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Chapter 1 

INTRODUCTION 

Computational Science is field of study in which computers are used to solve 

challenging scientific problems. Real or imaginary world scientific problems are 

converted into mathematical models and solved using numerical analysis 

techniques with the help of high performance computing famously called scientific 

computing.  

As computer technology is advancing rapidly, computers are becoming 

increasingly powerful and increasingly available, and with the advancement of 

mathematics and other basic sciences, the use of robust computer simulation and 

modelling techniques are being recognized as a key to the economic growth and 

scientific advancement. 

Computational science now constitutes what is famously called the third 

pillar of science together with theory and physical experimentation. The 2005 

Report to the President of US, Computational Science: Ensuring America's 

Competitiveness, states that "the most scientifically important and economically 

promising research frontiers in the 21st century will be conquered by those most 

skilled with advanced computing technologies and computational science 

applications." (1) 

Scientific simulations are typically compute intensive in nature. It takes 

week or days to obtain result if ordinary single processor system is used. For 

example, in predicting weather the amount of computation is so large that it could 

take ordinary computer weeks if not months. To make a simulation more feasible 

the use of High Performance Computing (HPC) is essential.  

HPC is the use of supercomputers and complex algorithms to do parallel 

computing i.e. to divide large problems into smaller ones, distribute them among 

computers so as to solve them simultaneously. In this project we have 
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implemented some widely used scientific simulations namely fluid dynamics (fluid 

particles simulation), oil reservoir simulation and Black-Scoles (predicting price of 

option – finance). The aim of the project is to analyze the performance 

characteristics of compute intensive scientific applications on leading HPC 

architectures, namely distributed  memory (MPI), shared memory (threads or 

cores) and GPUs. We have examined performance bottleneck on these 

architectures, how to overcome these bottlenecks and what are the optimized ways 

of programming these applications on HPC architectures. 

In this document, after introduction we will be discussing High 

Performance Computing Architectures in both hardware and software perspective. 

Then we will describe the literature reviews of our proposed case studies. After 

that we will propose the design and implementation of these applications on 

different HPC architectures along with discussion on results. Finally we will show 

some visualization of the simulation and conclude our work. 
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Chapter 2 

HIGH PERFORMANCE COMPUTING 

ARCHITECTURES 

This chapter begins with an introduction to High Performance Computing 

(HPC) architectures. We will also discuss how the emergence of these 

architectures is affecting the mainstream hardware and software industry. Later, we 

will discuss two major types of HPC architectures: Shared Memory Architectures 

(SMA) and Distributed Memory Architectures (DMA). The emergence of 

multicore technology has also become the root cause for emergence of General 

Purpose Graphics Processing Units (GPGPUs) architectures. Moreover, recently 

the focus is on hybrid programming models like combining SMAs with DMAs 

along with GPUs to achieve the performance at its peak. Discussion has been 

made, about our test application of variant domains for this project, in the context 

of SMAs, DMAs and GPU accelerators. 

 

HARDWARE 

 In this chapter our focus will be on High Performance Computing 

Architectures. The widely used HPC architectures are: 

I. Shared Memory 
II. Distributed Memory : clusters 

III. Hybrid  
IV. GPUs  

 

Shared Memory Architectures 

 Shared memory architectures (SMA) vary widely, but generally have in 

common the ability for all processors to access all memory as global address space. 

Multiple processors can operate independently but share the same memory 
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resource. In SMAs the changes in a memory location made by one processor are 

visible to all other processors. SMAs can be further divided into two major classes 

based upon memory access times 

1. Uniform Memory Access (UMA) 
2. Non Uniform Memory Access (NUMA) 

In UMA, the main physical memory is accessed by all the processors. These 

processors exhibit cache coherency which means if one of the processors updates a 

location which is in shared memory, then rest of the processors know about the 

update.  

 

Figure 1: Shared Memory (UMA) 

Source [https://computing.llnl.gov/tutorials] 

The NUMA is often made by physically linking two or more symmetric 

multiprocessors. In this case, all the processors do not necessarily have equal 

access time to all the memories.  
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Figure 2: Shared Memory (NUMA) 

Source [https://computing.llnl.gov/tutorials] 

One of the major advantages of shared memory architectures is that global 

address space provided by it gives a user friendly programming approach to 

memory and the sharing of data between tasks is both fast and uniform.  

On the other hand, the main disadvantage of SMAs is scalability between 

memory and CPUs. If we add more CPUs then it can geometrically increase the 

traffic on the shared memory CPU path. The programmer’s job becomes tough in 

shared memory environment because of synchronization constructs to ensure the 

consistent global memory access. 

Distributed Memory Architectures 

  In Distributed Memory Architectures (DMAs), each processor has its own 

local memory. The memory addresses in one processor do not map to another 

processor, so there is no concept of global address space shared by all the 

processors. Distributed Memory systems require a communication network to 

connect inter processor memory. Each processor operated independently on its 

own local memory. The changes made by a processor to its local memory do not 

apply to the memory of other processors. In DMAs whenever a processor need to 

access data, which is present in the memory space of another processor’s memory, 

a communication across the network is needed. It becomes the task of programmer 

to explicitly define how and when data is communicated. The synchronization of 
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data among processors is also the programmer’s responsibility. The network fabric 

which is used to transfer data between different processors in DMA can vary in 

nature, but it can be as simple as Ethernet. 

 

Figure 3: Distributed Memory Architecture 

Source [https://computing.llnl.gov/tutorials] 

The major advantage of using DMAs is memory scalability with number of 

processors. If we go on increasing number of processors then the size of memory 

increases. The cache coherency overhead is removed as each processor can rapidly 

access its own memory without any interference. 

On the other hand, the main problem with DMA is that programmer is 

responsible of many of the details associated with the data communication between 

processors. Existing data structures based on the global address space need to be 

mapped to this memory organization.  

Hybrid Distributed-Shared Memory Architectures 

 A better approach in Parallel Computer Memory Architectures is to employ 

both shared and distributed memory architecture. This is called Hybrid Distributed-

Shared Memory Architectures (DSMA).  

In HDSMA, the shared memory component is usually a cache coherent 

symmetric multiprocessor (SMP) machine which means the processors on that 
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machine can address that machine’s memory as global. The distributed memory 

component is the network of multiple SMPs. In this case, SMPs know only about 

their own memory not the memory of other SMPs. Therefore, a communication 

through network is required to transfer data from one SMP to another SMP 

machine on the network. From last few years, the data from top500.org showed 

that HDSMAs have been prevailing. 

 

Figure 4: Hybrid Distributed Shared Memory Architecture 

Source [https://computing.llnl.gov/tutorials] 

General Purpose Graphics Processing Units (GPGPUs) 

 Few years back, GPUs were considered as specialized piece of hardware 

that is designed for maximum performance in graphics applications. Today, GPUs 

are considered as massively parallel many core processors easily available and 

fully programmable. In GPU market nVidia is the leading manufacturer that 

manufactures General Purpose GPU (GPGPU) i.e. Tesla, GeForce and Quadro 

series. The nVidia’s proprietary programming model for GPU programming is 

Compute Unified Device Architecture (CUDA). We will be discussing CUDA 

more briefly in our programming model section. The basis for using GPUs in 

parallel computing is (2): 

 High throughput computation 
 High bandwidth memory 
 High availability to all 
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 More specifically, GPUs are well suited to address problems that can be 

expressed as data parallel computations. In GPUs, same program is executed on 

many data elements in parallel with high arithmetic intensity (3).  

 

 

 

Figure 5: CPU and nVidia GPU basic architecture 

 

SOFTWARE 

Message Passing Interface 

Message Passing Interface (MPI) is API specification used to program 

compute Clusters by doing message passing between processors. MPI is a de-facto 

standard of the industry and HPC community. The idea is to exchange data which 

is stored in the address space of another process by means of simple routines, like 

send and receive, see figure 6. 
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Figure 6: MPI Inter Process Communication 

Source [https://computing.llnl.gov/tutorials/mpi/] 

The goal of the Message Passing Interface is to provide portability, 

efficiency and flexibility (4). There is no need to modify the source code when 

shifting to different platforms which support MPI and communication logic is 

decoupled from the program. 

Parallelism is explicit, requiring the programmer to indentify and exploit 

parallelism in the algorithm by using MPI routines. 

The flow is a MPI program is shown in figure 7. The program need the mpi 

header file (mpi.h or mpif.h), to initialize the environment MPI_Initialize() is 

called and to terminate MPI_Finalize() is called, in between is the parallel region 

where the programmer can use MPI routines.  
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Figure 7: MPI program flow 

Source [https://computing.llnl.gov/tutorials/mpi/] 

 

OpenMP 

OpenMP (5) (Open Multi-Processing) is an API for programming shared 

memory machines. OpenMP is a portable, scalable model that gives programmers 

a simple and flexible interface for developing parallel applications for platforms 

ranging from the desktop to the supercomputer. 
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OpenMP provides set of compiler pragmas, directives, function calls and 

environment variables that explicitly instruct the compiler where to use 

parallelism. 

OpenMP is based on fork and join model, the program begins as single 

main thread called the master thread. The master thread runs sequentially till 

other threads are spawned with the help of the fork operation. The program starts 

exploiting parallelism as the team works in parallel as shown in figure 8. 

Fork: the master thread creates a team of parallel threads. 

Join: When the team threads complete the statements in the parallel region 

construct, they synchronize and terminate, leaving only the master thread 

 

Figure 8: Fork and Join model 

Source [https://computing.llnl.gov/tutorials/openMP/] 
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CUDA 

In recent years there is a paradigm change observed with the advent of 

Graphics Processing Units (GPU) for general purpose computing. NVIDIA CUDA 

(Compute Unified Device Architecture) is a parallel computing architecture 

developed by NVIDIA (6). Using CUDA the GPUs are accessible to programmer 

for computation like CPU, that’s why GPUs are now being called “co-processors” 

(7). 

CUDA exploits Data Parallelism, where many threads perform the same 

operation on different data concurrently, also called SIMD (Single Instruction 

Multiple Data) illustrated in figure 9. 

 

Figure 9: Scalar vs. SIMD Operations 

Source [http://www.kernel.org/] 
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Figure 10: CUDA process flow 

Source [http://en.wikipedia.org/wiki/CUDA] 

 

A simple CUDA programs has the following flow, please refer to the figure 10 

1. Copy data from main memory to GPU memory. 

2. CPU instructs the process to GPU. 

3. GPU execute parallel in each core. 

4. Copy the result from GPU memory to main memory. 
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Chapter 3 

BACKGROUND AND LITERATURE REVIEW 

This chapter discusses the existing tools and technologies that are directly 

or indirectly related to our domain. Main focus will be on our proposed simulations 

(Fluidanimate, Oil Reservoir Simulation and Blackscholes,) and their existing 

implementations and working of their algorithms. We will be discussing each of 

the simulation one by one in depth. 

FLUIDANIMATE 

 Due to widely growing industry of animation and computer games, the 

significance of fluid simulation has drastically increased. Different algorithms and 

techniques are being used to animate the fluid so that a real impression can be 

achieved. Fluid animate is a particle physics simulation used to animate flow of 

incompressible fluids using SPH (Smoothed Particle Hydrodynamics) (8) method. 

This treats fluid as small particles having properties like pressure, velocity, 

acceleration, density and initial position vector in space. It is an Intel RMS 

application from PARSEC benchmark. SPH method uses particles to model the 

state of the fluid at discrete locations and interpolates intermediate values. The 

main advantage of SPH is automatic conservation of mass due to a constant 

number of particles. 

Fluid Particle Simulation Methods 

 There are various numerical approaches that are being used to simulate 

fluid dynamics. Some widely used numerical approaches are mentioned below (9): 

Grid Based (Eulerian) 

o Stable Fluids 
o Particle Level Set 



25 

 

 
 Particle Based (Lagrangian) 

o SPH (Smoothed Particle Hydrodynamics) 
o MPS (Moving-Particle Semi-Imlicit) 

 
 Height Field 

o FFT (Tessendorf) 
o Wave Propagation – e.g. Kass and Miller 
o Direct Simulation (Monte Carlo) (10) 
o Gas dynamics Flows 

 

 

In this implementation of fluidanimate problem, we would prefer Particle based 

SPH technique due to several advantages (11). 

 Conservation of Mass is trivial. 
 Easy to track free surface. 
 Only performs computation where necessary. 
 Not necessarily constrained to a finite grid. 

 

Fluidanimate Phases 

  Below are the five major steps that fluidanimate algorithm performs in 

each time step. 

 Initialize Simulation: This is the first and foremost step involved in fluid 
animate. In this phase, particle data is read from file and stored in data 
structures associated to particles, cells and grids. 
 

 Rebuild Grid: When the particle data is read in the initialization phase, then 
a rebuild grid phase starts. In this phase, particles are arranged in a logical 
data structure named cells and these cells further constitute a 3D grid.  
 

 Compute densities and forces: The actual compute intensive work is 
performed in this phase. In this phase, Particle-Particle interactions are 
calculated which is done in two sub phases. In first phase, the densities of 
the particles residing in Grid are calculated. The neighbour particles of each 
particle are calculated and then their effect is computed. When the densities 
of a particle and its neighbours are updated, then the second phase of force 
computation begins. In this sub phase, same steps are performed as 
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compute densities and the force on each particle and its neighbours is 
calculated. 
 

  Process Collisions: In this phase a particle-particle and particle to scene 
geometry collisions are calculated.   
 

 Advance Particles: Finally, due to updated densities and forces along with 
the collision of particles, the positions of these particles are updated. The 
particles move in the specified direction in the grid they reside. 
 
 

 Fluidanimate was implemented in PARSEC benchmark on shared memory 

architectures using pthread. The SPH solver written by PARSEC uses localized 

kernel, due to which a particle residing in a cell can be influenced by particles 

residing at maximum of its neighbour cells. 

Force Computation Methodologies 

There are two approaches which can be used to solve Fluidanimate problem 

 Tree Based Approach using Barnes Hut Algorithm 
 

 Sub Grid Partition Based Approach by dividing large Grid into smaller sub 
grids. 
 

 Due to localized effect of particles, we will use second approach in 

fluidanimate implementation because no far_field_force is being applied on 

particles, only nearest_neighbour_force is to be calculated. 
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OIL RESERVOIR SIMULATION 

Reservoir simulation combines use of mathematics, physics and computer 

programming to develop a tool for predicting hydrocarbon-reservoir performance 

under various operating conditions (12). In hydrocarbon-recovery projects capital 

investment of hundreds of millions is at stack, so the risk associated with the 

selected development plan must be assessed and minimized, therefore, need for 

reservoir simulation arises. 

The use of reservoir simulation is getting pivotal importance in the 

petroleum industry. Such pervasive acceptance can be attributed to advances in the 

computing facilities as discussed in chapter 1, advances in reservoir 

characterization technique (13).  

Reservoir Simulation Process 

The reservoir simulation process is shown in figure 11 which starts with the 

formation phase in which information about the reservoir’s geological properties is 

gathers which is then converted into mathematical model in the form of Partial 

Differential Equations (PDEs) with appropriate initial and boundary conditions. 

These equations represent important physical processes taking place in the 

reservoir for example, the flow of fluids partitioned into as many as three phases 

(oil, water, gas), and mass transfer between the various phases, effect of viscosity 

etc (12). PDEs obtained are then converted into set of Linear Algebraic Equations 

or System of Linear Equations (SLEs) and are solved for the unknowns i.e. 

pressure or saturation. 

 

Figure 11: Reservoir Simulation Process 

Formation PDEs
Linear Equations

[ Ax = b ]

Solve 

[ Ax = b ]

Result

[ Pressure, 
Saturation ]
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SLE Solvers 

The SLEs can be solved using two kinds of methods, below are few examples 

of each. 

I. Direct Methods: 

a. Gauss Elimination 

b. Cholesky decomposition 

II. Iterative Methods: 

a. Gauss Seidel 

b. Jacobi Method 

c. Conjugate Gradient 

 

The most time consuming part in the reservoir simulation is the solution of 

SLEs and this is what we aim to target in this project.  For large simulations the 

number of SLEs increases consequently increasing the size of the Matrix A which 

represents the SLEs. In Oil Reservoir Simulation the matrix A is Symmetric 

Positive Definite Matrix illustrated in figure 12. Notice that the matrix in figure 12 

is a Sparse Matrix – many zero entries. Typically Matrix formed from these PDEs 

is sparse symmetric positive definite matrices.  

A matrix A is positive-definite if, for every nonzero vector x, 

xT Ax > 0 

A symmetric matrix is a square matrix that is equal to its transpose, 

A = AT 
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Figure 12: 32x32 Matrix representing a 2D reservoir in 1 Phase 

[Figure from Ashraful and Tazrian UAEU HPC Summer School 2010 report] 

Direct methods 

Direct methods attempt to solve the problem by a finite sequence of 

operations. In the absence of rounding errors, direct methods would deliver an 

exact solution (14). 

The Direct Methods solve the system in fix number of steps. Direct 

methods are not suitable for large sparse matrices since number of non zero 

increases which increases computational complexity. 



30 

 

Iterative methods 

Iterative method is a mathematical procedure that generates a sequence of 

improving approximate solutions for a class of problems. A specific 

implementation of an iterative method, including the termination criteria, is an 

algorithm of the iterative method (14). 

The iterative methods are faster than the direct methods as the aim is to 

approximate the solution which depends on the termination criteria as how much 

precise results we need. 

The iterative methods are faster than the direct methods as the aim is to 

approximate the solution which depends on the termination criteria as how much 

precise results we need. 
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Why Conjugate Gradient Method 

Considering this problem we chose to use an iterative method to solve the 

SLEs, we chose the Conjugate Gradient Method (CG) figure 13, because of it 

being highly optimized for symmetric positive definite matrices and being an 

iterative method it can be applied to sparse systems to exploit the sparsity, 

otherwise such systems are too large to be handled by direct methods. 

 

Figure 13: Conjugate Gradient Method Algorithm 
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The Conjugate Gradient Algorithm 

Within CG the most compute intensive operation is the Matrix Vector 

Multiplication (line no. 8 in figure 13) which is O(n2). From the memory and 

communication point of view the update of vector P at the end of each iteration 

(line no. 14 in figure 13) in distributed environments is time consuming as P needs 

to be shared by all processes (15). In the process of optimization these factors will 

be considered vital. 

 

BLACKSCHOLES 

 The Blackscholes application is an Intel RMS benchmark used to calculate 

the prices for a portfolio of European options by using Black-Scholes partial 

differential equation. Black-Scholes formula is used in computing the value of an 

option. In some cases, e.g. European options, it gives exact solutions, but for 

others, more complex, numerical attempts are made in order to obtain an 

approximation of the solutions. Several numerical methods are used for solving the 

Black-Scholes equation, e.g. Finite element method (16) and Monte Carlo Option 

Model. 

 

Blackscholes Algorithm 

 Blackscholes formula is widely used method for calculating the option 

prices for a given portfolio of options. There are several assumptions underlying 

the Blackscholes model of calculating options pricing (17). The Blackscholes 

model also assumes stocks move in a manner referred to as a random walk; at any 

given moment, they are as likely to move up as they are to move down. These 

assumptions are combined with the principle that the options pricing should 

provide no immediate gains to either seller or buyer. 
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Chapter 4 

CASE STUDY I: FLUIDANIMATE 

This chapter includes all the relevant details of the design and analysis of 

the system, which comprises of main modules that will be implemented and 

optimized. We will also discuss the significance of the approach followed in 

parallelizing. 

 
FLUIDANIMATE 

 By performing the analysis of fluidanimate algorithm and profiling the 

serial implementation of fluidanimate provided in PARSEC benchmark, we 

concluded that its parallelization is somewhat more difficult due to 3D particle-

particle interaction and high data dependency. The algorithm follow particle-in-cell 

approach, which means the particles reside in Cells and these Cells then combine 

and form Grid. The challenge was to divide the Grid or cells into smaller chunks in 

such a way that work load must be balanced. 

Fluidanimate On Distribute Memory Cluster 

 The parallelization of fluidanimate on DMC (Distribute Memory Cluster) 

requires much effort. The input file for fluidanimate contains particles attributes 

e.g. density, viscosity and external acceleration. The data is read from the files and 

then Cells are formed which contain particles. This happens when simulation is 

initialized, after that the effect of other particles like force and density are 

calculated on current particles. Then, based on effect of these affects the particles 

are moved to new location in 3D grid. 
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Fluidanimate programe flow for DMCs 

   A basic flow of fluidanimate is shown in the figure 14 below; the most 

compute intensive part of the code is highlighted with red colour. 

 

Figure 14: Fluidanimate Parallel Flow 

 The profiling of Fluidanimate serial implementation resulted that the most 

compute intensive function is ComputeForcesDensities which needs to be 

parallelized. We will discuss the details of parallel design of fluidanimate later in 

this chapter. 
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 Each processor will calculate its neighbour processors and then start 

communicating ghost cell lists. For example, in this case, there were nine sub grids 

assigned to nine processors. Each of them will calculate its peer processors e.g. P0 

containing G0 will receive from none in x-direction but will send its boundary cell 

lists to adjacent processor P1 which contains G1 and same happens with P1, but 

here P1 will receive from its left neighbour and send to right neighbour P2. 

Similarly, the same pattern happens in y-direction (in 2-D).  

 When the communication of ghost cells is done, then each processor will 

compute effect of particles on its own cells as well as neighbour cells in the form 

of forces and densities. After that, when current frame finishes and next frame 

starts, then in RebuildGrid the communication of ghost cells happens again. These 

ghost cells are now updated in previous frame. RebuildGrid is responsible for 

placement of particles in cells based on their updated attributes. One thing should 

be kept in mind that all the communications that are happening are Blocking 

Communications (19). 

Fluidanimate MPI performance evaluation with blocking communication 

 The benchmarks were conducted on Barq cluster at NUST-SEECS, see 

appendix B2 for details of the machine.  

The data sets for Fluidanimate were varying in nature. The maximum data 

set was 0.5 million particles. When the experiments were performed, we obtained 

these results. 
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Fluidanimate MPI Speed up Results on Varying Data Sets 

 As we see that we achieve speedups as we increase the number of 

processors. On smallest dataset of 35,000 particles of fluid, we see irregular 

behaviour. The reason is that the computation to communication ratio decreases as 

we increase the processors. Fluidanimate MPI design consists of necessary 

communications which tend to decrease the performance on small datasets. 

Although the speedup gain seems acceptable on largest data set of 0.5 million 

particles but we can’t consider it a good speedup because on 16 processors, the 

speedup gain is about 3.7 which is not enough. 
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Fluidanimate MPI optimization 

 As we analysed the code, we concluded that we can overcome the blocking 

communication by using non-blocking communication. Non-Blocking 

communication in MPI has several advantages over blocking communication but 

harder to implement in code (20). 

 As we implemented the non-blocking communication, a code snippet of 

non-blocking send is shown below: 

 

 

 In this code, data distribution is being done in non-blocking manner.  

 

Fluidanimate MPI performance evaluation with non-blocking communication 

 As we implemented the code with non-blocking communication and 

analysed it, we observed good speedups. We performed the experiments on Barq 

(see appendix B2). The maximum data set was 0.5 million particles. When the 

experiments were performed, we obtained these results. 
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Fluidanimate MPI Non-Blocking Speed up Results on Varying Data Sets 

 Now as we see that using Non-Blocking communication the speedup is 

increased from 3.7 to 7.6 on maximum data set of 500,000 particles. As we see that 

we achieve speedups as we increase number of processors.  

A comparison of fluidanimate Blocking and Non-Blocking approach is shown 

inthe graph below: 
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Fluidanimate MPI blocking vs. Non-Blocking Time and Speedup comparison 

 We clearly see that by using Non-Blocking communication in MPI 

implementation of fluidanimate, we achieved significant time decrease and good 

speedups. Hence prove our hypothesis; using non-blocking communication in 

application with less computation to communication ratio causes significant 

increase in speedups. 
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Fluidanimate On Shared Memory Architectures  

 The parallelization of fluidanimate on SMA (Share Memory Architecture) 

can be done on different shared memory programming models like posix threads, 

openmp and cilk++. We have chosen OpenMP to parallelize fluidanimate 

application for SMAs due to fork-join model of OpenMP threads. The input file for 

fluidanimate contains particles attributes e.g. density, viscosity and external 

acceleration. The data is read from files and then Cells are formed which contains 

particles. This happens when simulation is initialized, after that the effect of other 

particles is calculated on current particles. Then, based on effect of these forces the 

particles is moved to new location in 3D grid. 

Deployment testbed for SMA 

 We have conducted experiments on our test bed which we call Raad. – see 

appendix [B3] for detail of the machine. 

Fluidanimate OpenMP design and implementation 

 By analysing the fluidanimate serial code, we suggest our first approach 

which is default parallelization using OpenMp parallel for constructs for loop 

parallelization. In this approach, OpenMP divides the total cells into chunk of cells 

and then assigns each chunk to corresponding thread. Each thread will be 

responsible for calculation on its chunk. There are different OpenMP scheduling 

techniques are available e.g. static, dynamic, default and guided. We implemented 

our proposed naïve implementation by using different scheduling techniques and 

then chose the best scheduling technique out of it and performed experiments. 
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OpenMP Scheduling techniques Comparison on Fluidanimate 

 The above results are from fluidanimate using different OpenMP 

scheduling techniques. We observed different behaviour of application under 

different scheduling algorithms. In fluidanimate, dynamic scheduling algorithm 

was performing poorly because dynamic scheduling performs well when there are 

non-uniform loops (21).  

 Since, the static scheduling technique has the least runtime overhead (21) 

as well as it is performing well in fluidanimate implementation so we will go with 

static scheduling algorithm. 

 A code snippet from ComputeForces of fluidanimate by OpenMP loop 
parallelization approach is shown below: 
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The most important thing to consider is that the memory is shared between 

threads, so synchronization problem can happen in shared environment. The 

section of the code which more likely needs synchronization is where cells are 

updated. We need to take care of boundary cells like when we are updating cells 

we have to check whether the cell is on boundary or not, if it is on boundary then 

we must maintain some lock to prevent access by other threads. 
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Fluidanimate OpenMP performance evaluation by loop parallelization – naïve 

approach 

 The benchmarks were conducted on Raad SMP machine at NUST-SEECS, 

see appendix B3 for details of the machine. The naïve approach results are given 

below: 
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 We observe a significant decrease of execution time by increasing no. of 

processors. The speed up graph is shown below:  

 

 

 

 

Fluidanimate OpenMP naïve implementation Speedup on varying data sets 

 As we see the speedups are increasing as the number of processors are 

increased. But we see that the speedups are not too much as we expected. The main 

reason behind it the cache locality. The analysis of the approach showed that the 

speedups were not up to the expectation because of larger cache miss rate. 
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Fluidanimate OpenMP optimized implementation results 

 We optimized the implementation and performed experiments on our Raad 

TestBed [B3]. The results were better than the naïve approach that we 

implemented earlier. Due to increased cache locality, application performed well 

and the speed ups were close to the expectation. Consider following speedup 

graphs: 
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Fluidanimate OpenMP Optimized implementation Speedup on varying data sets 

 We see that using Sub Grid based partitioning approach and manually 

launching threads on each sub grids improves the cache locality and hence 

speedups are almost double than the naïve approach. 
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Fluidanimate OpenMP naïve vs. optimized Time and Speedup comparison 

 We clearly see that by optimizing cache locality in share memory 

application we can significantly increase the performance. The speedup graph of 

fluidanimate at 16 processors using naïve approach does not scale well, but 

optimized version is much scalable on greater number of processors. 

  

Fluidanimate On Graphics Processing Units (GPUs) 

 GPU based implementation of fluidanimate is done using cuda. As 

discussed earlier in Design of fluidanimate that particles reside in Cells and then 

these Cells form World Grid. In our Cuda implementation of fluidanimate, each 

thread is being operated on a cell. It computes the forces and densities of residing 

particles of cell.  

Fluidanimate GPU implementation phases 

A basic flow of CUDA based approach is shown in the figure 20. The most 

compute intensive parts are highlighted with red colour. 
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Memory Allocation on CPU 

Memory Allocation on GPU 

 After memory allocation, we read particles data in CPU memory. Then next 

step is to copy data from host (CPU) memory to device (GPU) global memory 

where CUDA threads can have access to it. Following code transfer memory from 

host to device. 

  

Then we launch Kernels which will do the computation of different phases of 

fluidanimate.  
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A code snippet from ComputeForces_kernel is shown below: 

 

 

 

  

 When all the phases of Fluidanimate are completed then finally the data 

from device global memory is copied back to host memory. 
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Fluidanimate CUDA Speedup over CPU 

 

 As we see in the speedup graph that on smaller data sets of 35k the time 

difference between CPU and GPU is not big and hence the speed is just fine. But 

as the data set increases from 100,000 particles to 500,000 particles, we see a 

significant increase in speedups. Hence our GPU approach results better than that 

of GPU. 
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Chapter 5 

CASE STUDY II: OIL RESERVOIR SIMULATION  

 

This chapter includes all the relevant details of the design and analysis of 

the system, which comprises of main modules that will be implemented and 

optimized. We will also discuss the significance of the approach followed in 

parallelizing. 

 

OIL RESERVOIR SIMULATION  

` Oil Reservoir Simulation was implemented on all three HPC architectures 

discussed in chapter 1. In this chapter we discuss the implementation of the 

simulator with emphasizes on CG and its optimization and the study of benchmark 

results.  

The implementation can be divided in two parts, 

I. The Simulator 
II. The Solver 

 

The simulator is portion of the code which models the reservoir on the basis of 

grid dimensions, geological rock properties, properties of the fluids and forms 

system of linear equations which is sent to the solver for the solution. If the 

simulation is to be done for multiple time steps, the simulator prepares the system 

of linear equations again and sends to the solver for solution. Once the solution till 

desired time steps is found the simulator stores the results in a file, ready to be 

analysed. See figure 22. 
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Oil Reservoir Simulation on Distributed Memory Clusters 

The aim is to design and implement an efficient parallel CG with minimum 

degrading effect of inter process communication and better load balancing. 

There are two versions of CG in MPI, 

I. Naive - with blocking communication. 

II. Overlap computation and communication 

Naive - with blocking communication 

The first implementation is naive in a sense that the MPI inter process 

communication is not done cleverly because at the end of each iteration of CG 

vector P is gathered at root node and then broadcasted and this collective 

communication is entirely blocking. 

Domain Decomposition 

Suppose the System of Linear Equations is the matrix A of figure 23. The 

domain is decomposed in the form of horizontal blocks. The horizontal blocks are 

rows distributed to processes on the basis of number of nonzeros, refer to figure 

24, for the sake of demonstration there are 4 MPI processes. We achieved proper 

load balancing; refer to the load balance test graph below, figure 25. 
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Figure 23: Sample matrix A (sparsity view). 

[From the University of Florida Sparse Matrix Collection] 

 

 

Figure 24: Matrix A decomposed into horizontal blocks among 4 processes 
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Figure 25: Test for Load Balance 

Compute Intensive Sections 

As discussed earlier the most compute intensive section of the matrix-

vector multiplication (MVM, line no. 8 in figure 13, v = A.p) which is O(n2), and 

there are four vector-vector multiplications (VVM, line no. 9 and 13 in figure 13) 

which is O(n). For the VVM every process calculates its own chunk of vector-

vector product which is a scalar and a reduction is performed at the root node. 

Likewise the MVM is performed on every process which calculates its own chunk 

i.e. a portion of vector; this process is illustrated in figure 26. 
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Benchmark results 

The benchmark for the solver was conducted using a standard data set from 

NAS Parallel Benchmarks (NPB) (22) on the supercomputing facility at UAEU, 

see appendix B1 for details. 

 

Dataset: CLASS-S, size=1400, iteration=15, NNZ = 78148 
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Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104 
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Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072 
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Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058 
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Discussion on results 

As anticipated the blocking communication deteriorates the performance as 

number of processors increase. With Class-S the scalability is observed till 8 

processes, with Class-A till 32 processes but when the data set increases it affects 

the performance directly, larger the vector p more time the processes will consume 

in waiting than performing work. So with the Class-C speedups are witnessed till 

16 processors. When more processes are added its performance decreases. Stable 

load balancing was also achieved confirming that the data (work) was distributed 

approximately the same.   

 

  

Overlap computation and communication 

To solve the problem of waiting caused by blocking communication we use 

non blocking communication to overlap computation and communication. With 

this approach processes don’t have to wait for a gather and a broadcast after doing 

MVM but rather the communication is performed at the time of MVM. This 

approach is same as discussed in (23). To implement it there was a change needed 

in the domain decomposition strategy which will be discussed below. 

Domain Decomposition 

Like in the first approach (Naive) the matrix A is distributed among 

processes in the form of horizontal blocks, to accommodate the computation and 

communication overlapping strategy the horizontal blocks are divided into vertical 

blocks, four in our case as illustrated in figure 27. 
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Figure 27: Matrix A further divided into vertical blocks 

Compute Intensive Sections 

As discussed earlier our main aim is to overlap the computation of MVM 

and communication of vector p. This time instead of traversing the entire row at a 

time and multiplying it with the vector p we multiple it block after block, 

accumulating the result in the resultant vector. The entire MVM completes in 4 

steps in our case and generally in no. of processes steps. The processes are 

logically arranged in ring fashion, at the beginning of each step, before MVM there 

is a non-blocking communication between neighbours in which each process sends 

portion of vector p to its adjacent neighbour (rank-1) and receives from the other 

neighbour (rank+1), illustrated in figure 28. 
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Figure 28: Communication in a ring 

To put this in words: 

 Initially, rank 0 has chunk p0, rank 0 sends p0 to rank 3. 
 Initially, rank 1 has chunk p1, rank 1 sends p1 to rank 0. 
 Initially, rank 2 has chunk p2, rank 2 sends p2 to rank 1. 
 Initially, rank 3 has chunk p3, rank 3 sends p3 to rank 2. 

Where vector p = p0 + p1 + p2 + p3. 

The MVM and communication for step 1 is illustrated in figure 29. 
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Figure 29: Step 1 MVM 

Again the same process is followed but now the sender will send the values 

of p which it just received and the receiver will receive the values of p which will 

be useful for the MVM on next block, and the partial values of v found in this step 

are added to the values of v found in the previous step. 

  



71 

 

Figure 30 shows the progress of MVM and computation. 

 

Figure 30: Step 2 MVM 

Similarly, 

 

Figure 31: Step 3 MVM 

Every process sends and receives number of processes -1 chunks, so in the 

last step no further communication is needed every process has entire p. 
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Figure 32: Step 4 MVM 

After 4 steps (i.e. number of processes steps) the MVM ends, all the 

processes have the vector v found which will be required in the rest of CG. 

In this way we have avoided the gather and broadcast of p and overlapped 

communication and computation. 
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Benchmark results 

The benchmark for the solver was conducted using a standard data set from 

NAS Parallel Benchmarks (NPB) (22) on the supercomputing facility at UAEU, 

see appendix B1 for details. 

 

Dataset: CLASS-S, size=1400, iteration=15, NNZ = 78148 
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Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104 
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Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072 
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Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058 
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Speed up comparison 

Note: CLASS-W, size=7000, iteration=15, NNZ = 508402 
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Total Execution Time Class-C Naive (Broadcast) & Overlap  
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Discussion on results 

Improvements can be seen with the new approach, on larger datasets like 

Class-C & B good scalability was achieved but on smaller datasets like Class-S & 

A with increase in number of processes speedups drop because there is less work 

to do in MVM as compared to communication. So for real world applications 

where large reservoirs are modelled in which the matrices are in size of billions 

scalability can be achieved.  
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Oil Reservoir Simulation on Shared Memory Processors 

The aim is to design and implement CG solver for multicore processors and 

SMP machines, where the main memory is shared among cores/processors, cache 

coherence can be a problem (24). The focus of optimization here is also on MVM. 

There are two implementations in OpenMP based on the domain 

decomposition of source matrix A, see figure 33 for demonstration suppose total 

number of threads are 4.  

I. Row Partition 
II. Block Partition 

 

Figure 33: Row Partition [left] and Block Partition [right] 

In both, the sparse matrix A is stored in CSR (Compressed Sparse Row) a 

widely used format for storing sparse systems (25). It only stores the nonzero 

elements with its column index, and the index of the first non-zero elements of 

each row, see figure 34. 
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Figure 34: Representation of matrix A in CSR format 

From (26) 

There are other sparse storage formats other than CSR which include CSC 

(Compressed Sparse Column) same as of CSR but row index are stored, BCSR 

(Blocking with Padding), BCSD (Blocked Compressed Sparse Diagonal), 1D-VBL 

(One-dimensional Variable Block Length), VBR (Variable Block Row) and more, 

refer to figure 35 for a graphical look of these different storage formats. Studies 

(27) suggest that the change of internal storage format as compared to CSR has 

little positive effect on the performance of Sparse MVM. CSR is also simple to use 

as does not require painstaking processes of finding optimum block size for 

submatrices and aligning the rows and columns afterwards. 

 

Figure 35: How the different blocking storage formats split the input matrix into 
blocks 

From (27) 
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Row Partition 

When the matrix A is partitioned into rows, each thread is assigned an 

iteration in which it gets one row at a time and multiplies it with the vector p and 

stores the result in vector v, see figure 36 which shows how it is implemented. 

Figure 36: Simple Sparse MVM in CSR format 

The problem with this approach is that the entire vector p is accessed in an 

irregular fashion, therefore when vector p is larger more cache misses are 

anticipated. 
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Benchmark results 

The benchmark was conducted on Raad SMP machine at NUST-SEECS, 

for details of the machine see appendix B3. Dataset used came from NAS Parallel 

Benchmarks (NPB) (22). 

 

Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104 
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Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072 
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Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058 

 

Discussion on results 

Scalability was achieved in the tests but as anticipated when the large 

system is simulated the speed-ups are relatively less. Because the vector p gets 

larger the irregular way of accessing p results in many caches misses. 
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Bock Partition 

This time the matrix A is partitioned into blocks. From the figure 37 it is 

easy to understand that in sparse MVM thread no. 0 & 2 need first portion of the 

vector and thread no. 1 & 3 need the other, in this way we have successfully 

reduced the access space of the vector. As the access space for the vector is 

decreased we anticipate decrease in cache misses.  

 

Figure 37: MVM with Block Partitioning of matrix A 
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Benchmark results 

The benchmark was conducted on Raad SMP machine at NUST-SEECS, 

for details of the machine see appendix B3. Dataset used came from NAS Parallel 

Benchmarks (NPB) (22). 

 

Dataset: CLASS-A, size=14000, iteration=75, NNZ = 1853104 
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Dataset: CLASS-B, size=75000, iteration=75, NNZ = 13708072 
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Dataset: CLASS-C, size=150000, iteration=75, NNZ = 36121058 

 

Discussion on results 

With block partitioning better speedups were obtained with dataset Class-C 

which is the largest. With Class-B super linear speedups were witnessed. On the 

smallest dataset Class-A performance was affected a little bit because the overhead 

of accumulation of results from threads after MVM which was done locally.  
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Oil Reservoir Simulation on GPUs 

The CG solver was implemented in CUDA for nvidia GPUs. In the GPU 

there is limited memory and the access to global memory is expensive, if the sparse 

matrix is stored in CSR format it will take more space and more access as 

compared to DIA (Diagonal Sparse Matrix) format. The matrices as discussed in 

chapter 2 the matrices from Oil Reservoir Simulation have a structure, for 1D 

simulation for matrix is tridiagonal, for 2D its pentadiagonal and for 3D its 

heptadiagonal. This symmetry can be exploited by only storing the nonzero values 

of matrix in an array and in the offset between diagonals in a separate array. See 

Figure 38. 
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Bellow is explaination of different kernels. 

MVM kernel 

Figure 39 show the code snippet of the MVM kernel, each thread is 

assigned a unique row which it multiplies with the vector. The column and row 

indices are calculated at runtime and the values are only fetched.  

 

Figure 39: CUDA MVM kernel 

VVM and Reduction kernel 

As we know that the result of VVM is a scalar, that means threads in 

different thread blocks not only have to perform simple multiplication but also a 

complex synchronous reduction process. This reduction process is divided into two 

phases. In the first phase inter block reduction is performed in which threads in a 

block participate to reduce the portion of result which is stored in shared memory 

of that block, see figure 40 and figure 41.  
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Figure 43: VV Addition 

Benchmark results 

The benchmark was conducted on GPU test best at NUST-SEECS, see 

appendix B4 for details of the machine. An Oil Reservoir with 3072 x 4096 grid 

dimension (2D) was simulated with 5 time steps. Matrix dimension is 12582912 x 

12582912, nnz = 62914560, nx = 3072, ny = 4096. 

Benchmark included Total Time, Computation Time, Memory Copy Time, 

and Kernel Time; here the time is in seconds. 

Total Time (sec) Computation Time (sec) Memory Time (sec) 

2.830271000000000203 1.880077999999999916 0.1708369999999999889 

 

Figure 44: Percentage of time spent on different operations 
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Discussion on results 

We achieved 12x speed-ups for the entire application, which included 

formation of PDEs to system of linear equations and their solution for multiple 

time steps. All operations were performed in double precision.  
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Chapter 6 

CASE STUDY III: BLACKSCHOLES 

This chapter includes all the relevant details of the design and analysis of 

the system, which comprises of main modules that will be implemented and 

optimized. We will also discuss the significance of the approach followed in 

parallelizing. 

BLACKSCHOLES 

 The Blackscholes formula and its technique to calculate option prices for 

portfolio of options describes that Blackscholes is the simplest in nature. Its 

domain decomposition is simple due to the non-dependency of the option data 

which means that only option data is sufficient to calculate price for that particular 

option. So, inter-processors communication overhead is almost zero.  

Blackscholes On Distribute Memory Clusters 

 We will be discussing Blackscholes parallelization on Distribute Memory 

Machines. We will also be evaluating these techniques later in this chapter. 

 

Domain Decomposition 

 This is the most important and foremost step in any parallel application. 

The input data, which in our case is Option Data, is read from input file. This data 

has to be parallelized in such a way that the work distribution on all the processors 

should be balanced. The domain decomposition phase is very dynamic task and it 

strongly depends on the cluster’s architecture underneath.   
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Design 

 Due to simplest data parallel nature of Blackscholes, we use simple row 

based partition approach. In this approach, we divide the total number of options 

by total number of processors to get a subset of options data set.  

 These chunks are then equally distributed among the processors by a 

collective call. Then each MPI process computes option prices for its own chunk of 

options. When all the processors are done with computation, they send back results 

and results are saved. 

 Basic Flow of Blackscholes in distribute memory is shown below 

 

Figure 45: Basic Flow of Blackscholes in distribute memory 

In this flow diagram of Blackscholes, the compute intensive part is 

highlighted by red colour. We are actually parallelizing this part. 
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Implementation 

 As discussed in design of Blackscholes that the analysis of the code shows 

that the option price calculation is more time consuming, so we need to parallelize 

this function. 

A code snippet of serial version of the compute intensive function is given below:  

 

 

 

The computeFormula function does all the computation. In serial approach, the 

main loop which iterates over N options. In MPI based parallel approach we divide 

this main for loop, and get smaller chunks of options data.  

Options_chunk = total_num_options / total_num_processors 

Then each process will be iterating over Options_chunk instead of N options. 
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Blackscholes MPI Timing Results on Varying Data Sets 
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Blackscholes On GPUs 

 GPU based approach is somewhat more complicated than MPI approach in 

which we simply divide the options. In CUDA based approach, we have to take 

much care of the efficient memory access and make sure that SIMD (Single 

Instruction Multiple Data) operations are being performed in order to best utilize 

CUDA threads. 

 Basic Flow of Blackscholes for GPU parallelization approach is shown 

below: 

 

Figure 47: GPU based parallelization approach to Blackscholes 

 In this flow diagram of Blackscholes, the compute intensive part is 

highlighted by red colour. We are actually parallelizing this part. 
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 The BlackScholesGPU function does all the computation. In serial 

approach, the main loop which iterates over N options. In cuda based parallel 

approach we multiple threads operate on data in parallel. 

 

Benchmark results 

The benchmarks were conducted on CUDA Testbed at NUST-SEECS, see 

appendix B4 for details of the machine. 

GPU performance evaluation – naïve approach 

 We will first evaluate our naïve implementation of Blackscholes. The data 

sets for Blackscholes were varying in nature. The maximum data set was 10 

million options. When the experiments were performed, we obtained these results 

on our Cuda TestBed. 

 

 

 In these graphs, we see that the speed up is being increased as we go on 

increasing the number of options. The reason is that, on smaller data set, CPU also 

takes less time, although not lesser than GPU. But as the number of options 

increases the CPU time becomes greater and greater but GPU time does not 

increase too much. 

Speed up 

Num Options

0
200
400
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800
1000
1200
1400
1600
1800

4096 16384 65536 10000000

GPU Speedup over CPU
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GPU Naïve Approach Problem 

 In naïve approach (using structure of OptionData), when we analysed the 

code, we came to know that using OptionData structure would rise the major issue 

of poor memory accesses in parallelization on GPU which is called uncoalesced 

approach.  

 As we know that GPUs operate on SIMD (Single Instruction Multiple 

Data) mechanism. If data is in multiple of 4-bytes e.g. (integers or float) and 

present on consecutive memory locations, so that each thread should access them 

in parallel manner, it is called coalesced memory access. To understand the 

concept of Coalescing and Non-Coalescing consider the following figure. 

 

 

 

 

 

 

 

In our naïve implementation, where data is in the form of structure of 

options is the cause of non-coalescing. To understand the problem, consider the 

following figure: 

 

Figure 49: Memory Accesses in non-coalesced fashion 

Figure 50: Memory Accesses in Perfectly Coalesced fashion 
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Chapter 7 

VISUALIZATION 

FLUIDANIMATE 

Properties of the demo: 

1. Gravity Effect and Collision Demo 
2. Num particles = 35K  
3. External Acceleration is applied TOWARDS the gravity 

 

 

Figure 54: Initial stage, Fluidanimate demo 
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Figure 55: After 53 frames, Fluidanimate demo 
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Figure 56: After 90 frames, Fluidanimate demo 

This and more demos are uploaded on YouTube, refer to the links below. 

FYP Demo Video – 01 Gravity Effect and Collision Demo 
Num particles = 35K 
External Acceleration is applied TOWARDS the gravity. 
http://www.youtube.com/watch?v=2djzOTsTZRQ  
 
FYP Demo Video – 02 Gravity Effect and Collision Demo 
Num particles = 35K 
External Acceleration is applied TOWARDS the gravity. 
http://www.youtube.com/watch?v=wOcqX0dCjJQ  
 
FYP Demo Video – 03 Fluid Initial Compression of empty space Demo 
Num particles = 100K 
External Acceleration is applied towards the gravity. 
http://www.youtube.com/watch?v=7yZvWBDhUkE  
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OIL RESERVOIR SIMULATION 

Properties of the demo: 

Available on YouTube: http://www.youtube.com/watch?v=J6J0TO0Q_MQ 

1. A reservoir was discretized into 50 x 8 grid points. 
2. 4 oil producing wells were installed on grid point (10, 0), (11, 0), (20, 0) 

and (21, 0) with 600, 400, 600, and 400 STB/D production rate. 
3. On the basis of flow of fluids in the reservoir PDEs (Partial Differential 

Equations) were formed. 
4. The PDEs were converted into Linear Equations. 
5. The system of Linear Equation was solved using Parallel CG for Pressure 

of the reservoir. 
6. The simulation ran for 400 time steps where Delta T (change in Time) for 5 

days.  

 

 

 

Figure 57: Initial stage, Oil Reservoir Simulation demo 
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Figure 58: After 350 days, Oil Reservoir Simulation demo 
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Figure 59: After 1125 days, Oil Reservoir Simulation demo 

Figure 60: After 1975 days, Oil Reservoir Simulation demo 
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Chapter 8 

CONCLUSION & FUTURE WORK 

The aim of our proposed project was to implement some widely used 

scientific simulation on state of the art High Performance Computing 

Architectures. The three simulations were chosen as case study to achieve this 

goal. We implemented these applications on Distributed Memory Architectures, 

Shared Memory Architectures and Many Core GPUs. We designed and 

implemented these simulations in an optimized way and proved the research 

hypothesis; the algorithm design approach we followed can lead to best optimized 

implementation. We proposed different possible implementation and discussed 

their pros and cons and finally we proposed some best possible techniques to 

overcome the flaws of existing non-scalable parallelization approaches. We 

discussed the results of each parallelization technique, implemented and suggested 

some improvement in existing algorithms which could lead to significant 

performance increase. Finally, we demonstrated our application by providing 

visualization to these applications. Although the visualizations were not rendered 

on real time but the basic purpose of visualization was to demonstrate the concept 

behind these simulation. 

We have implemented these scientific applications on different HPC architectures, 

in future the project can be taken a step further where nested parallelism can be 

used i.e. MPI + OpenMP and the applications can also be ported to hybrid 

architectures i.e. MPI + CUDA. 
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Chapter 8 

Appendix 

 

 

A1 

The Matrix Market (MM) exchange formats provide a simple mechanism to 

facilitate the exchange of matrix data. The file formats were designed and adopted 

for the Matrix Market, a NIST repository for test data for use in comparative 

studies of algorithms for numerical linear algebra. 

B1 

 Xeon Intel Quad Core 5355 
 100 Computing node - 200 CPU 
 800 coreQuad Core 2.66 GHZ 
 8.320 TeraFlops of Computing Power 

B2 

It is a cluster comprising of nine nodes connected through a 24 port Gigabit 

Ethernet switch. Each node has 4 GB of main memory and contains an Intel Xeon 

Quad-Core Processor (28). The processor is clocked at 2.4 GHz with a rated FSB 

of 1066 MHz. The processor is a Multi-Chip Module (MCM) and is not a pure 

quad core design. Each two cores share an L2 cache of 4MB making a total of 8 

MB cache for the entire chip. Each core has a 32 KB L1 Data and Instruction cache 

with 8-way set associatively. L2 cache is 16-way set associative and has 64-byte 

line size.  

B3 

It is a cluster comprising four nodes connected through Myrinet Optical Fibre 

Gigabit Ethernet and Fast Ethernet. The cluster contains 64 Ultra SPARC IV+ 
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processors. Each node contains 16 processors (SMA). The cluster has total of 

128GB memory installed on it. We performed our experiments on one node of the 

cluster having 16 processors with shared memory. 

B4 

Before we go into the detail discussion of performance, we will discuss our 

Deployment TestBed. We have conducted experiments on our test bed which we 

call CUDA TestBed. It contains Intel’s Nehalem microarchitecture Quad-core 

processor with capability of launching eight hardware threads. It also has eight GB 

of system memory installed on it along with GTX 480 graphics card powered by 

nVidia. NVidia is considered a leading GPU manufacturer in the market. Its GTX 

480 is considered a giant in GPU computing. It has 480 CUDA cores with 

processing clock of 1401 MHz. 

 


