 226: Matrix V

Vector Multipplication – NNaïve

62

63

Benchmark results

The benchmark for the solver was conducted using a standard data set from

NAS Parallel Benchmarks (NPB) (22) on the supercomputing facility at UAEU,

see appendix B1 for details.

Dataset: CLASS-S, size=1400, iteration=15, NNZ = 78148

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 4 8 16 32 64 80 128

Execution Time Class-S Naive

Execution Time Class‐
S Naive

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

4.5000

5.0000

1 2 4 8 16 32 64 80 128

SpeedUp Class=S Naive

SpeedUp Class=S CG
01X

64

Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64 80 128

Execution Time NAS_A CG 01X

Execution Time Class‐
A CG Naive

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

4.5000

5.0000

1 2 4 8 16 32 64 80 128

SpeedUp Class-A CG Naive

SpeedUp Class‐A CG
Naive

65

Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072

0

5

10

15

20

25

1 2 4 8 16 32 64 80 128

Execution Time Class-B CG Naive

Execution Time Class‐B
CG Naive

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

1 2 4 8 16 32 64 80 128

SpeedUp Class-B CG Naive

SpeedUp Class‐B CG
Naive

66

Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64 80 128

Execution Time Class-C CG Naive

Execution Time Class‐C
CG Naive

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

1 2 4 8 16 32 64 80 128

SpeedUp Class-C CG Naive

SpeedUp Class‐C CG
Naive

67

Discussion on results

As anticipated the blocking communication deteriorates the performance as

number of processors increase. With Class-S the scalability is observed till 8

processes, with Class-A till 32 processes but when the data set increases it affects

the performance directly, larger the vector p more time the processes will consume

in waiting than performing work. So with the Class-C speedups are witnessed till

16 processors. When more processes are added its performance decreases. Stable

load balancing was also achieved confirming that the data (work) was distributed

approximately the same.

Overlap computation and communication

To solve the problem of waiting caused by blocking communication we use

non blocking communication to overlap computation and communication. With

this approach processes don’t have to wait for a gather and a broadcast after doing

MVM but rather the communication is performed at the time of MVM. This

approach is same as discussed in (23). To implement it there was a change needed

in the domain decomposition strategy which will be discussed below.

Domain Decomposition

Like in the first approach (Naive) the matrix A is distributed among

processes in the form of horizontal blocks, to accommodate the computation and

communication overlapping strategy the horizontal blocks are divided into vertical

blocks, four in our case as illustrated in figure 27.

68

Figure 27: Matrix A further divided into vertical blocks

Compute Intensive Sections

As discussed earlier our main aim is to overlap the computation of MVM

and communication of vector p. This time instead of traversing the entire row at a

time and multiplying it with the vector p we multiple it block after block,

accumulating the result in the resultant vector. The entire MVM completes in 4

steps in our case and generally in no. of processes steps. The processes are

logically arranged in ring fashion, at the beginning of each step, before MVM there

is a non-blocking communication between neighbours in which each process sends

portion of vector p to its adjacent neighbour (rank-1) and receives from the other

neighbour (rank+1), illustrated in figure 28.

69

Figure 28: Communication in a ring

To put this in words:

 Initially, rank 0 has chunk p0, rank 0 sends p0 to rank 3.
 Initially, rank 1 has chunk p1, rank 1 sends p1 to rank 0.
 Initially, rank 2 has chunk p2, rank 2 sends p2 to rank 1.
 Initially, rank 3 has chunk p3, rank 3 sends p3 to rank 2.

Where vector p = p0 + p1 + p2 + p3.

The MVM and communication for step 1 is illustrated in figure 29.

70

Figure 29: Step 1 MVM

Again the same process is followed but now the sender will send the values

of p which it just received and the receiver will receive the values of p which will

be useful for the MVM on next block, and the partial values of v found in this step

are added to the values of v found in the previous step.

71

Figure 30 shows the progress of MVM and computation.

Figure 30: Step 2 MVM

Similarly,

Figure 31: Step 3 MVM

Every process sends and receives number of processes -1 chunks, so in the

last step no further communication is needed every process has entire p.

72

Figure 32: Step 4 MVM

After 4 steps (i.e. number of processes steps) the MVM ends, all the

processes have the vector v found which will be required in the rest of CG.

In this way we have avoided the gather and broadcast of p and overlapped

communication and computation.

73

Benchmark results

The benchmark for the solver was conducted using a standard data set from

NAS Parallel Benchmarks (NPB) (22) on the supercomputing facility at UAEU,

see appendix B1 for details.

Dataset: CLASS-S, size=1400, iteration=15, NNZ = 78148

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 4 8 16 32 64 80 128

Execution Time Class-S CG Overlaped

Execution Time Class‐S
CG Overlaped

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

1 2 4 8 16 32 64 80 128

SpeedUp Class-S CG Overlaped

SpeedUp Class‐S CG
Overlaped

74

Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64 80 128

Execution Time Class-A CG Overlaped

Execution Time Class‐A
CG Overlaped

1.0000

3.0000

5.0000

7.0000

9.0000

11.0000

13.0000

1 2 4 8 16 32 64 80 128

SpeedUp CLASS-A CG Overlaped

SpeedUp CLASS‐A CG
Overlaped

75

Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64 80 128

Execution Time Class-B CG Overlaped

Execution Time Class‐B
CG Overlaped

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32 64 80 128

Speed Up Class-B CG Overlaped

Speed Up Class‐B CG
Overlaped

76

Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64 80 128

Execution Time Class-C CG Overlaped

Execution Time Class‐C
CG Overlaped

1

6

11

16

21

26

1 2 4 8 16 32 64 80 128

SpeedUp Class-C CG Overlaped

SpeedUp Class‐C CG
Overlaped

77

Speed up comparison

Note: CLASS-W, size=7000, iteration=15, NNZ = 508402

Total Execution Time : Broadcast & Overlap

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

20.0000

22.0000

24.0000

26.0000

1 2 4 8 16 32 64 80 128

Sp
e
e
d
U
p

SpeedUp Naive (Broadcast) & Overlap Approach

Overlap(S)

Broadcast(S)

Overlap(W)

Broadcast(W)

Overlap(A)

Broadcast(A)

Overlap(B)

Broadcast(B)

Overlap(C)

Broadcast(C)

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

1 2 4 8 16 32 64 80 128

Ex
e
cu
ti
o
n
 T
im

e
 in

 S
e
co
n
d
s

Total Execution Time : Broadcast & Overlap

Overlap(S)

Broadcast(S)

Overlap(W)

Broadcast(W)

Overlap(A)

Broadcast(A)

Overlap(B)

Broadcast(B)

Overlap(C)

Broadcast(C)

78

Total Execution Time Class-C Naive (Broadcast) & Overlap

Speedup NPB & Overlap

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

1 2 4 8 16 32 64 80 128

Ex
e
cu
ti
o
n
 T
im

e
 in

 S
e
co
n
d
s

Total Execution Time Class-C Naive (Broadcast) & Overlap

Overlap(C)

Broadcast(C)

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

1 2 4 8 16 32 64 128

Se
q
/M

P
I E
xe
c.
 t
im

e

Speedup NPB & Overlap

Overlap(S)

NPB(S)

NPB(W)

Overlap(W)

NPB(A)

Overlap(A)

NPB(B)

Overlap(B)

NPB(C)

Overlap(C)

79

Discussion on results

Improvements can be seen with the new approach, on larger datasets like

Class-C & B good scalability was achieved but on smaller datasets like Class-S &

A with increase in number of processes speedups drop because there is less work

to do in MVM as compared to communication. So for real world applications

where large reservoirs are modelled in which the matrices are in size of billions

scalability can be achieved.

80

Oil Reservoir Simulation on Shared Memory Processors

The aim is to design and implement CG solver for multicore processors and

SMP machines, where the main memory is shared among cores/processors, cache

coherence can be a problem (24). The focus of optimization here is also on MVM.

There are two implementations in OpenMP based on the domain

decomposition of source matrix A, see figure 33 for demonstration suppose total

number of threads are 4.

I. Row Partition
II. Block Partition

Figure 33: Row Partition [left] and Block Partition [right]

In both, the sparse matrix A is stored in CSR (Compressed Sparse Row) a

widely used format for storing sparse systems (25). It only stores the nonzero

elements with its column index, and the index of the first non-zero elements of

each row, see figure 34.

81

Figure 34: Representation of matrix A in CSR format

From (26)

There are other sparse storage formats other than CSR which include CSC

(Compressed Sparse Column) same as of CSR but row index are stored, BCSR

(Blocking with Padding), BCSD (Blocked Compressed Sparse Diagonal), 1D-VBL

(One-dimensional Variable Block Length), VBR (Variable Block Row) and more,

refer to figure 35 for a graphical look of these different storage formats. Studies

(27) suggest that the change of internal storage format as compared to CSR has

little positive effect on the performance of Sparse MVM. CSR is also simple to use

as does not require painstaking processes of finding optimum block size for

submatrices and aligning the rows and columns afterwards.

Figure 35: How the different blocking storage formats split the input matrix into
blocks

From (27)

82

Row Partition

When the matrix A is partitioned into rows, each thread is assigned an

iteration in which it gets one row at a time and multiplies it with the vector p and

stores the result in vector v, see figure 36 which shows how it is implemented.

Figure 36: Simple Sparse MVM in CSR format

The problem with this approach is that the entire vector p is accessed in an

irregular fashion, therefore when vector p is larger more cache misses are

anticipated.

83

Benchmark results

The benchmark was conducted on Raad SMP machine at NUST-SEECS,

for details of the machine see appendix B3. Dataset used came from NAS Parallel

Benchmarks (NPB) (22).

Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16

Execution Time Class-A CG_OMP_Row

Execution Time Class‐A
CG_OMP_Row

0

2

4

6

8

10

12

14

1 2 4 8 16

SpeedUps Class-A CG_OMP_Row

SpeedUps Class‐A
CG_OMP_Row

84

Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072

0

10

20

30

40

50

60

70

80

1 2 4 8 16

Execution Time Class-B CG_OMP_Row

Execution Time Class‐B
CG_OMP_Row

0

2

4

6

8

10

12

14

16

1 2 4 8 16

SpeedUP Class-B CG_OMP_Row

SpeedUP Class‐B
CG_OMP_Row

85

Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058

Discussion on results

Scalability was achieved in the tests but as anticipated when the large

system is simulated the speed-ups are relatively less. Because the vector p gets

larger the irregular way of accessing p results in many caches misses.

0

50

100

150

200

250

1 2 4 8 16

Execution Time Class-C CG_OMP_Row

Execution Time Class‐C
CG_OMP_Row

0

2

4

6

8

10

12

14

16

1 2 4 8 16

SpeedUps Class-C CG_OMP_Row

SpeedUps Class‐C
CG_OMP_Row

86

Bock Partition

This time the matrix A is partitioned into blocks. From the figure 37 it is

easy to understand that in sparse MVM thread no. 0 & 2 need first portion of the

vector and thread no. 1 & 3 need the other, in this way we have successfully

reduced the access space of the vector. As the access space for the vector is

decreased we anticipate decrease in cache misses.

Figure 37: MVM with Block Partitioning of matrix A

87

Benchmark results

The benchmark was conducted on Raad SMP machine at NUST-SEECS,

for details of the machine see appendix B3. Dataset used came from NAS Parallel

Benchmarks (NPB) (22).

Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16

Execution Time Class-A CG_OMP_Block

Execution Time Class‐A
CG_OMP_Block

0

2

4

6

8

10

12

1 2 4 8 16

SpeedUps Class-A CG_OMP_Block

SpeedUps Class‐A
CG_OMP_Block

88

Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072

0

10

20

30

40

50

60

70

80

1 2 4 8 16

Execution Time Class-B CG_OMP_Block

Execution Time Class‐B
CG_OMP_Block

0

5

10

15

20

25

1 2 4 8 16

SpeedUps Class-B CG_OMP_Block

SpeedUps Class‐B
CG_OMP_Block

89

Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058

Discussion on results

With block partitioning better speedups were obtained with dataset Class-C

which is the largest. With Class-B super linear speedups were witnessed. On the

smallest dataset Class-A performance was affected a little bit because the overhead

of accumulation of results from threads after MVM which was done locally.

0

50

100

150

200

250

1 2 4 8 16

Execution Time Class-C CG_OMP_Block

Execution Time Class‐C
CG_OMP_Block

0

2

4

6

8

10

12

14

16

1 2 4 8 16

SpeedUps Class-C CG_OMP_Block

SeedUps Class‐C
CG_OMP_Block

90

Oil Reservoir Simulation on GPUs

The CG solver was implemented in CUDA for nvidia GPUs. In the GPU

there is limited memory and the access to global memory is expensive, if the sparse

matrix is stored in CSR format it will take more space and more access as

compared to DIA (Diagonal Sparse Matrix) format. The matrices as discussed in

chapter 2 the matrices from Oil Reservoir Simulation have a structure, for 1D

simulation for matrix is tridiagonal, for 2D its pentadiagonal and for 3D its

heptadiagonal. This symmetry can be exploited by only storing the nonzero values

of matrix in an array and in the offset between diagonals in a separate array. See

Figure 38.

F

D

C

an

V

Figure 38: 3

DIA format

CUDA versio

In the

nd calls com

VVM and Re

2x32 Matrix

representat

ons of CG

e CUDA ver

mpute kernel

eduction kern

x representin

central d

tion

rsion the hos

ls multiple ti

nel, VV addi

ng a 2D reser

diagonal is n

st thread (CP

imes. Compu

ition kernel.

rvoir in 1 Ph

nx = 4

PU) handles

uter kernels

hase. Here of

the main CG

include MV

91

ffset from

G iteration

VM kernel,

92

Bellow is explaination of different kernels.

MVM kernel

Figure 39 show the code snippet of the MVM kernel, each thread is

assigned a unique row which it multiplies with the vector. The column and row

indices are calculated at runtime and the values are only fetched.

Figure 39: CUDA MVM kernel

VVM and Reduction kernel

As we know that the result of VVM is a scalar, that means threads in

different thread blocks not only have to perform simple multiplication but also a

complex synchronous reduction process. This reduction process is divided into two

phases. In the first phase inter block reduction is performed in which threads in a

block participate to reduce the portion of result which is stored in shared memory

of that block, see figure 40 and figure 41.

Figur

Figure 41

re 40: VVM

1: Graphical

 and Intra B

view of intr

lock reductio

ra block redu

on

uction.

93

is

in

gl

N

V

w

in

ad

m

th

At the

s from wher

nsuring sync

lobally. This

Note: normal

VV Addition

From

which every

ndex with co

dded and t

multiplication

he CPU in th

e end 0th thre

e second ph

chronous flo

s global redu

Figure 42

lly all blocks

n kernel

figure 43 it

thread is fet

orresponds t

the result i

n with vec2

he naive appr

ead of the b

hase of the r

ow the block

uction is furt

2: Global red

s do not have

can be seen

tches the val

to its global

is stored in

this scalar c

roach.

lock writes

reduction sta

k which wri

ther illustrate

duction, amo

e same value

only.

n that VV ad

lues from tw

l index in th

n the first

can be alpha

the result in

arts. When a

ites in last p

ed in figure

ong 4 thread

e this is for d

ddition is a s

wo vectors (v

he pool of th

vector (ve

a or beta in C

nto global m

all blocks ar

performs the

42.

blocks

demonstratio

imple piece

vec1 and ve

hreads. The

ec1). Note

CG as it is c

94

emory this

re finished,

e reduction

on purpose

of code in

ec2) on the

values are

the scalar

called from

95

Figure 43: VV Addition

Benchmark results

The benchmark was conducted on GPU test best at NUST-SEECS, see

appendix B4 for details of the machine. An Oil Reservoir with 3072 x 4096 grid

dimension (2D) was simulated with 5 time steps. Matrix dimension is 12582912 x

12582912, nnz = 62914560, nx = 3072, ny = 4096.

Benchmark included Total Time, Computation Time, Memory Copy Time,

and Kernel Time; here the time is in seconds.

Total Time (sec) Computation Time (sec) Memory Time (sec)

2.830271000000000203 1.880077999999999916 0.1708369999999999889

Figure 44: Percentage of time spent on different operations

Solver Time
67%Mem Time

6%

Other
27%

GPU Implementation

96

Discussion on results

We achieved 12x speed-ups for the entire application, which included

formation of PDEs to system of linear equations and their solution for multiple

time steps. All operations were performed in double precision.

97

Chapter 6

CASE STUDY III: BLACKSCHOLES

This chapter includes all the relevant details of the design and analysis of

the system, which comprises of main modules that will be implemented and

optimized. We will also discuss the significance of the approach followed in

parallelizing.

BLACKSCHOLES

 The Blackscholes formula and its technique to calculate option prices for

portfolio of options describes that Blackscholes is the simplest in nature. Its

domain decomposition is simple due to the non-dependency of the option data

which means that only option data is sufficient to calculate price for that particular

option. So, inter-processors communication overhead is almost zero.

Blackscholes On Distribute Memory Clusters

 We will be discussing Blackscholes parallelization on Distribute Memory

Machines. We will also be evaluating these techniques later in this chapter.

Domain Decomposition

 This is the most important and foremost step in any parallel application.

The input data, which in our case is Option Data, is read from input file. This data

has to be parallelized in such a way that the work distribution on all the processors

should be balanced. The domain decomposition phase is very dynamic task and it

strongly depends on the cluster’s architecture underneath.

98

Design

 Due to simplest data parallel nature of Blackscholes, we use simple row

based partition approach. In this approach, we divide the total number of options

by total number of processors to get a subset of options data set.

 These chunks are then equally distributed among the processors by a

collective call. Then each MPI process computes option prices for its own chunk of

options. When all the processors are done with computation, they send back results

and results are saved.

 Basic Flow of Blackscholes in distribute memory is shown below

Figure 45: Basic Flow of Blackscholes in distribute memory

In this flow diagram of Blackscholes, the compute intensive part is

highlighted by red colour. We are actually parallelizing this part.

Read Options

Data Chunk Distribution
and Load Balancing

Compute Option Prices
by B.S formula

Data Chunk gathering

Save Prices

99

Implementation

 As discussed in design of Blackscholes that the analysis of the code shows

that the option price calculation is more time consuming, so we need to parallelize

this function.

A code snippet of serial version of the compute intensive function is given below:

The computeFormula function does all the computation. In serial approach, the

main loop which iterates over N options. In MPI based parallel approach we divide

this main for loop, and get smaller chunks of options data.

Options_chunk = total_num_options / total_num_processors

Then each process will be iterating over Options_chunk instead of N options.

B

ap

n

w

B

op

Fig

Benchmark r

The b

ppendix B2

As di

ature with a

with balanced

Blackscholes

ptions. Whe

Proc

Proc

Proc

Proce

Time (

gure 46: MPI

results

benchmarks

for details o

iscussed ear

almost zero

d partitionin

were vary

en the experi

cess <0

cess <1

cess <2

ess <N‐

0

0.1

0.2

0.3

0.4

0.5

(sec)

I based para

were condu

of the machin

lier that the

 communica

ng of options

ing in natu

ments were

0>

1>

2>

‐1>

1 2

4096 Optio
Compi

llelization ap

ucted on Ba

ne.

e Blackscho

ation cost.

s can lead to

ure. The ma

performed, w

•Option [0]

•Option [1] …

•Option [chu

•Option [chu

•Option [chu

•Option [chu

•Option [chu

•Option [chu

•Option [chu

•Option [chu

•Option [chu

•Option [chu

2 4

ons for 100 u
ler optimiza

No. of proce

pproach to B

arq cluster a

les applicati

So, MPI pa

o good speed

aximum data

we obtained

…

nk0 ‐ 1]

nk0]

nk0 + 1] ….

nk1 ‐ 1]

nk1]

nk1+ 1] ….

nk1‐ 1]

nk2]

nk2+ 1] ….

nk2‐ 1]

8 16

using O3
tion

essors

Blackscholes

at NUST-SE

ion is data

arallelization

dups. The da

a set was 1

d these result

100

s

EECS, see

parallel in

n approach

ata sets for

10 million

ts.

101

Blackscholes MPI Timing Results on Varying Data Sets

Time (sec)

No. of processors

No. of processors

No. of processors

Time (sec)

Time (sec)

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

16384 Options for 100 using O3
Compiler optimization

0

1

2

3

4

1 2 4 8 16

64K Options for 100 using O3
Compiler optimization

0

100

200

300

400

500

600

1 2 4 8 16

10 million Options for 100 using O3
Compiler optimization

in

p

d

p

Speedup

Speedup

In the

ncreased num

arallelization

B

As w

ataset at 16

arallel versio

ese graphs,

mber of pro

n.

Blackschole

e see in the

processors,

on, cache loc

we see tha

ocessors. No

s MPI Speed

e above gra

we see that

cality has be

at the execu

w, we will

dup Results

aphs, the spe

the speedup

een improved

No. of pro

No. of proc

ution time

see the spee

on Varying

eedups are

p is about 18

d.

ocessors

cessors

has decreas

edups achiev

Data Sets

shown. On

8. The reason

102

sed as we

ved by the

maximum

n is that in

103

Blackscholes On GPUs

 GPU based approach is somewhat more complicated than MPI approach in

which we simply divide the options. In CUDA based approach, we have to take

much care of the efficient memory access and make sure that SIMD (Single

Instruction Multiple Data) operations are being performed in order to best utilize

CUDA threads.

 Basic Flow of Blackscholes for GPU parallelization approach is shown

below:

Figure 47: GPU based parallelization approach to Blackscholes

 In this flow diagram of Blackscholes, the compute intensive part is

highlighted by red colour. We are actually parallelizing this part.

Read Options

Allocate CPU and GPU memory

DataTransfer CPU to GPU

Configure and Launch GPU
KERNEL

GPU Compute Prices by B.S
formula

Copy results GPU to CPU

Deallocation

Save Prices

B

th

th

ca

in

k

ca

A

Blackscholes

As dis

hat the optio

his function.

In cud

all as; naïve

n the form

ernel, which

alculate one

Figure 4

A code snipp

s CUDA Im

scussed in d

on price calcu

da implemen

and optimiz

of a data s

h will spaw

option.

8: Options in

et of above m

GPU kern

plementatio

design of Bla

ulation is m

ntation, we

zed paralleliz

structure nam

wn cuda thre

n the form o

assuming x

mentioned a

nel calls Blac

ons

ackscholes th

ore time con

proposed tw

zation appro

med Option

eads, and ea

of Option Da

x, y option v

approach is s

ckScholesG

hat the analy

nsuming, so

wo implemen

oach. In naïv

nData. We s

ach thread w

ata Structure

variables

shown below

GPU device fu

ysis of the c

we need to

ntation whic

ve approach,

simply laun

will be resp

(Naïve appr

w:

unction

104

code shows

parallelize

ch we will

the data is

nch CUDA

ponsible to

roach)

105

 The BlackScholesGPU function does all the computation. In serial

approach, the main loop which iterates over N options. In cuda based parallel

approach we multiple threads operate on data in parallel.

Benchmark results

The benchmarks were conducted on CUDA Testbed at NUST-SEECS, see

appendix B4 for details of the machine.

GPU performance evaluation – naïve approach

 We will first evaluate our naïve implementation of Blackscholes. The data

sets for Blackscholes were varying in nature. The maximum data set was 10

million options. When the experiments were performed, we obtained these results

on our Cuda TestBed.

 In these graphs, we see that the speed up is being increased as we go on

increasing the number of options. The reason is that, on smaller data set, CPU also

takes less time, although not lesser than GPU. But as the number of options

increases the CPU time becomes greater and greater but GPU time does not

increase too much.

Speed up

Num Options

0
200
400
600
800
1000
1200
1400
1600
1800

4096 16384 65536 10000000

GPU Speedup over CPU

106

GPU Naïve Approach Problem

 In naïve approach (using structure of OptionData), when we analysed the

code, we came to know that using OptionData structure would rise the major issue

of poor memory accesses in parallelization on GPU which is called uncoalesced

approach.

 As we know that GPUs operate on SIMD (Single Instruction Multiple

Data) mechanism. If data is in multiple of 4-bytes e.g. (integers or float) and

present on consecutive memory locations, so that each thread should access them

in parallel manner, it is called coalesced memory access. To understand the

concept of Coalescing and Non-Coalescing consider the following figure.

In our naïve implementation, where data is in the form of structure of

options is the cause of non-coalescing. To understand the problem, consider the

following figure:

Figure 49: Memory Accesses in non-coalesced fashion

Figure 50: Memory Accesses in Perfectly Coalesced fashion

lo

th

G

O

pr

th

pr

ar

Figure 51:

Since

ocations, so

hen t1 and th

GPU Optimi

To a

OptionData s

roposed the

hem into one

Figu

In thi

rice are X a

rray of each

: Blackschol

the data is

threads acc

hen so on.

ized Approa

ddress the

structure ap

solution, in

e structure an

ure 52: Black

s figure, we

and Y. We h

individual v

les GPU naïv

not in mult

ess the data

ach And Re

problem o

pproach whi

which we u

nd then crea

kscholes GPU

e are assum

have discard

variable. Now

ve implemen

tiples of 4-b

a in sequenti

esults

of uncoales

ch was the

sed arrays o

ting array of

U Optimized

ming that the

ded the stru

w, when CU

ntation non-c

bytes and al

ial manner e

sced access

main cause

f variable se

f that structu

d implement

e variables t

ucture based

UDA threads

colaescing P

so not on c

e.g. t0 acces

es, we cha

e of the pro

eparately rath

ure.

tation strateg

o calculate

approach a

will schedu

107

Problem

onsecutive

ss first and

anged the

oblem. We

her putting

gy

the option

and created

ule, the will

op

ca

th

ca

th

perate in SIM

all Coalescin

Figure

Here w

he instructio

ausing unco

he graph belo

SIMD Ope
Instruction

Time (m

MD manner

ng.

e 53: Blacks

we see that

on. We can

alescing and

ow:

0

0.2

0.4

0.6

0.8

1

1.2

erations:
0 – Fetch X

msec)

, which will

choles GPU

cuda thread

see the dif

d optimized

4096

GPU Time

GPU Non

i

 result in eff

U Optimized

ds operate in

fference bet

approach w

16384

e (Coalesced) (m

Coalesced Tim

Num Options

ficient memo

Coalesced M

n parallel fas

ween naïve

with coalesce

65536

msec)

me (msec)

s

ory accesses

Memory Acc

shion which

approach w

ed memory a

108

s which we

cess

h executing

which was

accesses in

Time (m

Blackschol

0

50

100

150

msec)

les GPU naïv

100

GPU Time

GPU Non

Num

ve and Optim

000000

e (Coalesced) (m

Coalesced Tim

m Options

mized appro

msec)

me (msec)

ach compari

109

ison

110

Chapter 7

VISUALIZATION

FLUIDANIMATE

Properties of the demo:

1. Gravity Effect and Collision Demo
2. Num particles = 35K
3. External Acceleration is applied TOWARDS the gravity

Figure 54: Initial stage, Fluidanimate demo

111

Figure 55: After 53 frames, Fluidanimate demo

112

Figure 56: After 90 frames, Fluidanimate demo

This and more demos are uploaded on YouTube, refer to the links below.

FYP Demo Video – 01 Gravity Effect and Collision Demo
Num particles = 35K
External Acceleration is applied TOWARDS the gravity.
http://www.youtube.com/watch?v=2djzOTsTZRQ

FYP Demo Video – 02 Gravity Effect and Collision Demo
Num particles = 35K
External Acceleration is applied TOWARDS the gravity.
http://www.youtube.com/watch?v=wOcqX0dCjJQ

FYP Demo Video – 03 Fluid Initial Compression of empty space Demo
Num particles = 100K
External Acceleration is applied towards the gravity.
http://www.youtube.com/watch?v=7yZvWBDhUkE

113

OIL RESERVOIR SIMULATION

Properties of the demo:

Available on YouTube: http://www.youtube.com/watch?v=J6J0TO0Q_MQ

1. A reservoir was discretized into 50 x 8 grid points.
2. 4 oil producing wells were installed on grid point (10, 0), (11, 0), (20, 0)

and (21, 0) with 600, 400, 600, and 400 STB/D production rate.
3. On the basis of flow of fluids in the reservoir PDEs (Partial Differential

Equations) were formed.
4. The PDEs were converted into Linear Equations.
5. The system of Linear Equation was solved using Parallel CG for Pressure

of the reservoir.
6. The simulation ran for 400 time steps where Delta T (change in Time) for 5

days.

Figure 57: Initial stage, Oil Reservoir Simulation demo

114

Figure 58: After 350 days, Oil Reservoir Simulation demo

115

Figure 59: After 1125 days, Oil Reservoir Simulation demo

Figure 60: After 1975 days, Oil Reservoir Simulation demo

116

Chapter 8

CONCLUSION & FUTURE WORK

The aim of our proposed project was to implement some widely used

scientific simulation on state of the art High Performance Computing

Architectures. The three simulations were chosen as case study to achieve this

goal. We implemented these applications on Distributed Memory Architectures,

Shared Memory Architectures and Many Core GPUs. We designed and

implemented these simulations in an optimized way and proved the research

hypothesis; the algorithm design approach we followed can lead to best optimized

implementation. We proposed different possible implementation and discussed

their pros and cons and finally we proposed some best possible techniques to

overcome the flaws of existing non-scalable parallelization approaches. We

discussed the results of each parallelization technique, implemented and suggested

some improvement in existing algorithms which could lead to significant

performance increase. Finally, we demonstrated our application by providing

visualization to these applications. Although the visualizations were not rendered

on real time but the basic purpose of visualization was to demonstrate the concept

behind these simulation.

We have implemented these scientific applications on different HPC architectures,

in future the project can be taken a step further where nested parallelism can be

used i.e. MPI + OpenMP and the applications can also be ported to hybrid

architectures i.e. MPI + CUDA.

117

Chapter 7

References

1. Computational Science: Ensuring America’s Competitiveness. s.l. : President’s

Information Technology.

2. [Online] http://code.google.com/p/stanford-cs193g-

sp2010/wiki/GettingStartedWithCUDA.

3. parallel programming guide. nvidia.com. [Online]

developer.download.nvidia.com.

4. [Online] https://computing.llnl.gov/tutorials/mpi/.

5. http://openmp.org. [Online] http://openmp.org/wp/about-openmp/.

6. http://www.nvidia.com. [Online] http://www.nvidia.com.

7. CPU and GPU Co-processing for Sound - Master of Science in Computer

Science Thesis. s.l. : Norwegian University of Science and Technology, 2010.

8. Simulation of Free surface flows with SPH. J.J Monaghan, M.C Thompson

and K. Hourigan. Lake Tahoe : ASME Symposium on Computational Methods in

Fluid Dynamics, 1994.

9. Nvidia’s Particle-based Fluid Simulation by Simon Green. s.l. : Nvidia, 2008.

10. Ellero, Dr Marco. Particle Simulation Methods for Fluid Dynamics Lecture04

Monte Carlo Methods. s.l. : Institute of Aerodynamics, Technical University

Munich.

118

11. Matthias Müller, Barbara. Particle-Based Fluid-Fluid Interaction. .

12. Turgay Ertekin, J.H. Abou-Kassem & G.R. King. Basic Applied Reservoir

Simulation. 2001. ISBN:978-1-55563-089-8.

13. Development Of Reservoir Characterization Techniques And Production

Models For Exploiting Naturally Fractured Reservoirs. s.l. : The University of

Oklahoma Office of Research Administration.

14. Iterative/Direct method. Wikipedia. [Online]

http://en.wikipedia.org/wiki/Iterative_method.

15. Implementing parallel conjugate gradient on the EARTH multithreaded

architecture. Chen, Fei, Theobald, K.B. and Gao, G.R. s.l. : Cluster Computing,

IEEE International Conference on, 2004.

16. Math, ragujevac J. PARALLEL ALGORITHM FOR SOLVING THE BLACK-

SCHOLES EQUATION. 2005.

17. free_black_scholes_model. [Online]

http://www.optiontradingpedia.com/free_black_scholes_model.htm.

18. [Online]

http://www.strw.leidenuniv.nl/~deul/practicum/html/parallel11.php?node=6611.

19. Blocking vs. Non-blocking Communication under. [Online]

http://webcache.googleusercontent.com/search?q=cache:SlHxK1xSW-UJ:www.tu-

chemnitz.de/sfb393/Files/PS/sfb98-

18.ps.gz+MPI+blocking+communication+paper&cd=3&hl=en&ct=clnk&gl=pk&s

ource=www.google.com.pk.

20. [Online] http://beige.ucs.indiana.edu/B673/node153.html.

119

21. Seung-Jai Min, Ayon Basumallik, Rudolf Eigenmann. Optimizing OpenMP

Programs on Software Distributed Shared.

22. NAS Parallel Benchmarks. [Online]

http://www.nas.nasa.gov/Resources/Software/npb.html.

23. Distributed Memory Matrix-Vector Multiplication and Conjugate Gradient

Algorithms. John G. Lewis, Robert A. van de Geijn.

24. Evaluation of Cache Coherence Protocols on Multi-Core Systems with Linear

Workloads. Yong J. Jang, Won W. Ro. s.l. : ISECS International Colloquium on

Computing, Communication, Control, and Management, 2009 .

25. Intel. Sparse Matrix Storage Formats. http://software.intel.com/en-us/.

[Online] [Cited: 16 July 2011.]

http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-

us/cpp/win/mkl/refman/appendices/mkl_appA_SMSF.html.

26. Performance Evaluation of Multithreaded Sparse Matrix-Vector Multiplication

using OpenMP. Shengfei Liu1, Yunquan Zhang, Xiangzheng Sun, RongRong

Qiu. s.l. : 11th IEEE International Conference on High Performance Computing

and Communications, 2009.

27. Perfomance Models for Blocked Sparse Matrix-Vector Multiplication kernels .

Vasileios Karakasis, Georgios Goumas, Nectarios Koziris.

28. [Online] http://hpc.seecs.nust.edu.pk/hardware.php.

29. [Online] http://zone.ni.com/devzone/cda/tut/p/id/6097.

30. [Online]

http://webcache.googleusercontent.com/search?q=cache:SlHxK1xSW-UJ:www.tu-

chemnitz.de/sfb393/Files/PS/sfb98-

120

18.ps.gz+MPI+blocking+communication+paper&cd=3&hl=en&ct=clnk&gl=pk&s

ource=www.google.com.pk.

31. Yun Zhang, Mihai Burcea, Victor Cheng, Ron Ho and Michael Voss. An

Adaptive OpenMP Loop Scheduler for Hyperthreaded SMPs.

32. Gjermundsen, Aleksander. CPU and GPU Co-processing for Sound - Master

of Science in Computer Science Thesis. s.l. : Norwegian University of Science and

Technology, 2010.

121

Chapter 8

Appendix

A1

The Matrix Market (MM) exchange formats provide a simple mechanism to

facilitate the exchange of matrix data. The file formats were designed and adopted

for the Matrix Market, a NIST repository for test data for use in comparative

studies of algorithms for numerical linear algebra.

B1

 Xeon Intel Quad Core 5355
 100 Computing node - 200 CPU
 800 coreQuad Core 2.66 GHZ
 8.320 TeraFlops of Computing Power

B2

It is a cluster comprising of nine nodes connected through a 24 port Gigabit

Ethernet switch. Each node has 4 GB of main memory and contains an Intel Xeon

Quad-Core Processor (28). The processor is clocked at 2.4 GHz with a rated FSB

of 1066 MHz. The processor is a Multi-Chip Module (MCM) and is not a pure

quad core design. Each two cores share an L2 cache of 4MB making a total of 8

MB cache for the entire chip. Each core has a 32 KB L1 Data and Instruction cache

with 8-way set associatively. L2 cache is 16-way set associative and has 64-byte

line size.

B3

It is a cluster comprising four nodes connected through Myrinet Optical Fibre

Gigabit Ethernet and Fast Ethernet. The cluster contains 64 Ultra SPARC IV+

122

processors. Each node contains 16 processors (SMA). The cluster has total of

128GB memory installed on it. We performed our experiments on one node of the

cluster having 16 processors with shared memory.

B4

Before we go into the detail discussion of performance, we will discuss our

Deployment TestBed. We have conducted experiments on our test bed which we

call CUDA TestBed. It contains Intel’s Nehalem microarchitecture Quad-core

processor with capability of launching eight hardware threads. It also has eight GB

of system memory installed on it along with GTX 480 graphics card powered by

nVidia. NVidia is considered a leading GPU manufacturer in the market. Its GTX

480 is considered a giant in GPU computing. It has 480 CUDA cores with

processing clock of 1401 MHz.

