Implementation and Evaluation of Scientific
Simulations on High Performance Computing

Architectures

By
Bibrak Qamar (2007-NUST-BIT-106)
Jahanzeb Magbool (2007-NUST-BIT-118)

A project report submitted in partial fulfilment of

the requirement for the degree of

Bachelors of Information Technology

School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

(2011)



Approval Page

It is certified that the contents and form of project report entitled “Implementation
and Evaluation of Scientific Simulations on HPC Architectures” submitted by
Bibrak Qamar and Jahanzeb Magbool has been found satisfactory for the

requirement of the degree.

Advisors:

Mr. Mohsan Jameel

Dr. Leila Faiz Islamil

Mr. Akber Mehdi

Dr. Aamir Shafi




Dedication

Bibrak’s dedication:
Dedicated to Salman Taseer who showed me dream of equal Pakistan.
Jahanzeb’s dedication:

Dedicated to my beloved father Mr. Syed Magbool Hussain Hashmi. Perhaps |
could not become the one you want, but | would try to be as perfect as one can be

in what I've chosen.
With Love,

Syed Jahanzeb Magbool Hashmi



Acknowledgements

We thank Mr. Mohsan Jameel, Mr. Akbar Mehdi and Dr. Aamir Shafi from NUST
and Dr. Leila IsImail Faez from UAE University, for their kind support from idea
to design and development - for their precious time spent in the completion of the
project.

Moreover, we also thank Mr. Hammad Siddique and Mr. Umar Bultt, system
administrators at High Performance Computing Lab, SEECS and UAE University
for providing access to Clusters and resolving technical issues.



Table of Contents

CHAPTER 1: INTRODUCTION ....oooiiiiiiieie et 11

CHAPTER 2: HIGH PERFORMANCE COMPUTING ARCHITECTURES....13

HARDWIARE ...ttt s neae e 13
Shared Memory ArChItECIUIES...........cviiiiiirireeiese e 13
Distributed Memory ArChiteCIUIES..........cevveeeieiiece e 15
Hybrid Distributed-Shared Memory ArchiteCtures............cccooeveveiniiiiiniennns 16
General Purpose Graphics Processing Units (GPGPUS)..........ccccooeveieiienne. 17

SOFTWARE ..ottt 18
Message Passing INTEIrfaCe..........coviiriiiriiesese e 18
OPENMP ..o 20
CUDA bbbttt 22

CHAPTER 3: BACKGROUND AND LITERATURE REVIEW...........cccceurnnee. 24

FLUIDANIMATE ...ttt 24
Fluid Particle Simulation Methods............cccoiriiieiicneeeee e 24
FIUIdanimate PRASES .........ccviiiiiiiise e 25
Force Computation MethodolOgIesS ..........cccoreierieiiieierere e 26

OIL RESERVOIR SIMULATION ..ottt 27
Reservoir SIMulation PrOCESS...........cciiiiiiiiiiiisenie s 27
SLE SOIVEIS ... 28
Why Conjugate Gradient Method.............cccoviiiiiiiicicceece e 31
The Conjugate Gradient AIGOrthM..........ccociiiiiiiii e 32

BLACKSCHOLES......c.o ittt 32
Blackscholes AIQOrthm ........c.ooiiiiii s 32

CHAPTER 4: CASE STUDY I: FLUIDANIMATE .....cocoiiviiee e 33



FLUIDANIMATE. ... s 33

Fluidanimate On Distribute Memory CIUSEEr ..........cccooiieieneieieieeece 33
Fluidanimate On Shared Memory ArchiteCtures..........cccooeveeveveiecvesieeiene 43
Fluidanimate On Graphics Processing Units (GPUS) ........ccccocereieieieiieene 51
CHAPTER 5: CASE STUDY II: OIL RESERVOIR SIMULATION ................. 57
OIL RESERVOIR SIMULATION ..ottt 57
Oil Reservoir Simulation on Distributed Memory CIUSters...........cccceevervennne. 59

Oil Reservoir Simulation on Shared Memory Processors...........ccocceeeverveene. 80

Oil Reservoir SIMulation 0N GPUS ..o 90
CHAPTER 6: CASE STUDY 111: BLACKSCHOLES.........ccoi i, 97
BLACKSCHOLES...... ..ottt 97
Blackscholes On Distribute Memory CIUSErS ........ccccovvevieieieeie e 97
BIackscholes ONn GPUS........c.ooiiiiiiii e 103
CHAPTER 7: VISUALIZATION ..ottt 110
FLUIDANIMATE ...ttt 110
OIL RESERVOIR SIMULATION ..ottt se e 113
CHAPTER 8: CONCLUSION & FUTURE WORK ......cccoiiiiierieicee e 116
RETEIEINCES ...t 117
N o] 1=] T [ TSRS S PRSP PR PRP 121
AL bbb sre e sare s 121

B L bbbttt 121
B et nnes 121
2 SRR 121
B bbbt 122



List of Tables



LIST OF FIGURES

Figure 1: Shared Memory (UMA) ... 14
Figure 2: Shared Memory (NUMA) ... 15
Figure 3: Distributed Memory ArchiteCture ..........ccoocvvveveiienieiesee e 16
Figure 4: Hybrid Distributed Shared Memory ArchiteCture...........cccocevvveininnnnne 17
Figure 5: CPU and nVidia GPU basic architeCture ............c.ccocvereneneneicieiee 18
Figure 6: MPI Inter Process COmMMUNICALION ........ccovvrirrienieniieiesesee e 19
Figure 7: MPI program FIOW ... 20
Figure 8: Fork and JOin MOdEl ..o 21
Figure 9: Scalar vs. SIMD OPErationS..........cccerveriereniieniesieesieeieesesie e siesee s 22
Figure 10: CUDA Process fIOW ..........ccoiiiiiiiiiieie e 23
Figure 11: Reservoir Simulation PrOCESS..........cccciireieriinienienieneeeeeee e 27
Figure 12: 32x32 Matrix representing a 2D reservoir in 1 Phase..........cccccoeevenenne. 29
Figure 13: Conjugate Gradient Method Algorithm ..o 31
Figure 14: Fluidanimate Parallel FIOW ............ccooiiiiiiiiiieeceee 34
Figure 15: Particles WOorld Grid..........cocoiiiiiiiiiience s 35
Figure 16: Particles WOorld Grid — 3D .......ccociviiiiiiiieiee e 35
Figure 17: FluidAnimate MP1 work Division among proCessors. ..........cccvevevenen. 36
Figure 18: FluidAnimate MPI Communication of Ghost Cells.............ccccevvennne. 37
Figure 19: Fluidanimate OpenMP Optimized implementation Design.................. 48
Figure 20: Fluidanimate CUDA Program FIOW............cccooeiiiiniieiiiccecee 52
Figure 21: Fluidanimate CUDA DESIGN ......covvrieriiriieie s 52
Figure 22: Architecture Diagram of Oil Reservoir Simulator .............c.cccceevennee. 58
Figure 23: Sample matrix A (SPArSity VIEW). ......cccriiirireninerie e 60
Figure 24: Matrix A decomposed into horizontal blocks among 4 processes........ 60



Figure 25: Test for Load BalanCe ...........ccocvviiiiiiiiiiie e 61
Figure 26: Matrix Vector Multiplication — NaIVe............cccooeiiniiciiiccceee 62
Figure 27: Matrix A further divided into vertical blocks...........cccccvevevieiciienenne. 68
Figure 28: Communication iN @ NG .......coouiiiininiieeee e 69
Figure 29: StEP L MV M ... 70
Figure 30: StEP 2 MV M ..ottt 71
Figure 31: StEP 3 MV MM ..o 71
Figure 32: StEP 4 MV M ... 72
Figure 33: Row Partition [left] and Block Partition [right] ........c.ccceviiiiieincnnn. 80
Figure 34: Representation of matrix A in CSR format...........cccocevevvivininininnnn. 81

Figure 35:

How the different blocking storage formats split the input matrix into

0] (0o &SSP 81
Figure 36: Simple Sparse MVM in CSR format...........cccocvvviinienininienienceeee 82
Figure 37: MVVM with Block Partitioning of matriX A........c.ccoevevvive e, 86

Figure 38:

32x32 Matrix representing a 2D reservoir in 1 Phase. Here offset from

central diagonal 1S NX = 4 ...o.oiiii e 91
Figure 39: CUDA MVM KEIMEL........coioiiiiiiiiiiieeseee e 92
Figure 40: VVVM and Intra BIOCK reduction...........c.cccueveveiieieciese e 93
Figure 41: Graphical view of intra block reduction. ............ccccoeieiiiiiciiicieee 93
Figure 42: Global reduction, among 4 thread blocks...........ccccovviviiiniinciin, 94
Figure 43: VV AQGITION ......oouiiiiiiici e 95
Figure 44: Percentage of time spent on different operations..........c.ccccveviinnnnnnn 95
Figure 45: Basic Flow of Blackscholes in distribute memory..........ccccocevvvvenennne. 98
Figure 47: MPI based parallelization approach to Blackscholes..............cc.c........ 100
Figure 47: GPU based parallelization approach to Blackscholes........................ 103



Figure 48: Options in the form of Option Data Structure (Naive approach)

assuming
Figure 50

Figure 50

Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:

Figure 60:

X, Y OPtION VariableS.......ccoiiiiiiiiee e 104
: Memory Accesses in non-coalesced fashion...........ccccccoeveiiiiiinnne 106
: Memory Accesses in Perfectly Coalesced fashion............cccceevnenns 106
Blackscholes GPU naive implementation non-colaescing Problem ... 107
Blackscholes GPU Optimized implementation strategy ..................... 107
Blackscholes GPU Optimized Coalesced Memory ACCEeSS ................ 108
Initial stage, Fluidanimate demo ..........ccocvevevreiecieie e 110
After 53 frames, Fluidanimate demo.........cccceevcviiie v, 111
After 90 frames, Fluidanimate demo...........cccoovviiiiiiniiiiiniecn, 112
Initial stage, Oil Reservoir Simulation demo............cccccevveviiiieinennen, 113
After 350 days, Oil Reservoir Simulation demo ...........ccccccoeveveiiennne 114
After 1125 days, Oil Reservoir Simulation demo..........c.cccoceveverivnnnne 115
After 1975 days, Oil Reservoir Simulation demo............cccccceevevvvennns 115

10



Chapter 1

INTRODUCTION

Computational Science is field of study in which computers are used to solve
challenging scientific problems. Real or imaginary world scientific problems are
converted into mathematical models and solved using numerical analysis
techniques with the help of high performance computing famously called scientific

computing.

As computer technology is advancing rapidly, computers are becoming
increasingly powerful and increasingly available, and with the advancement of
mathematics and other basic sciences, the use of robust computer simulation and
modelling techniques are being recognized as a key to the economic growth and

scientific advancement.

Computational science now constitutes what is famously called the third
pillar of science together with theory and physical experimentation. The 2005
Report to the President of US, Computational Science: Ensuring America's
Competitiveness, states that "the most scientifically important and economically
promising research frontiers in the 21st century will be conquered by those most
skilled with advanced computing technologies and computational science

applications.” (1)

Scientific simulations are typically compute intensive in nature. It takes
week or days to obtain result if ordinary single processor system is used. For
example, in predicting weather the amount of computation is so large that it could
take ordinary computer weeks if not months. To make a simulation more feasible

the use of High Performance Computing (HPC) is essential.

HPC is the use of supercomputers and complex algorithms to do parallel
computing i.e. to divide large problems into smaller ones, distribute them among

computers so as to solve them simultaneously. In this project we have

11



implemented some widely used scientific simulations namely fluid dynamics (fluid
particles simulation), oil reservoir simulation and Black-Scoles (predicting price of
option — finance). The aim of the project is to analyze the performance
characteristics of compute intensive scientific applications on leading HPC
architectures, namely distributed memory (MPI), shared memory (threads or
cores) and GPUs. We have examined performance bottleneck on these
architectures, how to overcome these bottlenecks and what are the optimized ways

of programming these applications on HPC architectures.

In this document, after introduction we will be discussing High
Performance Computing Architectures in both hardware and software perspective.
Then we will describe the literature reviews of our proposed case studies. After
that we will propose the design and implementation of these applications on
different HPC architectures along with discussion on results. Finally we will show

some visualization of the simulation and conclude our work.

12



Chapter 2

HIGH PERFORMANCE COMPUTING
ARCHITECTURES

This chapter begins with an introduction to High Performance Computing
(HPC) architectures. We will also discuss how the emergence of these
architectures is affecting the mainstream hardware and software industry. Later, we
will discuss two major types of HPC architectures: Shared Memory Architectures
(SMA) and Distributed Memory Architectures (DMA). The emergence of
multicore technology has also become the root cause for emergence of General
Purpose Graphics Processing Units (GPGPUSs) architectures. Moreover, recently
the focus is on hybrid programming models like combining SMAs with DMAs
along with GPUs to achieve the performance at its peak. Discussion has been
made, about our test application of variant domains for this project, in the context
of SMAs, DMAs and GPU accelerators.

HARDWARE

In this chapter our focus will be on High Performance Computing
Architectures. The widely used HPC architectures are:

I.  Shared Memory

Il.  Distributed Memory : clusters
I1l.  Hybrid
IV. GPUs

Shared Memory Architectures

Shared memory architectures (SMA) vary widely, but generally have in
common the ability for all processors to access all memory as global address space.

Multiple processors can operate independently but share the same memory

13



resource. In SMAs the changes in a memory location made by one processor are
visible to all other processors. SMAs can be further divided into two major classes

based upon memory access times

1. Uniform Memory Access (UMA)
2. Non Uniform Memory Access (NUMA)

In UMA, the main physical memory is accessed by all the processors. These
processors exhibit cache coherency which means if one of the processors updates a
location which is in shared memory, then rest of the processors know about the

update.

Figure 1: Shared Memory (UMA)

Source [https://computing.linl.gov/tutorials]

The NUMA is often made by physically linking two or more symmetric
multiprocessors. In this case, all the processors do not necessarily have equal

access time to all the memories.

14



Bus Interconnect

Figure 2: Shared Memory (NUMA)

Source [https://computing.linl.gov/tutorials]

One of the major advantages of shared memory architectures is that global
address space provided by it gives a user friendly programming approach to

memory and the sharing of data between tasks is both fast and uniform.

On the other hand, the main disadvantage of SMAs is scalability between
memory and CPUs. If we add more CPUs then it can geometrically increase the
traffic on the shared memory CPU path. The programmer’s job becomes tough in
shared memory environment because of synchronization constructs to ensure the

consistent global memory access.

Distributed Memory Architectures

In Distributed Memory Architectures (DMAS), each processor has its own
local memory. The memory addresses in one processor do not map to another
processor, so there is no concept of global address space shared by all the
processors. Distributed Memory systems require a communication network to
connect inter processor memory. Each processor operated independently on its
own local memory. The changes made by a processor to its local memory do not
apply to the memory of other processors. In DMAs whenever a processor need to
access data, which is present in the memory space of another processor’s memory,
a communication across the network is needed. It becomes the task of programmer

to explicitly define how and when data is communicated. The synchronization of

15



data among processors is also the programmer’s responsibility. The network fabric
which is used to transfer data between different processors in DMA can vary in

nature, but it can be as simple as Ethernet.

Figure 3: Distributed Memory Architecture

Source [https://computing.linl.gov/tutorials]

The major advantage of using DMASs is memory scalability with number of
processors. If we go on increasing number of processors then the size of memory
increases. The cache coherency overhead is removed as each processor can rapidly

access its own memory without any interference.

On the other hand, the main problem with DMA is that programmer is
responsible of many of the details associated with the data communication between
processors. Existing data structures based on the global address space need to be

mapped to this memory organization.

Hybrid Distributed-Shared Memory Architectures

A better approach in Parallel Computer Memory Architectures is to employ
both shared and distributed memory architecture. This is called Hybrid Distributed-
Shared Memory Architectures (DSMA).

In HDSMA, the shared memory component is usually a cache coherent

symmetric multiprocessor (SMP) machine which means the processors on that

16



machine can address that machine’s memory as global. The distributed memory
component is the network of multiple SMPs. In this case, SMPs know only about
their own memory not the memory of other SMPs. Therefore, a communication
through network is required to transfer data from one SMP to another SMP
machine on the network. From last few years, the data from top500.0rg showed

that HDSMAs have been prevailing.

Figure 4: Hybrid Distributed Shared Memory Architecture

Source [https://computing.linl.gov/tutorials]

General Purpose Graphics Processing Units (GPGPUSs)

Few years back, GPUs were considered as specialized piece of hardware
that is designed for maximum performance in graphics applications. Today, GPUs
are considered as massively parallel many core processors easily available and
fully programmable. In GPU market nVidia is the leading manufacturer that
manufactures General Purpose GPU (GPGPU) i.e. Tesla, GeForce and Quadro
series. The nVidia’s proprietary programming model for GPU programming is
Compute Unified Device Architecture (CUDA). We will be discussing CUDA
more briefly in our programming model section. The basis for using GPUs in

parallel computing is (2):

e High throughput computation
e High bandwidth memory
e High availability to all

17



More specifically, GPUs are well suited to address problems that can be
expressed as data parallel computations. In GPUs, same program is executed on

many data elements in parallel with high arithmetic intensity (3).

Control ALU ALU

ALU ALU

CPU GPU

Figure 5: CPU and nVidia GPU basic architecture

SOFTWARE

Message Passing Interface

Message Passing Interface (MPI) is API specification used to program
compute Clusters by doing message passing between processors. MPI is a de-facto
standard of the industry and HPC community. The idea is to exchange data which
is stored in the address space of another process by means of simple routines, like

send and receive, see figure 6.

18



Machine A

Machine B

task 0

network

Figure 6: MPI Inter Process Communication

Source [https://computing.linl.gov/tutorials/mpi/]

The goal of the Message Passing Interface is to provide portability,
efficiency and flexibility (4). There is no need to modify the source code when
shifting to different platforms which support MPI and communication logic is

decoupled from the program.

Parallelism is explicit, requiring the programmer to indentify and exploit

parallelism in the algorithm by using MPI routines.

The flow is a MPI program is shown in figure 7. The program need the mpi
header file (mpi.h or mpif.h), to initialize the environment MPI_Initialize() is
called and to terminate MPI_Finalize() is called, in between is the parallel region

where the programmer can use MPI routines.

19



Declarations, prototypes, efc.

Program Begins

Serial code

Parallel code ends

Serial code

Program Ends

Figure 7: MPI program flow

Source [https://computing.lIinl.gov/tutorials/mpi/]

OpenMP

OpenMP (5) (Open Multi-Processing) is an API for programming shared
memory machines. OpenMP is a portable, scalable model that gives programmers
a simple and flexible interface for developing parallel applications for platforms
ranging from the desktop to the supercomputer.

20



OpenMP provides set of compiler pragmas, directives, function calls and
environment variables that explicitly instruct the compiler where to use

parallelism.

OpenMP is based on fork and join model, the program begins as single
main thread called the master thread. The master thread runs sequentially till
other threads are spawned with the help of the fork operation. The program starts

exploiting parallelism as the team works in parallel as shown in figure 8.
Fork: the master thread creates a team of parallel threads.

Join: When the team threads complete the statements in the parallel region

construct, they synchronize and terminate, leaving only the master thread

J J

r— © m— o —
master A I
thread N N
{ parallel region } { parallel region }

Figure 8: Fork and Join model

Source [https://computing.linl.gov/tutorials/openMP/]

21



CUDA

In recent years there is a paradigm change observed with the advent of
Graphics Processing Units (GPU) for general purpose computing. NVIDIA CUDA
(Compute Unified Device Architecture) is a parallel computing architecture
developed by NVIDIA (6). Using CUDA the GPUs are accessible to programmer

for computation like CPU, that’s why GPUs are now being called “co-processors”

(7).

CUDA exploits Data Parallelism, where many threads perform the same
operation on different data concurrently, also called SIMD (Single Instruction

Multiple Data) illustrated in figure 9.

(a) Scalar Operaticn (b) SIMD Operaticn
+ B = &
Aﬂ' 1] o Au Eg Cn
Al + LB = & A, B, G
+ =
Al + LBl = G Ay B, C,
A B, Cy
Al * | Bl = [

Figure 9: Scalar vs. SIMD Operations

Source [http://www.kernel.org/]

22



Main
Memory 1

Copy processing data

CPU

4

Memory

Instruct the processing)

2

Copy the result

for GPU

GPU
(GeForce 8800)

-
Execute parallel
in each core

Processing flow
on CUDA

Figure 10: CUDA process flow

Source [http://en.wikipedia.org/wiki/CUDA]

A simple CUDA programs has the following flow, please refer to the figure 10

A w b e

Copy data from main memory to GPU memory.
CPU instructs the process to GPU.
GPU execute parallel in each core.

Copy the result from GPU memory to main memory.

23



Chapter 3

BACKGROUND AND LITERATURE REVIEW

This chapter discusses the existing tools and technologies that are directly
or indirectly related to our domain. Main focus will be on our proposed simulations
(Fluidanimate, Oil Reservoir Simulation and Blackscholes,) and their existing
implementations and working of their algorithms. We will be discussing each of

the simulation one by one in depth.

FLUIDANIMATE

Due to widely growing industry of animation and computer games, the
significance of fluid simulation has drastically increased. Different algorithms and
techniques are being used to animate the fluid so that a real impression can be
achieved. Fluid animate is a particle physics simulation used to animate flow of
incompressible fluids using SPH (Smoothed Particle Hydrodynamics) (8) method.
This treats fluid as small particles having properties like pressure, velocity,
acceleration, density and initial position vector in space. It is an Intel RMS
application from PARSEC benchmark. SPH method uses particles to model the
state of the fluid at discrete locations and interpolates intermediate values. The
main advantage of SPH is automatic conservation of mass due to a constant

number of particles.

Fluid Particle Simulation Methods

There are various numerical approaches that are being used to simulate

fluid dynamics. Some widely used numerical approaches are mentioned below (9):
Grid Based (Eulerian)

o Stable Fluids
o Particle Level Set

24



Particle Based (Lagrangian)
0 SPH (Smoothed Particle Hydrodynamics)
0 MPS (Moving-Particle Semi-Imlicit)

Height Field
0 FFT (Tessendorf)
0 Wave Propagation — e.g. Kass and Miller
o0 Direct Simulation (Monte Carlo) (10)
0 Gas dynamics Flows

In this implementation of fluidanimate problem, we would prefer Particle based

SPH technique due to several advantages (11).

Conservation of Mass is trivial.

Easy to track free surface.

Only performs computation where necessary.
Not necessarily constrained to a finite grid.

Fluidanimate Phases

Below are the five major steps that fluidanimate algorithm performs in

each time step.

Initialize Simulation: This is the first and foremost step involved in fluid
animate. In this phase, particle data is read from file and stored in data
structures associated to particles, cells and grids.

Rebuild Grid: When the particle data is read in the initialization phase, then
a rebuild grid phase starts. In this phase, particles are arranged in a logical
data structure named cells and these cells further constitute a 3D grid.

Compute densities and forces: The actual compute intensive work is
performed in this phase. In this phase, Particle-Particle interactions are
calculated which is done in two sub phases. In first phase, the densities of
the particles residing in Grid are calculated. The neighbour particles of each
particle are calculated and then their effect is computed. When the densities
of a particle and its neighbours are updated, then the second phase of force
computation begins. In this sub phase, same steps are performed as

25



compute densities and the force on each particle and its neighbours is
calculated.

e Process Collisions: In this phase a particle-particle and particle to scene
geometry collisions are calculated.

e Advance Particles: Finally, due to updated densities and forces along with
the collision of particles, the positions of these particles are updated. The
particles move in the specified direction in the grid they reside.

Fluidanimate was implemented in PARSEC benchmark on shared memory
architectures using pthread. The SPH solver written by PARSEC uses localized
kernel, due to which a particle residing in a cell can be influenced by particles
residing at maximum of its neighbour cells.

Force Computation Methodologies

There are two approaches which can be used to solve Fluidanimate problem

e Tree Based Approach using Barnes Hut Algorithm

e Sub Grid Partition Based Approach by dividing large Grid into smaller sub
grids.

Due to localized effect of particles, we will use second approach in
fluidanimate implementation because no far_field force is being applied on

particles, only nearest_neighbour_force is to be calculated.

26



OIL RESERVOIR SIMULATION

Reservoir simulation combines use of mathematics, physics and computer
programming to develop a tool for predicting hydrocarbon-reservoir performance
under various operating conditions (12). In hydrocarbon-recovery projects capital
investment of hundreds of millions is at stack, so the risk associated with the
selected development plan must be assessed and minimized, therefore, need for

reservoir simulation arises.

The use of reservoir simulation is getting pivotal importance in the
petroleum industry. Such pervasive acceptance can be attributed to advances in the
computing facilities as discussed in chapter 1, advances in reservoir

characterization technique (13).

Reservoir Simulation Process

The reservoir simulation process is shown in figure 11 which starts with the
formation phase in which information about the reservoir’s geological properties is
gathers which is then converted into mathematical model in the form of Partial
Differential Equations (PDEs) with appropriate initial and boundary conditions.
These equations represent important physical processes taking place in the
reservoir for example, the flow of fluids partitioned into as many as three phases
(oil, water, gas), and mass transfer between the various phases, effect of viscosity
etc (12). PDEs obtained are then converted into set of Linear Algebraic Equations
or System of Linear Equations (SLEs) and are solved for the unknowns i.e.

pressure or saturation.

Linear Equations Solve
Formation PDEs
[Ax=b] [Ax=Db]

Figure 11: Reservoir Simulation Process

27

Result

[ Pressure,
Saturation ]



SLE Solvers

The SLEs can be solved using two kinds of methods, below are few examples

of each.

I.  Direct Methods:

a. Gauss Elimination

b. Cholesky decomposition
Il.  Iterative Methods:

a. Gauss Seidel

b. Jacobi Method

c. Conjugate Gradient

The most time consuming part in the reservoir simulation is the solution of
SLEs and this is what we aim to target in this project. For large simulations the
number of SLEs increases consequently increasing the size of the Matrix A which
represents the SLEs. In Oil Reservoir Simulation the matrix A is Symmetric
Positive Definite Matrix illustrated in figure 12. Notice that the matrix in figure 12
is a Sparse Matrix — many zero entries. Typically Matrix formed from these PDEs

is sparse symmetric positive definite matrices.

A matrix A is positive-definite if, for every nonzero vector X,

X' AX >0

A symmetric matrix is a square matrix that is equal to its transpose,

A=AT

28



[=:]
=
o
[
[==]
I
L
L,
I
[
L,
M
A
[¥]
P
M
,
[
L.
(=]
L,

11112(13]14]15|16|17]|1

P
=
=|c|m|r
m
=

]
m
=

Il

Figure 12: 32x32 Matrix representing a 2D reservoir in 1 Phase

[Figure from Ashraful and Tazrian UAEU HPC Summer School 2010 report]

Direct methods

Direct methods attempt to solve the problem by a finite sequence of
operations. In the absence of rounding errors, direct methods would deliver an

exact solution (14).

The Direct Methods solve the system in fix number of steps. Direct
methods are not suitable for large sparse matrices since number of non zero

increases which increases computational complexity.

29




Iterative methods

Iterative method is a mathematical procedure that generates a sequence of
improving approximate solutions for a class of problems. A specific
implementation of an iterative method, including the termination criteria, is an

algorithm of the iterative method (14).

The iterative methods are faster than the direct methods as the aim is to
approximate the solution which depends on the termination criteria as how much

precise results we need.

The iterative methods are faster than the direct methods as the aim is to
approximate the solution which depends on the termination criteria as how much

precise results we need.

30



Why Conjugate Gradient Method

Considering this problem we chose to use an iterative method to solve the
SLEs, we chose the Conjugate Gradient Method (CG) figure 13, because of it

being highly optimized for symmetric positive definite matrices and being an

iterative method it can be applied to sparse systems to exploit the sparsity,

otherwise such systems are too large to be handled by direct methods.

3
2)
3)
4)
3)

6)
7)
8)
9)
10)
11)
12)

13)
14)
15)
16)

g — 0

ro:=d — Axg

po =170

k=0

Kmaz ;= maximum number of it-

erations to be done

if & < kmax then perform 8 to 16
if k = kmazx then exit

ca]culat_Ie v = Api

ag 1= %};—r"

Tht) = T + QPR

Thal = Tk — QU

if rp41 is sufficiently small then go
to 14 i:;[_;!d r'if

B i= ——k;i-,.;]

Pk+1 = Tk+1 + Bipr
k:=k+1

result = xp4q

Figure 13: Conjugate Gradient Method Algorithm

31



The Conjugate Gradient Algorithm

Within CG the most compute intensive operation is the Matrix Vector
Multiplication (line no. 8 in figure 13) which is O(n?. From the memory and
communication point of view the update of vector P at the end of each iteration
(line no. 14 in figure 13) in distributed environments is time consuming as P needs
to be shared by all processes (15). In the process of optimization these factors will

be considered vital.

BLACKSCHOLES

The Blackscholes application is an Intel RMS benchmark used to calculate
the prices for a portfolio of European options by using Black-Scholes partial
differential equation. Black-Scholes formula is used in computing the value of an
option. In some cases, e.g. European options, it gives exact solutions, but for
others, more complex, numerical attempts are made in order to obtain an
approximation of the solutions. Several numerical methods are used for solving the
Black-Scholes equation, e.g. Finite element method (16) and Monte Carlo Option
Model.

Blackscholes Algorithm

Blackscholes formula is widely used method for calculating the option
prices for a given portfolio of options. There are several assumptions underlying
the Blackscholes model of calculating options pricing (17). The Blackscholes
model also assumes stocks move in a manner referred to as a random walk; at any
given moment, they are as likely to move up as they are to move down. These
assumptions are combined with the principle that the options pricing should

provide no immediate gains to either seller or buyer.

32



Chapter 4

CASE STUDY I: FLUIDANIMATE

This chapter includes all the relevant details of the design and analysis of
the system, which comprises of main modules that will be implemented and
optimized. We will also discuss the significance of the approach followed in

parallelizing.

FLUIDANIMATE

By performing the analysis of fluidanimate algorithm and profiling the
serial implementation of fluidanimate provided in PARSEC benchmark, we
concluded that its parallelization is somewhat more difficult due to 3D particle-
particle interaction and high data dependency. The algorithm follow particle-in-cell
approach, which means the particles reside in Cells and these Cells then combine
and form Grid. The challenge was to divide the Grid or cells into smaller chunks in

such a way that work load must be balanced.

Fluidanimate On Distribute Memory Cluster

The parallelization of fluidanimate on DMC (Distribute Memory Cluster)
requires much effort. The input file for fluidanimate contains particles attributes
e.g. density, viscosity and external acceleration. The data is read from the files and
then Cells are formed which contain particles. This happens when simulation is
initialized, after that the effect of other particles like force and density are
calculated on current particles. Then, based on effect of these affects the particles

are moved to new location in 3D grid.

33



Fluidanimate programe flow for DMCs

A basic flow of fluidanimate is shown in the figure 14 below; the most

compute intensive part of the code is highlighted with red colour.

InitSim

RebuildGrid

Compute Forces
& Densities

Process Collision

Advance
Particles

Save frame
output

Figure 14: Fluidanimate Parallel Flow

The profiling of Fluidanimate serial implementation resulted that the most
compute intensive function is ComputeForcesDensities which needs to be
parallelized. We will discuss the details of parallel design of fluidanimate later in

this chapter.

34



Fluidanimate design for distribute memory cluster

As the particles reside in the cells which are part of the grid. So, first of all
we need to understand the fluidanimate design. Consider the following hierarchy.

.0 *
G1 Cell0 || Cell1
* . * o

. o @
Cell 3 Cell 4
s @ s *

LN L [ ] .
Cell6 Cell 7
. .

Figure 16: Particles World Grid — 3D Figure 15: Particles World Grid

Key: o= Ghost Cells - Boundary

°* o o o Particle
GO, G1, G2, G3 Sub Grids — Partition of World Grid

In fluidanimate design, above figures illustrate that world Grid is divided
into further 3D Sub Grids. Each Sub Grid contains multiple Cells, and each Cell
further contains actual fluid particles. The particles in a cell can only be influenced
by the particles residing in the neighbouring cells. The effect does not travel more
than one cell and no far_force is being applied on particles; that is the reason why
we stick to the Grid based partition approach rather than tree based partition
approach.

35



Fluidanimate mpi based implementation for DMCs

As discussed in the design of fluidanimate that the major task in
parallelization of fluidanimate is to divide World Grid into sub grids and also the
boundary cells so that work load should be balanced. We discussed in design that

how we partition the World Grid of cells into equal chunks of Sub Grids.

In MPI based parallelization, we assign each of the Sub Grid to
corresponding processor, and each processor will be responsible for calculation of
particle residing in its own sub grid. The challenge here is that after the work
division amaong processors the data resides in distributed memory which means
that the particle data of one processor is not visible to other processor’s cell. The
only way to share the data is to communicate the required data over the network.
The processors in MPI implementation are arranged in Cartesian Topology order,
where they will be sharing their boundary cells with their immediate neighbours

arranged in Cartesian Topology (18).

PO
J P1

~ P3

Figure 17: FluidAnimate MPI work Division among processors

36



In figure 17, we see that there were four processors available, so we divided
our World Grid into 4-Sub Grids and assigned each of the Sub Grid to
corresponding processor. The Red boundaries represent Ghost Cells also called

Boundary Cells that need to be communicated over the network.

A code snippet of Grid distribution among processors is shown below.

for(int i = 0; i < NUM GRIDS? ++1i) {
for(int iz = grids[i].sz; iz < grids[i].ez; ++iz)
for(int iv = grids[i].sy; iv < grids[i].ey; ++iv)
for(int ix = grids[i].sx; ix < grids[i].ex; ++ix)
{
// Distribute Grids Data to processors....

// each grids[i] will be sent to ith processor

When the data is distributed among the processors in cartesian topology
manner. Then each processor find its neighbour processors through cartesian rank
and communicate the list of ghost cells. To understand the communication pattern

followed by processors, see the communication matrix shown in figure 18 below:

~n 1 A 1 =9
€18 [ — 334
e i - i |

e S J e~ o~
Gl [ | (=7 0 =
e NS ] S 1 i v

[ | C
[ | C
1 1

Figure 18: FluidAnimate MPI Communication of Ghost Cells

37



Each processor will calculate its neighbour processors and then start
communicating ghost cell lists. For example, in this case, there were nine sub grids
assigned to nine processors. Each of them will calculate its peer processors e.g. PO
containing GO will receive from none in x-direction but will send its boundary cell
lists to adjacent processor P1 which contains G1 and same happens with P1, but
here P1 will receive from its left neighbour and send to right neighbour P2.

Similarly, the same pattern happens in y-direction (in 2-D).

When the communication of ghost cells is done, then each processor will
compute effect of particles on its own cells as well as neighbour cells in the form
of forces and densities. After that, when current frame finishes and next frame
starts, then in RebuildGrid the communication of ghost cells happens again. These
ghost cells are now updated in previous frame. RebuildGrid is responsible for
placement of particles in cells based on their updated attributes. One thing should
be kept in mind that all the communications that are happening are Blocking

Communications (19).

Fluidanimate MPI performance evaluation with blocking communication

The benchmarks were conducted on Barq cluster at NUST-SEECS, see

appendix B2 for details of the machine.

The data sets for Fluidanimate were varying in nature. The maximum data
set was 0.5 million particles. When the experiments were performed, we obtained

these results.

38



35,000 particles for 20 Iterations using 300,000 particles for 20

03 Compiler optimization Iterations using O3 Compiler
2.0000 7.0000
6.0000 —
1.5000 5.0000
Speed Ups 4.0000
1.0000 +—
3.0000
0.5000 2.0000
1.0000 +—
0.0000 T T T T 1 || 0.0000 T T T T )
1 2 4 8 16 1 2 4 8 16
500,000 particles for 20 Iterations No. of processors

using O3 Compiler optimization

4.0000
3.5000 —

3.0000

2.5000
Speed Ups | 2.0000
1.5000

1.0000 +—

0.5000

0.0000 T T T T
1 2 4 8 16

No. of processors
Fluidanimate MPI Speed up Results on Varying Data Sets

As we see that we achieve speedups as we increase the number of
processors. On smallest dataset of 35,000 particles of fluid, we see irregular
behaviour. The reason is that the computation to communication ratio decreases as
we increase the processors. Fluidanimate MPI design consists of necessary
communications which tend to decrease the performance on small datasets.
Although the speedup gain seems acceptable on largest data set of 0.5 million
particles but we can’t consider it a good speedup because on 16 processors, the

speedup gain is about 3.7 which is not enough.

39



Fluidanimate MPI optimization

As we analysed the code, we concluded that we can overcome the blocking
communication by using non-blocking communication.  Non-Blocking
communication in MPI has several advantages over blocking communication but

harder to implement in code (20).

As we implemented the non-blocking communication, a code snippet of

non-blocking send is shown below:

MPI Reguest request,requesti;

MPI Status status;

MPI Isend( sBuff, icChunk, cellDataType, i, 500,
MPT COMM WORLD, request ) ;

MPI Isend(cnumParsZ s, icChunk, MPI_INT, i, €00, MPI COMM WORLD,
&requesti ) ;

MPI Wait(s&request,&status);

MPI Wait(srequestZ, sstatus);

In this code, data distribution is being done in non-blocking manner.

Fluidanimate MPI performance evaluation with non-blocking communication

As we implemented the code with non-blocking communication and
analysed it, we observed good speedups. We performed the experiments on Barq
(see appendix B2). The maximum data set was 0.5 million particles. When the

experiments were performed, we obtained these results.

40



Speed Ups

Speed Ups

35,000 particles for 20 300,000 particles for 20

Iterations using O3 Compiler Iterations using O3 Compiler

4.0000 7.0000
3.5000 1| 6.0000 -
3.0000 5.0000
2.5000
4.0000
2.0000
1.5000 3.0000
1.0000 — 2.0000
0.5000 1.0000 +—
0.0000 T T T T 0.0000 T T T T
1 2 4 8 16 1 2 4 8 16
No. of processors No. of processors

500,000 particles for 20 Iterations using O3

Compiler optimization

8.0000
7.0000 —
6.0000
5.0000
4.0000
3.0000
2.0000
1.0000 +—
0.0000 T . T . )

Fluidanimate MPI Non-Blocking Speed up Results on Varying Data Sets

Now as we see that using Non-Blocking communication the speedup is
increased from 3.7 to 7.6 on maximum data set of 500,000 particles. As we see that

we achieve speedups as we increase number of processors.

A comparison of fluidanimate Blocking and Non-Blocking approach is shown
inthe graph below:

41



Comparision Time Graph of 500,000 particles for 20
Iterations using O3 Compiler optimization

250
200
150 \\\
100 \ \
\,
50 \\‘\‘.:
0 . . . .

1 2 4 8 16
——Time in second (NON-BLOCKING)  ==#=Time in second (BLOCKING)

Speedups comparison Graph of 500,000 particles for
20 Iterations using O3 Compiler optimization

8.0000

7.0000 /

6.0000
5.0000

4.0000

3.0000

2.0000

1.0000

0.0000 . . T . .

~——Speed Up (BLOCKING) —s=Speed Up (NON-BLOCKING)

Fluidanimate MPI blocking vs. Non-Blocking Time and Speedup comparison

We clearly see that by using Non-Blocking communication in MPI
implementation of fluidanimate, we achieved significant time decrease and good
speedups. Hence prove our hypothesis; using non-blocking communication in
application with less computation to communication ratio causes significant

increase in speedups.

42



Fluidanimate On Shared Memory Architectures

The parallelization of fluidanimate on SMA (Share Memory Architecture)
can be done on different shared memory programming models like posix threads,
openmp and cilk++. We have chosen OpenMP to parallelize fluidanimate
application for SMAs due to fork-join model of OpenMP threads. The input file for
fluidanimate contains particles attributes e.g. density, viscosity and external
acceleration. The data is read from files and then Cells are formed which contains
particles. This happens when simulation is initialized, after that the effect of other
particles is calculated on current particles. Then, based on effect of these forces the

particles is moved to new location in 3D grid.

Deployment testbed for SMA

We have conducted experiments on our test bed which we call Raad. — see

appendix [B3] for detail of the machine.

Fluidanimate OpenMP design and implementation

By analysing the fluidanimate serial code, we suggest our first approach
which is default parallelization using OpenMp parallel for constructs for loop
parallelization. In this approach, OpenMP divides the total cells into chunk of cells
and then assigns each chunk to corresponding thread. Each thread will be
responsible for calculation on its chunk. There are different OpenMP scheduling
techniques are available e.g. static, dynamic, default and guided. We implemented
our proposed naive implementation by using different scheduling techniques and

then chose the best scheduling technique out of it and performed experiments.

43



Time Graph of 500,000 particles for 100 iterations using
03 Compiler Optimization
400
8
350 ~\
300 — —&— Default
250 —f— Guided
200 ' —a—STATIC_CHUNK
— —3¢=STATIC_CYCLIC
DYNAMIC_CHU
100 NK
50 S
O T T T T 1
1 2 4 8 16

OpenMP Scheduling techniques Comparison on Fluidanimate

The above results are from fluidanimate using different OpenMP
scheduling techniques. We observed different behaviour of application under
different scheduling algorithms. In fluidanimate, dynamic scheduling algorithm
was performing poorly because dynamic scheduling performs well when there are

non-uniform loops (21).

Since, the static scheduling technique has the least runtime overhead (21)
as well as it is performing well in fluidanimate implementation so we will go with

static scheduling algorithm.

A code snippet from ComputeForces of fluidanimate by OpenMP loop
parallelization approach is shown below:

44



#pragma omp parallel for shared(numcells, cells, cnumPars, nx,
nz)private (ck, cj, ci, cindex) schedule (static, CHUNK”

for( ck = 0; ck < nz; ++ck)
for( cj = 0; cj <€ ny; ++c3j)
for( ci = 0; ci < nx; ++ci) {
/ computation is done in parallel.

ny,

The most important thing to consider is that the memory is shared between

threads, so synchronization problem can happen in shared environment. The

section of the code which more likely needs synchronization is where cells are

updated. We need to take care of boundary cells like when we are updating cells

we have to check whether the cell is on boundary or not, if it is on boundary then

we must maintain some lock to prevent access by other threads.

omp lock t my lock:
cmp_init lock(amy_ lock);

if (border [index])

{
#fpragma omp critical
{
omp set lock(smy lock);
cell.al[ipar] += acc;
neigh.a[iparNeigh] —= acc;
omp unset lock{amy lock);
}
}
else

cell.alipar] += acc;
neigh.a[iparNeigh] -= acc;

omp destroy lock(&my lock);

45



Fluidanimate OpenMP performance evaluation by loop parallelization — naive

approach

The benchmarks were conducted on Raad SMP machine at NUST-SEECS,

see appendix B3 for details of the machine. The naive approach results are given

below:

Time

Fluidanimate OpenMP naive implementation Time Graph on varying data sets

35000 particles for 100 iterations
using O3 compiler optimization

300,000 particles for 100 iterations
using O3 compiler optimization

30 250
20 \
\ 150
) \
N 100
10
5 \ 50
H \\‘
0 T T T 1 0 T 1
1 2 4 8 16 1 16

No. of processors

500,000 particles for 100 iterations

using O3 compiler optimization

400
350
300
250
200
150
100
50
0

A

\

\

46



We observe a significant decrease of execution time by increasing no. of

processors. The speed up graph is shown below:

35000 particles for 100 iterations 300,000 particles for 100 iterations

using O3 compiler optimization using O3 compiler optimization
9.0000 10.0000
8.0000 S 9.0000 —
7.0000 8.0000
6.0000 7.0000

pecd] % 5.0000

peedd .
4.0000 2.0000
3.0000 3.0000
2.0000 2.0000
1.0000 +— 1.0000 ——
0.0000 ; ; : ; . 0.0000 . ; . ] .
1 2 4 8 16 1 2 4 8 16

No. of processors

500,000 particles for 100
iterations using O3

10.0000
9.0000
8.0000
7.0000
6.0000
5.0000
4.0000
3.0000
2.0000
1.0000 +—
0.0000 T . T .

Fluidanimate OpenMP naive implementation Speedup on varying data sets

As we see the speedups are increasing as the number of processors are
increased. But we see that the speedups are not too much as we expected. The main
reason behind it the cache locality. The analysis of the approach showed that the

speedups were not up to the expectation because of larger cache miss rate.

47



Fluidanimate OpenMP optimized implementation

With reference to design of fluidanimate (see fig 15 & 16), we proposed a
local sub grid based strategy to address the problem of poor cache utilization. To
do so, we will partition the World Grid into smaller Sub Grids and each OpenMP

thread will be operating on its localized sub grid to better utilize the cache. See the
figure 19 below;

} t1
£ T ;
t2 7 . )
" 4 _m—
L e ¥ A
L e — H =L = = i e ——
\ A —i 8 3 -
e B = 1 = 2
Xk — § =1 1
- o= i H T — 2 - H
_ I - - i
— = —_= - e H
. _ £ i _ = !
H - — T =3 = - = H
: >, o 53 § % !
1 |} e W P o [} 1
i H D e S i i
1 |} - To——] T [} [} 1
i i s T 8 i i
] |} o n [ P” S [} 1
i i1 [ — i
1 j - ] ol | e — |
i P =l | A i i
1 g ot o 1 - [} _~
P — i - i
1 o n .| ~n o
i i ——
— n sl e W
: -

/
/
_;;
/
L
\\
\

t1 t2 t3 t4
A A A )
[ \ ( \ \ )
(ele G1 G2 G3

Each Thread will operate on localized grid to better utilize the cache

Figure 19: Fluidanimate OpenMP Optimized implementation Design

48



Fluidanimate OpenMP optimized implementation results

We optimized the implementation and performed experiments on our Raad
TestBed [B3]. The results were better than the naive approach that we
implemented earlier. Due to increased cache locality, application performed well

and the speed ups were close to the expectation. Consider following speedup

graphs:
35000 particles for 100 300,000 particles for 100
iterations using O3 iterations using O3
12.0000 16.0000
10.0000 || 14.0000 —
12.0000
8.0000 10.0000
6.0000 8.0000
6.0000
4.0000
4.0000
2.0000 2.0000
0.0000 | . . , 0.0000 ; ; ; ;
1 5 4 s 16 1 2 4 8 16
500,000 particles for 100
iterations using O3
16.0000
14.0000 —
12.0000
10.0000
8.0000
6.0000
4.0000
2.0000
0.0000 : ; : :
1 2 4 8 16

49



Fluidanimate OpenMP Optimized implementation Speedup on varying data sets

We see that using Sub Grid based partitioning approach and manually
launching threads on each sub grids improves the cache locality and hence

speedups are almost double than the naive approach.

Time Graph of 500,000 particles for 100

iterations using O3 compiler optimization
400

350 \
300 \
250 \\

200

150

100

50

O T T T T 1

1 2 4 8 16
—&—Time in second (DEFAULT-PARALLELIZATION)

=#=Time in second (GRID BASED PARALLELIZATION)

Speedups Graph of 500,000 particles for 100

iterations using O3 compiler optimization
16.0000

14.0000 //
12.0000

10.0000 /
i /

8.0000

6.0000

4.0000 /‘
2.0000 /z

0.0000 T T T T )

—o—Speed Up (DEFAULT-PARALLELIZATION)
—s=Speed Up (GRID BASED PARALLELIZATION)

50



Fluidanimate OpenMP naive vs. optimized Time and Speedup comparison

We clearly see that by optimizing cache locality in share memory
application we can significantly increase the performance. The speedup graph of
fluidanimate at 16 processors using naive approach does not scale well, but

optimized version is much scalable on greater number of processors.

Fluidanimate On Graphics Processing Units (GPUs)

GPU based implementation of fluidanimate is done using cuda. As
discussed earlier in Design of fluidanimate that particles reside in Cells and then
these Cells form World Grid. In our Cuda implementation of fluidanimate, each
thread is being operated on a cell. It computes the forces and densities of residing

particles of cell.

Fluidanimate GPU implementation phases

A basic flow of CUDA based approach is shown in the figure 20. The most

compute intensive parts are highlighted with red colour.

Data Read and Initialization

Host and Device Memory Allocation

Data copy from CPU memory to GPU
memor

Kernel Configuration
RebuildGrid_kernel.cuh
ComputeForces_kernel.cuh
ProcessCollision_kernel.cuh
AdvanceParticles_kernel.cuh

Data copy from GPU to CPU

Free Memory & Save Result

51



Figure 20: Fluidanimate CUDA Program Flow

Fluidanimate GPU design and implementation

The GPU execution kernel is divided into multiple kernels. Each phase of
fluidanimate is a smaller kernel. The main reason to further divide the kernel is that
we need synchronization of multiple thread blocks after each phase. When we
divide phases into multiple kernels, then synchronization among multiple thread

blocks is achieved.

The design of the application is such that CUDA threads operate on Cells

and calculates the forces on the particles of that cell. Since Global memory of

device is shared by all the threads, so locks are necessary to avoid race conditions.

Figure 21: Fluidanimate CUDA Design

In implementation of fluidanimate CUDA version, we first allocate
memory on CPU as well as on GPU. Following code allocates memory on CPU

and GPU respectively:

52



cells = (Cell*) malloc(numCells*sizeof (Cell));
cnumPars = (int¥*) malloc (numCells*zizeof(int) )

Memory Allocation on CPU
cutilSafecCall (cudaMalloc ((void **)&ad_cells, (numCells*sizeof(Cell)) ) ):

cutilsafecall { cudaMalloc((void **)&d cnumPars, (numCells*sizecf(int)) ) )7

Memory Allocation on GPU

After memory allocation, we read particles data in CPU memory. Then next
step is to copy data from host (CPU) memory to device (GPU) global memory
where CUDA threads can have access to it. Following code transfer memory from

host to device.

cutilSafeCall ( cudaMemcpy (d_cells, cells, numCells*sizeof (Cell), cudallemcpyHostToDevice) );

cutilSafeCall cudaMemcpy (d_cnumPars, cnumPars, nunCells*sizeof (int), cudaMemcpyHostToDevice) );

Then we launch Kernels which will do the computation of different phases of

fluidanimate.

53



RebuildGrid kernel <<< numBlocks, threads per block >>>

d cells2, d cnumParz, d cnumParszZ ,

(d _cells,
nz, domainMin, domainMax, delta):;

numCell=s, nx, ny,

ComputeForces kernel <<< numBlocks, threads per block »>>>

(d cells, d cnumPars, numCells, nx, ny, nz,
domainMin, domainMax, delta, extermnallicceleration, hS5dg,
densityCoeff, h, pressureCoeff, doubleRestDensity,

vizcozityCoeff ):

FrocessCollisions kernel «<<< numBlocks, threads per block >>>»

(d_cells, d cnumPars, numCells, domainMin, domainMax,

timeStep)
EdvanceParticles kernel <<< numBlocks, threads per block >>>

(d cells, d cnumPars, numCells, timeStep):

A code snippet from ComputeForces_kernel is shown below:

__global  woid ComputeForces kernel (...]

int tid = blockIdx.x * blockDim.x + threadIdx.x;

const int totalThreads = blockDim.x * gridDim.x;

*

/* Compute Forces - phase 01

J/* Synchronize Threads */f

___syncthreads ():
/* Compute Forcesz - phasze 02 */

When all the phases of Fluidanimate are completed then finally the data

from device global memory is copied back to host memory.

54



cutilSafeCall( cudaMemcpy(cells, d cells, numCells*sizecf (Cell),

cudaMemcpyDeviceToHost) )
cutilSafeCall | cudaMemcpy(cnumPars, d cnumPars,

numCells*zizeof (int),

cudaMemcpyDeviceToHost) )

Finally, the frame output is stored in an output file and next frame is

computed.

Fluidanimate GPU implementation results

The benchmarks were conducted on CUDA Test bed at NUST-SEECS, see

appendix B4 for details of the machine.

The experiments were performed on three different sized data sets named
simsmall having 35,000 particles, simmedium having 100,000 particles, simlarge
having 300,000 particles and native having 500,000 particles. The speedups with

comparison to CPU are shown below:

Table 1
Num Particles GPU Time (msec) CPU TIME(msec) Speedup
35K 80.234001 25758 321.03597
100K 124.205 68053 547.90869
300K 391.069 214233 547.81381
500K 639.15302 360844 564.5659

55



600

500

400

Speed up Speed

300 Up x-
times
(GPU vs

200 CPU)

100

O T T T 1
35K 100K 300K 500K

Number of Particles

Fluidanimate CUDA Speedup over CPU

As we see in the speedup graph that on smaller data sets of 35k the time
difference between CPU and GPU is not big and hence the speed is just fine. But
as the data set increases from 100,000 particles to 500,000 particles, we see a
significant increase in speedups. Hence our GPU approach results better than that
of GPU.

56



Chapter 5

CASE STUDY II: OlL RESERVOIR SIMULATION

This chapter includes all the relevant details of the design and analysis of
the system, which comprises of main modules that will be implemented and
optimized. We will also discuss the significance of the approach followed in

parallelizing.

OIL RESERVOIR SIMULATION

Oil Reservoir Simulation was implemented on all three HPC architectures
discussed in chapter 1. In this chapter we discuss the implementation of the
simulator with emphasizes on CG and its optimization and the study of benchmark

results.
The implementation can be divided in two parts,

I.  The Simulator
Il.  The Solver

The simulator is portion of the code which models the reservoir on the basis of
grid dimensions, geological rock properties, properties of the fluids and forms
system of linear equations which is sent to the solver for the solution. If the
simulation is to be done for multiple time steps, the simulator prepares the system
of linear equations again and sends to the solver for solution. Once the solution till
desired time steps is found the simulator stores the results in a file, ready to be

analysed. See figure 22.

S7



Figure 22: Architecture Diagram of Oil Reservoir Simulator

The system of linear equations prepared by simulator is stored in a Matrix

Market (MM) format, see appendix Al for more details on MM format.

58



Oil Reservoir Simulation on Distributed Memory Clusters

The aim is to design and implement an efficient parallel CG with minimum

degrading effect of inter process communication and better load balancing.

There are two versions of CG in MPI,

I.  Naive - with blocking communication.

Il.  Overlap computation and communication

Naive - with blocking communication

The first implementation is naive in a sense that the MPI inter process
communication is not done cleverly because at the end of each iteration of CG
vector P is gathered at root node and then broadcasted and this collective

communication is entirely blocking.

Domain Decomposition

Suppose the System of Linear Equations is the matrix A of figure 23. The
domain is decomposed in the form of horizontal blocks. The horizontal blocks are
rows distributed to processes on the basis of number of nonzeros, refer to figure
24, for the sake of demonstration there are 4 MPI processes. We achieved proper

load balancing; refer to the load balance test graph below, figure 25.

59



[From the University of Florida Sparse Matrix Collection]

O

e

Figure 24: Matrix A decomposed into horizontal blocks among 4 processes

Figure 23: Sample matrix A (sparsity view).

| . m | BTy B° : . [
T .
i
-! ..II
LT -1
- w ‘e
- T - .-
% L] - = . -l.g' -l
3 . -, - o
- . g
- . T E'. e b
<r LS O T
- ..,.'. '!:.- -
Coorr S
. 1
. . [ kv fn_
- '-
- - —
r .ll ::_"-l" _" .q'l

60



1.8

¢ VA <
1.6 =2 =

14

1.2

0.8

0.6

wOo wl w2 w3 w4 w5 w6 w7 w8 w9 wil0 wll wl2 wl3 wil4 wil5

—— Broadcast(S)
—fli—Broadcast(W)
= Broadcast(A)
=>é=Broadcast(B)
== Broadcast(C)

Figure 25: Test for Load Balance

Compute Intensive Sections

As discussed earlier the most compute intensive section of the matrix-

vector multiplication (MVM, line no. 8 in figure 13, v = A.p) which is O(n?), and

there are four vector-vector multiplications (VVM, line no. 9 and 13 in figure 13)

which is O(n). For the VVM every process calculates its own chunk of vector-

vector product which is a scalar and a reduction is performed at the root node.

Likewise the MVM is performed on every process which calculates its own chunk

i.e. a portion of vector; this process is illustrated in figure 26.

61




Figure 26: Matrix Vector Multiplication — Naive

62



Benchmark results

The benchmark for the solver was conducted using a standard data set from
NAS Parallel Benchmarks (NPB) (22) on the supercomputing facility at UAEU,

see appendix B1 for details.

0.06

0.05

0.04

0.03

0.02

0.01

Execution Time Class-S Naive

== Execution Time Class-
S Naive

1 2 4 8 16 32 64 80 128

5.0000
4.5000 ﬁ
4.0000
3.5000 / \

' 4 \
3.0000

2.5000 / \ == SpeedUp Class=S CG
2.0000 / \ 01X
1.5000
\
\

1.0000 -—/
0.5000 )

0.0000 T T T T T T T T 1

SpeedUp Class=S Naive

1 2 4 8 16 32 64 80 128

Dataset: CLASS-S, size=1400, iteration=15, NNZ = 78148

63



Execution Time NAS_A CG 01X

1.8

Sf—e

1.6
1.4

il
|

1.2

0.8

0.6

A CG Naive

|
| o
I == Execution Time Class-
|
|

Pk —

1

2

4

8

16 32 64 80 128

5.0000

SpeedUp Class-A CG Naive

4.5000
4.0000

\

3.5000
3.0000

\

2.5000

2.0000

1.5000

Naive

1.0000
0.5000

\

\ —4—SpeedUp Class-A CG
\
\

\

—o—o

0.0000

8

T T T T 1

16 32 64 80 128

Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104

64



25

Execution Time Class-B CG Naive

20

/

15

/

A

== Execution Time Class-B

CG Naive

8 16 32 64 80 128

7.0000

6.0000

5.0000

4.0000

3.0000

2.0000

1.0000

0.0000

SpeedUp Class-B CG Naive

\ —4—SpeedUp Class-B CG

Naive

1

2

4 8 16 32 64 80 128

Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072

65



Execution Time Class-C CG Naive

40
30 \
20 \ / —— Execution Time Class-C
15 / CG Naive
5
0 T T T T T T T T 1
2 4 8 16 32 64 80 128
SpeedUp Class-C CG Naive
6.0000
5.0000 A
4.0000 \
3.0000 —4—SpeedUp Class-C CG
Naive
2.0000
1.0000 \\
O-OOOO T T T T T T T T 1

1 2 4 8 16 32 64 80 128

Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058

66



Discussion on results

As anticipated the blocking communication deteriorates the performance as
number of processors increase. With Class-S the scalability is observed till 8
processes, with Class-A till 32 processes but when the data set increases it affects
the performance directly, larger the vector p more time the processes will consume
in waiting than performing work. So with the Class-C speedups are witnessed till
16 processors. When more processes are added its performance decreases. Stable
load balancing was also achieved confirming that the data (work) was distributed

approximately the same.

Overlap computation and communication

To solve the problem of waiting caused by blocking communication we use
non blocking communication to overlap computation and communication. With
this approach processes don’t have to wait for a gather and a broadcast after doing
MVM but rather the communication is performed at the time of MVM. This
approach is same as discussed in (23). To implement it there was a change needed

in the domain decomposition strategy which will be discussed below.

Domain Decomposition

Like in the first approach (Naive) the matrix A is distributed among
processes in the form of horizontal blocks, to accommodate the computation and

communication overlapping strategy the horizontal blocks are divided into vertical

blocks, four in our case as illustrated in figure 27.

67



[ 4
l il: ;n! ] l.gl -
- i = e, a1
- 1
N B "7
v B .
! 1 1 -.4'
: = Eros
3 . o gty
r N 1] - .'l" I ™y

Figure 27: Matrix A further divided into vertical blocks

Compute Intensive Sections

As discussed earlier our main aim is to overlap the computation of MVM
and communication of vector p. This time instead of traversing the entire row at a
time and multiplying it with the vector p we multiple it block after block,
accumulating the result in the resultant vector. The entire MVM completes in 4
steps in our case and generally in no. of processes steps. The processes are
logically arranged in ring fashion, at the beginning of each step, before MVM there
is a non-blocking communication between neighbours in which each process sends
portion of vector p to its adjacent neighbour (rank-1) and receives from the other
neighbour (rank+1), illustrated in figure 28.

68



Figure 28: Communication in a ring

To put this in words:

Initially, rank 0 has chunk po, rank 0 sends pg to rank 3.
Initially, rank 1 has chunk p1, rank 1 sends p; to rank 0.
Initially, rank 2 has chunk p,, rank 2 sends p; to rank 1.
Initially, rank 3 has chunk ps, rank 3 sends p3 to rank 2.

Where vector p = po + p1 + p2 + ps.

The MVM and communication for step 1 is illustrated in figure 29.

69



Figure 29: Step 1 MVM

Again the same process is followed but now the sender will send the values
of p which it just received and the receiver will receive the values of p which will
be useful for the MVVM on next block, and the partial values of v found in this step

are added to the values of v found in the previous step.

70



Figure 30 shows the progress of MVM and computation.

v ¥ /
5 B TR T T
e - i | .
o .
. T =g
I $ .o S @k
= e Y = = -
2 Bt wE 5 . &4
B EGER W —te T
o S iy, . N
3. - o R - 2 & Lo
. T . e baa JE
v v
b4 = @

rank 2 rank 3

Figure 30: Step 2 MVM

Similarly,

v A P ¥ A
. ]-._.-. - . 0 '_ o X
— :..!r' 5 'I-.I_«: = )
R sl . Ps Dy
. whi i . ahos B
rank 0 rank 1
A n v A
! e 0 - N JCJﬁ
l a L )‘ -.. | :
et o
- il

rank 2 rank 3

Figure 31: Step 3 MVM

Every process sends and receives number of processes -1 chunks, so in the

last step no further communication is needed every process has entire p.

71



v p v
e —— et -
0 AR q i A S :
b .. T e
. s ., " L C . ” b .
= [ . T = F : = =hr Y
2 i TSR ) . R
G S T T
S B s, I ey s
3 . H;. 2 3
. - s E Coles LW
: shis b4 S . Cofa bt
v P v ;
— o
{ et L.
M - .
T e v
3

Figure 32: Step 4 MVM

After 4 steps (i.e. number of processes steps) the MVM ends, all the

processes have the vector v found which will be required in the rest of CG.

In this way we have avoided the gather and broadcast of p and overlapped

communication and computation.

72



Benchmark results

The benchmark for the solver was conducted using a standard data set from
NAS Parallel Benchmarks (NPB) (22) on the supercomputing facility at UAEU,

see appendix B1 for details.

0.4

Execution Time Class-S CG Overlaped

0.35

0.3

0.25

0.2

0.15

/ == Execution Time Class-S
CG Overlaped

0.1

0.05

1 2 4 8 16 32 64 80 128

3.0000

2.5000

2.0000

1.5000

1.0000

0.5000

0.0000

SpeedUp Class-S CG Overlaped

—&—SpeedUp Class-S CG
Overlaped

T T T T T T T T

1 2 4 8 16 32 64 80 128

Dataset: CLASS-S, size=1400, iteration=15, NNZ = 78148

73



Execution Time Class-A CG Overlaped

1.8 -—\
1.6

14

1.2

0.8

\ =—¢— Execution Time Class-A

\ CG Overlaped

0.6
0.4

0.2

2 4 8 16 32 64 80 128

13.0000

11.0000

9.0000

7.0000

5.0000

3.0000

1.0000

SpeedUp CLASS-A CG Overlaped

—4—SpeedUp CLASS-A CG
Overlaped

1 2 4 8 16 32 64 80 128

Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104

74



Execution Time Class-B CG Overlaped

16
14
12 \
10 \\
8 \ —&— Execution Time Class-B
6 CG Overlaped
NN
) \‘_H
0 T T T T T T T T )
1 2 4 8 16 32 64 80 128
Speed Up Class-B CG Overlaped
18
16
. AN
12 /
10
8 / =——Speed Up Class-B CG
6 / Overlaped
4
2
0 T T T T T T T T )

1 2 4 8 16 32

64 80 128

Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072

75



40
35
30
25
20
15
10

Execution Time Class-C CG Overlaped

\ =—— Execution Time Class-C
CG Overlaped

1 2 4 8 16 32 64 80 128

26

21

16

11

SpeedUp Class-C CG Overlaped

/ —4—SpeedUp Class-C CG
/ Overlaped

T T T T T T T T 1

1 2 4 8 16 32 64 80 128

Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058

76



SpeedUp Naive (Broadcast) & Overlap Approach

26.0000

24.0000 Overlap(S)

22.0000 Broad 5

20.0000 =0—Broadcast(S)

18.0000 == Overlap(W)
o 16.0000 =@ Broadcast(W)
2 14.0000
$ 120000 —m—Overlap(A)
“10.0000 Broadcast(A)

8.0000 =>=Qverlap(B)

6.0000

4.0000 == Broadcast(B)

2.0000 —— Overlap(C)

0.0000 == Broadcast(C)

Speed up comparison
Note: CLASS-W, size=7000, iteration=15, NNZ = 508402
Total Execution Time : Broadcast & Overlap

40

38

36 (\

g‘z‘ \ /r Overlap(S)
4 30 \\ // =0 Broadcast(S)
S 28
§ 26 \‘ 1/-/ —#—Overlap(W)
."g 24 \ / 7 —@— Broadcast(W)
£ ig 7/ 7 == Overlap(A)
[
.5 16 / // == Broadcast(A)
§ 13 N\ -\ ~7 //( == QOverlap(B)
>
u lg AN ~ N\ /7 - Broadcast(B)

N N /

6 ——Overlap(C)

4 V

2 = Broadcast(C)

0

2 4 8 16 32 64 80 128

Total Execution Time : Broadcast & Overlap

77




Total Execution Time Class-C Naive (Broadcast) & Overlap

128

40
38
36 \
34 \ r~
32 \ /
30 \ /
S 28 \ /
c ‘ /
8 26
g \ —
w 24
c \ /
° 22 /
£ 20 / =—&—Overlap(C)
= 18
§ 16 / = Broadcast(C)
3 14 //
£ 12 —,
s ~ S/
° \\
) N
2 S—_—
0
1 2 4 8 16 32 64 80 128
Total Execution Time Class-C Naive (Broadcast) & Overlap
Speedup NPB & Overlap
16.0000
14.0000 9— Overlap(S)
—o—NPB(S)
12.0000
£ —=—NPB(W)
§ 10.0000 =@—Overlap(W)
& 8.0000 —A—NPB(A)
a
%_ 6.0000 ~=+=Overlap(A)
é —¢=NPB(B)
4.0000 -
Overlap(B)
2.0000 - NPB(C)
0.0000 Overlap(C)

Speedup NPB & Overlap

78




Discussion on results

Improvements can be seen with the new approach, on larger datasets like
Class-C & B good scalability was achieved but on smaller datasets like Class-S &
A with increase in number of processes speedups drop because there is less work
to do in MVM as compared to communication. So for real world applications
where large reservoirs are modelled in which the matrices are in size of billions

scalability can be achieved.

79



Oil Reservoir Simulation on Shared Memory Processors

The aim is to design and implement CG solver for multicore processors and
SMP machines, where the main memory is shared among cores/processors, cache

coherence can be a problem (24). The focus of optimization here is also on MVM.

There are two implementations in OpenMP based on the domain
decomposition of source matrix A, see figure 33 for demonstration suppose total

number of threads are 4.

I.  Row Partition
Il.  Block Partition

Row Partition

Block Partition

Thread0
Thread) | Threadl
Threadl
X X
Thread2
Thread? | Thread?
Thread3

A matrix vector A matrix vector

Figure 33: Row Partition [left] and Block Partition [right]

In both, the sparse matrix A is stored in CSR (Compressed Sparse Row) a
widely used format for storing sparse systems (25). It only stores the nonzero
elements with its column index, and the index of the first non-zero elements of

each row, see figure 34.

80



1 0 0 2)
. : 0 0 3 0
For example. if matrix 4,=| . Where
0O 0 4 0
s 0 0 6
m=4. n=4. nz=6. 4; should be stored as follows.

cstNz ={1.2.3.4.5.6}:
cstCols ={0.3.2.2.0.3}:
cstRowStart ={0.2.3.4.6}.
Figure 34: Representation of matrix A in CSR format

From (26)

There are other sparse storage formats other than CSR which include CSC
(Compressed Sparse Column) same as of CSR but row index are stored, BCSR
(Blocking with Padding), BCSD (Blocked Compressed Sparse Diagonal), 1D-VBL
(One-dimensional Variable Block Length), VBR (Variable Block Row) and more,
refer to figure 35 for a graphical look of these different storage formats. Studies
(27) suggest that the change of internal storage format as compared to CSR has
little positive effect on the performance of Sparse MVM. CSR is also simple to use
as does not require painstaking processes of finding optimum block size for

submatrices and aligning the rows and columns afterwards.

(a) BCSR (b) BCSD (c) 1D-VBL

Figure 35: How the different blocking storage formats split the input matrix into
blocks

From (27)

81



Row Partition

When the matrix A is partitioned into rows, each thread is assigned an
iteration in which it gets one row at a time and multiplies it with the vector p and

stores the result in vector v, see figure 36 which shows how it is implemented.
int i,3-

$pragma omp parallel for
for{(i =0; i < H;i++){
v[i] = 0.0;

$pragma omp parallel for private(j)
for(i = 0;i<N;i++){
for(j = CRS row[i]; j < CR5 row[i+l]: j++){
result[i] += A[Jj] * wector[ CRS Col[3j] 1:

Figure 36: Simple Sparse MVM in CSR format

The problem with this approach is that the entire vector p is accessed in an
irregular fashion, therefore when vector p is larger more cache misses are

anticipated.

82



Benchmark results

The benchmark was conducted on Raad SMP machine at NUST-SEECS,
for details of the machine see appendix B3. Dataset used came from NAS Parallel
Benchmarks (NPB) (22).

4.5

35

25

1.5

0.5

Execution Time Class-A CG_OMP_Row

\ == Execution Time Class-A

\ CG_OMP_Row

14

12

10

SpeedUps Class-A CG_OMP_Row

2

/

/

/ —4—SpeedUps Class-A

/ CG_OMP_Row

Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104

83



80
70
60
50
40
30
20
10

Execution Time Class-B CG_OMP_Row

L {

N\
\

AN

=—4— Execution Time Class-B
CG_OMP_Row

16
14
12
10

o N B~ O ©

SpeedUP Class-B CG_OMP_Row

2

/

/

——SpeedUP Class-B
CG_OMP_Row

a

Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072

84



Execution Time Class-C CG_OMP_Row
250

200 \
150

== Execution Time Class-C

100 CG_OMP_Row
* \
o T T T T 1
1 2 4 8 16

SpeedUps Class-C CG_OMP_Row

16

14
12 /
10

/ —4—SpeedUps Class-C
CG_OMP_Row

o N B~ O ©

Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058

Discussion on results

Scalability was achieved in the tests but as anticipated when the large
system is simulated the speed-ups are relatively less. Because the vector p gets

larger the irregular way of accessing p results in many caches misses.

85



Bock Partition

This time the matrix A is partitioned into blocks. From the figure 37 it is
easy to understand that in sparse MVM thread no. 0 & 2 need first portion of the
vector and thread no. 1 & 3 need the other, in this way we have successfully
reduced the access space of the vector. As the access space for the vector is

decreased we anticipate decrease in cache misses.

Block Partition

Thread0 | Threadl

Thread2 | Thread3

A matrix vector p

Figure 37: MVM with Block Partitioning of matrix A

86



Benchmark results

The benchmark was conducted on Raad SMP machine at NUST-SEECS,
for details of the machine see appendix B3. Dataset used came from NAS Parallel
Benchmarks (NPB) (22).

Execution Time Class-A CG_OMP_Block

4.5 L

35 1\

25 \

—&— Execution Time Class-A

2 CG_OMP_Block
1.5

1 \
0.5 \_’i

0 T T T T 1

1 2 4 8 16
SpeedUps Class-A CG_OMP_Block

12
10

8

6 == SpeedUps Class-A

4 CG_OMP_Block

2 /

0 T T T T 1

Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104

87



80
70
60
50
40
30
20
10

Execution Time Class-B CG_OMP_Block

\ —4— Execution Time Class-B
CG_OMP_Block

25

20

15

10

SpeedUps Class-B CG_OMP_Block

/ ——SpeedUps Class-B

CG_OMP_Block

Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072

88



Execution Time Class-C CG_OMP_Block
250

200 —\
150
== Execution Time Class-C

100 CG_OMP_Block

50

SpeedUps Class-C CG_OMP_Block

16

. /-
/

10
/ —4—SeedUps Class-C
CG_OMP_Block

o N b~ O

Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058

Discussion on results

With block partitioning better speedups were obtained with dataset Class-C
which is the largest. With Class-B super linear speedups were witnessed. On the
smallest dataset Class-A performance was affected a little bit because the overhead

of accumulation of results from threads after MVVM which was done locally.

89



Oil Reservoir Simulation on GPUs

The CG solver was implemented in CUDA for nvidia GPUs. In the GPU
there is limited memory and the access to global memory is expensive, if the sparse
matrix is stored in CSR format it will take more space and more access as
compared to DIA (Diagonal Sparse Matrix) format. The matrices as discussed in
chapter 2 the matrices from Oil Reservoir Simulation have a structure, for 1D
simulation for matrix is tridiagonal, for 2D its pentadiagonal and for 3D its
heptadiagonal. This symmetry can be exploited by only storing the nonzero values
of matrix in an array and in the offset between diagonals in a separate array. See

Figure 38.

90



1(2)3]4|5|6|7|8]9[10(11)12(13|14|15(16|17]18|19|20]21(22|23|24[25[26]|27|28]|29]30(31|32

| | waf s
=
]

L

== K] =)
[44]

w

=
(=]

[
(=

=
(o]

=
w

=
F=1

=
o

=
(=]

=
-]

=
o

=
=]

s
=

M
=

M
L]

i8]
w

[
E=1

M
w

)
(=]

i8]
-

[
o0

;5]
=]

[7%)
=

N
E N
W|C|E N
W|C|E N
5 W|C|E N
S W|C|E N
= W|C|E N
5 W|C|E N
S W|C|E N
S W|C|E N
3 W|C|E N
= WI|CI|E N
S W|C|E N
S W|C|E N
S WI|C|E
S WI[C|E

[15)
=

Figure 38: 32x32 Matrix representing a 2D reservoir in 1 Phase. Here offset from

central diagonal isnx =4

DIA format representation

N N vas
ESENCEENES o

CUDA versions of CG

In the CUDA version the host thread (CPU) handles the main CG iteration
and calls compute kernels multiple times. Computer kernels include MVM kernel,
VVM and Reduction kernel, VV addition kernel.



Bellow is explaination of different kernels.

MVM kernel

Figure 39 show the code snippet of the MVM Kkernel, each thread is
assigned a unique row which it multiplies with the vector. The column and row

indices are calculated at runtime and the values are only fetched.

int row = blockDim.x * blockIdx.x + threadldx.x ;
if(row < num rows ){
double dot = 0;

for [ int n = 0; n < num diags ; n ++){
int col = row + offsets [n]:
doukble wval = data [ row * num diags + n ];

if{ col »>= 0 && col < num cols |
dot += wal * wvector[ col ]:

resultant wvector|[ row ] = dot;

Figure 39: CUDA MVM kernel

VVM and Reduction kernel

As we know that the result of VVM is a scalar, that means threads in
different thread blocks not only have to perform simple multiplication but also a
complex synchronous reduction process. This reduction process is divided into two
phases. In the first phase inter block reduction is performed in which threads in a
block participate to reduce the portion of result which is stored in shared memory
of that block, see figure 40 and figure 41.

92



__Shared_ _ double sdata[512];

'/ each thread loads one element from both global arrays to share

—aCl

/ applying multiplication

unsigned int tid = threadIdx.x;
unsigned int i = blocklIdx.x*blockDim.x + threadIdx.x;
if(i < N){

sdata[tid] = vecl[i] * wvec2[i]: HW \thA

s

__syncthreads():

for (unsigned int s=blockDim.x/2; s>0; s8>>=1) |

if (tid < s8) {

sdata[tid] += sdata[tid + s]: ::_Intra Block reductron

__syncthreads():

Figure 40: VVM and Intra Block reduction

Values(sharedmemory)|m‘1‘8‘-1‘0‘-2‘3‘5‘-2‘-3‘2‘7‘0‘11‘0|2—|

Step 1 Thread

Stride 8 s &5 G @/Q(Q/

Values [ 8 |-2[10]6 [0 ]o[a]7]2]3]2][7]0[11]0]2]

Step 2 Thread S §
Stride 4 IDs  (0) (1) @3

Values [ 8 | 7 [13[13[ oo 3|7 ]2]3]2][7]0[11]0] 2]

Step 3 Thread
Stride 2 IDs
Values|21\2o\13\13\ 0\9 \ 3 \ 7 \-2\-3\ 2 \ 7 \ 0 \11\0|2|
Step 4 Thread
Stride 1 IDs

Values':ﬁ‘zo‘m‘w‘0‘9‘3‘7‘-2‘-3‘2‘7‘0‘11‘0|2|

Figure 41: Graphical view of intra block reduction.

93



At the end 0™ thread of the block writes the result into global memory this
is from where second phase of the reduction starts. When all blocks are finished,
insuring synchronous flow the block which writes in last performs the reduction

globally. This global reduction is further illustrated in figure 42.

Global Reduction

FIe[emlos 7 2312 7 o[ ]e17] Biocko
. |
FIa[emlo[s s [ 23 27 [o[n[o]7] Biock

- 1
[4t]20[1a]3[oofsf7[2]-a]2]7]0]t1]0o]2] Blockz

|J1|2o|13“13|0|9\3\7]-2\-3\2\7|o|11|u|2| Block 3

41 |41 41 |41 Result[4] — in Global Memory

- 41 41 41

Figure 42: Global reduction, among 4 thread blocks

Note: normally all blocks do not have same value this is for demonstration purpose

only.

VV Addition kernel

From figure 43 it can be seen that VVV addition is a simple piece of code in
which every thread is fetches the values from two vectors (vecl and vec2) on the
index with corresponds to its global index in the pool of threads. The values are
added and the result is stored in the first vector (vecl). Note the scalar
multiplication with vec2 this scalar can be alpha or beta in CG as it is called from

the CPU in the naive approach.

94



unsigned int i = blockIdx.x*blockDim.x + threadIld=x.x:
if(i < H )4

vecl [i] += wecl [i] + scalar_ * wvec2 [i]:

Figure 43: VV Addition

Benchmark results

The benchmark was conducted on GPU test best at NUST-SEECS, see
appendix B4 for details of the machine. An Qil Reservoir with 3072 x 4096 grid
dimension (2D) was simulated with 5 time steps. Matrix dimension is 12582912 x
12582912, nnz = 62914560, nx = 3072, ny = 4096.

Benchmark included Total Time, Computation Time, Memory Copy Time,

and Kernel Time; here the time is in seconds.

Total Time (sec) Computation Time (sec) Memory Time (sec)

2.830271000000000203 1.880077999999999916 0.1708369999999999889

GPU Implementation

Mem Time
6%

Figure 44: Percentage of time spent on different operations

95




Discussion on results

We achieved 12x speed-ups for the entire application, which included
formation of PDEs to system of linear equations and their solution for multiple

time steps. All operations were performed in double precision.

96



Chapter 6

CASE STUDY I1l: BLACKSCHOLES

This chapter includes all the relevant details of the design and analysis of
the system, which comprises of main modules that will be implemented and
optimized. We will also discuss the significance of the approach followed in

parallelizing.

BLACKSCHOLES

The Blackscholes formula and its technique to calculate option prices for
portfolio of options describes that Blackscholes is the simplest in nature. Its
domain decomposition is simple due to the non-dependency of the option data
which means that only option data is sufficient to calculate price for that particular

option. So, inter-processors communication overhead is almost zero.

Blackscholes On Distribute Memory Clusters

We will be discussing Blackscholes parallelization on Distribute Memory

Machines. We will also be evaluating these techniques later in this chapter.

Domain Decomposition

This is the most important and foremost step in any parallel application.
The input data, which in our case is Option Data, is read from input file. This data
has to be parallelized in such a way that the work distribution on all the processors
should be balanced. The domain decomposition phase is very dynamic task and it

strongly depends on the cluster’s architecture underneath.

97



Design

Due to simplest data parallel nature of Blackscholes, we use simple row
based partition approach. In this approach, we divide the total number of options

by total number of processors to get a subset of options data set.

These chunks are then equally distributed among the processors by a
collective call. Then each MPI process computes option prices for its own chunk of
options. When all the processors are done with computation, they send back results

and results are saved.

Basic Flow of Blackscholes in distribute memory is shown below

Read Options

Data Chunk Distribution
and Load Balancing

Compute Option Prices
by B.S formula

Data Chunk gathering

Save Prices

Figure 45: Basic Flow of Blackscholes in distribute memory

In this flow diagram of Blackscholes, the compute intensive part is

highlighted by red colour. We are actually parallelizing this part.

98



Implementation

As discussed in design of Blackscholes that the analysis of the code shows
that the option price calculation is more time consuming, so we need to parallelize

this function.

A code snippet of serial version of the compute intensive function is given below:

calculatefpticnPrice (. , W, ..} {
for{i 1:N)
{
f* Compute the Formula and get OpticnPrice.... */
/* check whether the 'Upticntype' i3s either 'Put' or
"call' */
int cpticn = (datal[i].OpticnIype == 'P') 2 1 : 0O;

/* Compute Formula */

cpticnPrices [i] = computeFormula (datali].s,
datal[i].strike,
data[i].r,
datali].w,
datali].t,

cpticn):

The computeFormula function does all the computation. In serial approach, the
main loop which iterates over N options. In MPI based parallel approach we divide

this main for loop, and get smaller chunks of options data.
Options_chunk = total_num_options / total_num_processors

Then each process will be iterating over Options_chunk instead of N options.

99



*Option [0]
Process <0> «Option [1] ...
*Option [chunkO - 1]
*Option [chunk0]
Process < 1> +Option [chunk0 + 1] ...
*Option [chunkl - 1]
*Option [chunk1]
Process <2> +Option [chunk1+ 1] ...
*Option [chunkl- 1]
eOption [chunk2]
a _ *Option [chunk2+ 1] ....
P rOC - SS < N 1> eOption [chunk2- 1]

Figure 46: MPI based parallelization approach to Blackscholes

Benchmark results

The benchmarks were conducted on Barq cluster at NUST-SEECS, see

appendix B2 for details of the machine.

As discussed earlier that the Blackscholes application is data parallel in
nature with almost zero communication cost. So, MPI parallelization approach
with balanced partitioning of options can lead to good speedups. The data sets for
Blackscholes were varying in nature. The maximum data set was 10 million

options. When the experiments were performed, we obtained these results.

4096 Options for 100 using O3
05 Compiler optimization

0a N\
Time (sec) 0.3 \

0.2 \\
0.1

No. of processors

100



16384 Options for 100 using O3
Compiler optimization

0.8 A\

0.6

Time (sec) | 0.4 \
0.2

No. of processors

64K Options for 100 using O3
Compiler optimization

Time (sec)
LN\

0 T T T T 1
1 2 4 8 16
No. of processors
10 million Options for 100 using O3
600 Compiler optimization

500 4’\
. 400
Time (sec \

300 \
200 \
100

No. of processors

Blackscholes MPI Timing Results on Varying Data Sets

101



In these graphs, we see that the execution time has decreased as we
increased number of processors. Now, we will see the speedups achieved by the

parallelization.

(7]

Speedup

No. of pro

Speedup

[
4
[
b
421
-

o
o0
-
o

No. of processors

Blackscholes MPI Speedup Results on Varying Data Sets

As we see in the above graphs, the speedups are shown. On maximum
dataset at 16 processors, we see that the speedup is about 18. The reason is that in

parallel version, cache locality has been improved.

102




Blackscholes On GPUs

GPU based approach is somewhat more complicated than MPI approach in
which we simply divide the options. In CUDA based approach, we have to take
much care of the efficient memory access and make sure that SIMD (Single
Instruction Multiple Data) operations are being performed in order to best utilize
CUDA threads.

Basic Flow of Blackscholes for GPU parallelization approach is shown
below:

Read Options

Allocate CPU and GPU memory

DataTransfer CPU to GPU

Configure and Launch GPU
KERNEL

GPU Compute Prices by B.S
formula

Copy results GPU to CPU

Deallocation

Save Prices

Figure 47: GPU based parallelization approach to Blackscholes

In this flow diagram of Blackscholes, the compute intensive part is
highlighted by red colour. We are actually parallelizing this part.

103



Blackscholes CUDA Implementations

As discussed in design of Blackscholes that the analysis of the code shows

that the option price calculation is more time consuming, so we need to parallelize

this function.

In cuda implementation, we proposed two implementation which we will

call as; naive and optimized parallelization approach. In naive approach, the data is

in the form of a data structure named OptionData. We simply launch CUDA

kernel, which will spawn cuda threads, and each thread will be responsible to

calculate one option.

!!
!-

!
i
i

Figure 48: Options in the form of Option Data Structure (Naive approach)

assuming X, y option variables

A code snippet of above mentioned approach is shown below:

__global__ woid BlackScholeaGFU (float *d_3,
float *d_w,

fleoat *d_r,

float *0OpticnPrices,

con3t int tid =
ccnst int THREAD N

for{int i =
{

int cpticn =

tid; i «

CptionPrices [i] = Black3cholesGFT (d_s([i], d_strike[i],

GPU kernel calls BlackScholesGPU device function

blockDim.x * blockIdx.x + threadldx.x;

blockDim.x * gridDim.x:

numiptions; i += THRERD N)

{d OptienType[i] == 'B')

d r[i],

int numbptions)

{

?21: 0;

float *d_3trike,
fleoat *d_t, char*d OpticnType,

d w[i], 4 t[i], cption);

104



The BlackScholesGPU function does all the computation. In serial
approach, the main loop which iterates over N options. In cuda based parallel

approach we multiple threads operate on data in parallel.

Benchmark results

The benchmarks were conducted on CUDA Testbed at NUST-SEECS, see
appendix B4 for details of the machine.

GPU performance evaluation — naive approach

We will first evaluate our naive implementation of Blackscholes. The data
sets for Blackscholes were varying in nature. The maximum data set was 10
million options. When the experiments were performed, we obtained these results
on our Cuda TestBed.

1800
1600 /.—
1400
1200 ;/
1000 7
Speed up 800 /.,
600 /
400 w
200
O T T T 1
4096 16384 65536 10000000
—fl— GPU Speedup over CPU

Num Options

In these graphs, we see that the speed up is being increased as we go on
increasing the number of options. The reason is that, on smaller data set, CPU also
takes less time, although not lesser than GPU. But as the number of options
increases the CPU time becomes greater and greater but GPU time does not
increase too much.

105



GPU Naive Approach Problem

In naive approach (using structure of OptionData), when we analysed the
code, we came to know that using OptionData structure would rise the major issue
of poor memory accesses in parallelization on GPU which is called uncoalesced
approach.

As we know that GPUs operate on SIMD (Single Instruction Multiple
Data) mechanism. If data is in multiple of 4-bytes e.g. (integers or float) and
present on consecutive memory locations, so that each thread should access them
in parallel manner, it is called coalesced memory access. To understand the

concept of Coalescing and Non-Coalescing consider the following figure.

to t1 =2 t3 t14 t15

v v v ¥

128 132 136 140 144 184 188 192

Figure 49: Memory Accesses in non-coalesced fashion

to t1 =2 3 t14 t15

vy v ¥ ¥ vy v

128 132 136 140 144 184 188 192

Figure 50: Memory Accesses in Perfectly Coalesced fashion

In our naive implementation, where data is in the form of structure of
options is the cause of non-coalescing. To understand the problem, consider the
following figure:

106



SIHD Operations:
Instruction O —Fetch Xi+1
Instruction 1 — Fetch Yi+1

i GPU Memiary

214 218 222 226 230 234 238 284 288 292

Seguential Like Memory Accesses

Figure 51: Blackscholes GPU naive implementation non-colaescing Problem

Since the data is not in multiples of 4-bytes and also not on consecutive

locations, so threads access the data in sequential manner e.g. tO access first and

then t1 and then so on.

GPU Optimized Approach And Results

To address the problem of uncoalesced accesses, we changed the
OptionData structure approach which was the main cause of the problem. We
proposed the solution, in which we used arrays of variable separately rather putting

them into one structure and then creating array of that structure.

VN - o o e e iy RO o
...214 218 222 226 230 234 238 .......... ceree eeereeeen 284 288 292

Y-Array ‘Yl Y2 Y3 Y4 Y5 Ye Yn-1 ¥Yn
384 388 382

...314 318 322 326 330 334 338 ... e e
Figure 52: Blackscholes GPU Optimized implementation strategy

In this figure, we are assuming that the variables to calculate the option
price are X and Y. We have discarded the structure based approach and created
array of each individual variable. Now, when CUDA threads will schedule, the will

107



operate in SIMD manner, which will result in efficient memory accesses which we

call Coalescing.

SIMD Operations:
Instruction 0 — Fetch Xi

;i/ _--.-\\*‘7‘
;{""; 44 9 Ry 1 éégj\‘\—i
'!/' -.v i -I “’_I i =I.—. !iv .......... ?.==.= “\
/ | | | [ \ 1 N\

Figure 53: Blackscholes GPU Optimized Coalesced Memory Access

Here we see that cuda threads operate in parallel fashion which executing
the instruction. We can see the difference between naive approach which was
causing uncoalescing and optimized approach with coalesced memory accesses in
the graph below:

0.8 A
0.6 A
0.4 A

Time (msec)

NN NN N N

4096 16384 65536

B GPU Time (Coalesced) (msec)
B GPU Non Coalesced Time (msec)

Num Options

108



150 /

100 -

Time (msec) 50 1

10000000

B GPU Time (Coalesced) (msec)
B GPU Non Coalesced Time (msec)

Num Options

Blackscholes GPU naive and Optimized approach comparison

109



Chapter 7

VISUALIZATION

FLUIDANIMATE

Properties of the demo:

1. Gravity Effect and Collision Demo
2. Num particles = 35K
3. External Acceleration is applied TOWARDS the gravity

Kate"s Video Cutter (Free)

Record=1.00

Figure 54: Initial stage, Fluidanimate demo

110



Kate"s Vdeo Cutier (Fres)

Record=53.00

Figure 55: After 53 frames, Fluidanimate demo

111




Kate's Video Cutier (Fee)

Record=90.00

Figure 56: After 90 frames, Fluidanimate demo

This and more demos are uploaded on YouTube, refer to the links below.

FYP Demo Video — 01 Gravity Effect and Collision Demo
Num particles = 35K

External Acceleration is applied TOWARDS the gravity.
http://www.youtube.com/watch?v=2djzOTsTZRQ

FYP Demo Video — 02 Gravity Effect and Collision Demo
Num particles = 35K

External Acceleration is applied TOWARDS the gravity.
http://www.youtube.com/watch?v=wOcgX0dCjJQ

FYP Demo Video — 03 Fluid Initial Compression of empty space Demo
Num particles = 100K

External Acceleration is applied towards the gravity.
http://www.youtube.com/watch?v=7yZvWBDhUKE

112



OIL RESERVOIR SIMULATION

Properties of the demo:

Available on YouTube: http://www.youtube.com/watch?v=J6J0TO0Q MOQ

=

A reservoir was discretized into 50 x 8 grid points.

2. 4 oil producing wells were installed on grid point (10, 0), (11, 0), (20, 0)
and (21, 0) with 600, 400, 600, and 400 STB/D production rate.

3. On the basis of flow of fluids in the reservoir PDEs (Partial Differential

Equations) were formed.

The PDEs were converted into Linear Equations.

The system of Linear Equation was solved using Parallel CG for Pressure

of the reservaoir.

6. The simulation ran for 400 time steps where Delta T (change in Time) for 5

days.

o s

Pressure of Reservoir after 0 Days

- 43500

- 43000

- 42500

Pressure

- 42000

X axis 0 o0

Y axis

Figure 57: Initial stage, Oil Reservoir Simulation demo

113



Pressure

Pressure of Reservoir after 350 Days

x axis 0 o y axis

Figure 58: After 350 days, Oil Reservoir Simulation demo

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

114



Pressure of Reservoir after 1125 Days
e S0oo0

e 4500
4000
= J3s00

- 3000

Pressure

- 42500

- 42000

1500

1000

s00

Figure 59: After 1125 days, Oil Reservoir Simulation demo

Pressure of Reservoir after 1975 Days
o 5000

4500

il B R W 4000

¥ axis 0 q y axis

Figure 60: After 1975 days, Oil Reservoir Simulation demo

115



Chapter 8

CONCLUSION & FUTURE WORK

The aim of our proposed project was to implement some widely used
scientific simulation on state of the art High Performance Computing
Architectures. The three simulations were chosen as case study to achieve this
goal. We implemented these applications on Distributed Memory Architectures,
Shared Memory Architectures and Many Core GPUs. We designed and
implemented these simulations in an optimized way and proved the research
hypothesis; the algorithm design approach we followed can lead to best optimized
implementation. We proposed different possible implementation and discussed
their pros and cons and finally we proposed some best possible techniques to
overcome the flaws of existing non-scalable parallelization approaches. We
discussed the results of each parallelization technique, implemented and suggested
some improvement in existing algorithms which could lead to significant
performance increase. Finally, we demonstrated our application by providing
visualization to these applications. Although the visualizations were not rendered
on real time but the basic purpose of visualization was to demonstrate the concept

behind these simulation.

We have implemented these scientific applications on different HPC architectures,
in future the project can be taken a step further where nested parallelism can be
used i.e. MPI + OpenMP and the applications can also be ported to hybrid
architectures i.e. MP1 + CUDA.

116



Chapter 7

References

1. Computational Science: Ensuring America’s Competitiveness. s.l. : President’s

Information Technology.

2. [Online] http://code.google.com/p/stanford-cs193g-
sp2010/wiki/GettingStartedWithCUDA.

3. parallel programming guide. nvidia.com. [Online]

developer.download.nvidia.com.

4. [Online] https://computing.linl.gov/tutorials/mpi/.

5. http://openmp.org. [Online] http://openmp.org/wp/about-openmp/.
6. http://www.nvidia.com. [Online] http://www.nvidia.com.

7. CPU and GPU Co-processing for Sound - Master of Science in Computer

Science Thesis. s.I. : Norwegian University of Science and Technology, 2010.

8. Simulation of Free surface flows with SPH. J.J Monaghan, M.C Thompson
and K. Hourigan. Lake Tahoe : ASME Symposium on Computational Methods in
Fluid Dynamics, 1994.

9. Nvidia’s Particle-based Fluid Simulation by Simon Green. s.1. : Nvidia, 2008.

10. Ellero, Dr Marco. Particle Simulation Methods for Fluid Dynamics Lecture04
Monte Carlo Methods. s.1. : Institute of Aerodynamics, Technical University
Munich.

117



11. Matthias Miller, Barbara. Particle-Based Fluid-Fluid Interaction. .

12. Turgay Ertekin, J.H. Abou-Kassem & G.R. King. Basic Applied Reservoir
Simulation. 2001. ISBN:978-1-55563-089-8.

13. Development Of Reservoir Characterization Techniques And Production
Models For Exploiting Naturally Fractured Reservoirs. s.l. : The University of

Oklahoma Office of Research Administration.

14. Iterative/Direct method. Wikipedia. [Online]
http://en.wikipedia.org/wiki/lterative_method.

15. Implementing parallel conjugate gradient on the EARTH multithreaded
architecture. Chen, Fei, Theobald, K.B. and Gao, G.R. s.I. : Cluster Computing,

IEEE International Conference on, 2004.

16. Math, ragujevac J. PARALLEL ALGORITHM FOR SOLVING THE BLACK-
SCHOLES EQUATION. 2005.

17. free_black_scholes_model. [Online]

http://www.optiontradingpedia.com/free_black scholes_model.htm.

18. [Online]
http://www.strw.leidenuniv.nl/~deul/practicum/html/parallel11.php?node=6611.

19. Blocking vs. Non-blocking Communication under. [Online]
http://webcache.googleusercontent.com/search?q=cache:SIHXK1xSW-UJ:www.tu-
chemnitz.de/sfb393/Files/PS/sfb98-
18.ps.gz+MPI+blocking+communication+paper&cd=3&hl=en&ct=clnk&gl=pk&s

ource=www.google.com.pk.

20. [Online] http://beige.ucs.indiana.edu/B673/node153.html.

118



21. Seung-Jai Min, Ayon Basumallik, Rudolf Eigenmann. Optimizing OpenMP

Programs on Software Distributed Shared.

22. NAS Parallel Benchmarks. [Online]

http://www.nas.nasa.gov/Resources/Software/npb.html.

23. Distributed Memory Matrix-Vector Multiplication and Conjugate Gradient
Algorithms. John G. Lewis, Robert A. van de Geijn.

24. Evaluation of Cache Coherence Protocols on Multi-Core Systems with Linear
Workloads. Yong J. Jang, Won W. Ro. s.l. : ISECS International Colloquium on

Computing, Communication, Control, and Management, 2009 .

25. Intel. Sparse Matrix Storage Formats. http://software.intel.com/en-us/.
[Online] [Cited: 16 July 2011.]
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-

us/cpp/win/mkl/refman/appendices/mkl_appA_SMSF.html.

26. Performance Evaluation of Multithreaded Sparse Matrix-Vector Multiplication
using OpenMP. Shengfei Liul, Yunquan Zhang, Xiangzheng Sun, RongRong
Qiu. s.l. : 11th IEEE International Conference on High Performance Computing

and Communications, 2009.

27. Perfomance Models for Blocked Sparse Matrix-Vector Multiplication kernels .

Vasileios Karakasis, Georgios Goumas, Nectarios Koziris.

28. [Online] http://hpc.seecs.nust.edu.pk/hardware.php.

29. [Online] http://zone.ni.com/devzone/cda/tut/p/id/6097.

30. [Online]
http://webcache.googleusercontent.com/search?g=cache:SIHXK1xSW-UJ:www.tu-
chemnitz.de/sfb393/Files/PS/sfb98-

119



18.ps.gz+MPI+blocking+communication+paper&cd=3&hl=en&ct=cInk&gl=pk&s

ource=www.google.com.pk.

31. Yun Zhang, Mihai Burcea, Victor Cheng, Ron Ho and Michael Voss. An
Adaptive OpenMP Loop Scheduler for Hyperthreaded SMPs.

32. Gjermundsen, Aleksander. CPU and GPU Co-processing for Sound - Master
of Science in Computer Science Thesis. s.l. : Norwegian University of Science and
Technology, 2010.

120



Chapter 8

Appendix

Al

The Matrix Market (MM) exchange formats provide a simple mechanism to
facilitate the exchange of matrix data. The file formats were designed and adopted
for the Matrix Market, a NIST repository for test data for use in comparative

studies of algorithms for numerical linear algebra.

Bl

e Xeon Intel Quad Core 5355

e 100 Computing node - 200 CPU

e 800 coreQuad Core 2.66 GHZ

e 8.320 TeraFlops of Computing Power
B2

It is a cluster comprising of nine nodes connected through a 24 port Gigabit
Ethernet switch. Each node has 4 GB of main memory and contains an Intel Xeon
Quad-Core Processor (28). The processor is clocked at 2.4 GHz with a rated FSB
of 1066 MHz. The processor is a Multi-Chip Module (MCM) and is not a pure
quad core design. Each two cores share an L2 cache of 4MB making a total of 8
MB cache for the entire chip. Each core has a 32 KB L1 Data and Instruction cache
with 8-way set associatively. L2 cache is 16-way set associative and has 64-byte

line size.

B3

It is a cluster comprising four nodes connected through Myrinet Optical Fibre
Gigabit Ethernet and Fast Ethernet. The cluster contains 64 Ultra SPARC IV+

121



processors. Each node contains 16 processors (SMA). The cluster has total of
128GB memory installed on it. We performed our experiments on one node of the

cluster having 16 processors with shared memory.

B4

Before we go into the detail discussion of performance, we will discuss our
Deployment TestBed. We have conducted experiments on our test bed which we
call CUDA TestBed. It contains Intel’s Nehalem microarchitecture Quad-core
processor with capability of launching eight hardware threads. It also has eight GB
of system memory installed on it along with GTX 480 graphics card powered by
nVidia. NVidia is considered a leading GPU manufacturer in the market. Its GTX
480 is considered a giant in GPU computing. It has 480 CUDA cores with
processing clock of 1401 MHz.

122



