Improving
performance for
Matrix Multiplication
in CUDA

We started offwith Sparse Matrices

* Various representation formats of Sparse
Matrices — COO, CSR, CSC, ELLPACK.

* Sequential algorithm for COO & CSR

Switched from Sparse to Dense

Matrices

* For the CUDA implementation of Sparse
Matrix multiplication, we started with
simple dense matrix multiplication.

* Main task : Understand and compare
Throughput oriented design (GPU) and
Latency oriented design (CPU).

* Stuck to Matrix multiplication as the
application — utilize the availability of
SIMD.

Understanding the impact on
performance

* Understanding the thread organization for
CUDA

* CUDA Memories

* Use of GPU and CPU together to further
enhance the performance.

Thread Organization

» Utilizing all the available threads in
Streaming Multiprocessor of FERMI

Max number of resident threads per
multiprocessor — 1536

Max number of blocks per multiprocessor — 8
Max number of threads per block — 512

* |[dentified the optimum number of threads
per block and blocks per grid.

16*16 is the optimum number of threads
per block to achieve max performance.

CUDA Memories

* Device code can:

- R/W per-thread registers

— R/W per-thread local memory
— R/W per-block shared memory
- R/W per-grid global memory

- Read only per-grid constant

memory

* Host code can

— Transfer data to/from per-grid
global and constant memories

(Device) Grid

Block (0, 0)

o o

Block (1, 0)

’

Thread (0, 0)

Thread (1, 0) || | Thread (0, 0) || Thread (1, 0)

T

1 1

Host

CUDA Memories

* Global memory resides in device
memory(DRAM) which is much slower to
access than shared memory

* Tiling the data, is a way to achieve higher
performance to take advantage of shared
memory.

* Access the Global memory once and save
it in the shared memory and utilize the
same.

Reduction

* A reduction algorithm extracts a single
value from an array of values.

Thread O Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

Iterations Array elements ——

CPU and GPU together

* Can CPU perform reduction better than
GPU?

* Moving the vector multiplication result
from GPU to CPU and perform reduction
on CPU.

#All images taken from Programming Massively Parallel Processors

