
Speculative Parallelization

Devarshi Ghoshal

10/10/2011 Indiana University, Bloomington 1

Agenda
• Speculative Parallelization

• FastForward-A Speculation using Checkpoint/Restart

• System Design

• Software-based Speculation Systems

• Analysis

• Performance Benchmarks

• Current Status

• Future Work

• References

10/10/2011 Indiana University, Bloomington 2

Speculative Parallelization
• A technique to execute loops, which cannot be

classified as ‘parallel at compile time’, in parallel

• Writing with sequential semantics & letting the

system figure out whether a region can really be

parallelized safely

• In case of any dependency, the involved iterations

are stopped and re-executed ‘in order’

10/10/2011 Indiana University, Bloomington 3

Execution Semantics-
Case 1: Correct Speculation

1S

2S

3S

1
V

2
V

3
V

Case 1: All speculations are correct

S – Speculator
V – Verifier

10/10/2011 Indiana University, Bloomington 4

Case 2: Incorrect Speculation

Case 2: Result of 2S is wrong

1S

2S

3S

1
V

2
V

3
V

3S
3
V

S – Speculator
V – Verifier

10/10/2011 Indiana University, Bloomington 5

FastForward- Speculation using

Checkpoint/Restart

• Checkpoint/Restart
o Duplicate and unroll processes dynamically

• No intervention by the kernel
o Everything occurs in user-space

o Low overhead, maximum portability

• Distributed speculation over clusters
o Using DMTCP

o High interconnection networks for migrating and exchanging data

10/10/2011 Indiana University, Bloomington 6

Example

10/10/2011 Indiana University, Bloomington 7

void foo(){
 double a[NUM_ELEMENTS];
 double r[NUM_ELEMENTS];
 int p[NUM_ELEMENTS];
 :
 for(i = 0; i < NUM_ELEMENTS; i++){
 a[p[i]] = compute_some_value();
 }
 :
 for(i = 0; i < NUM_ELEMENTS; i++){
 r[i] = use_value(a);
 }
 :
}

FastForward Transformed
Program

10/10/2011 Indiana University, Bloomington 8

void foo(){
 double a[NUM_ELEMENTS];
 double r[NUM_ELEMENTS];
 int p[NUM_ELEMENTS];
 :
 for(i = 0; i < NUM_ELEMENTS; i++){
 a[p[i]] = compute_some_value();
 }
 :
 for(i = 0; i < NUM_ELEMENTS; i++){
 r[i] = use_value(a);
 }
 :
}

void foo(){
 :
 if((type=dmtcpCheckpoint()) == VERIFIER){
 for(i = 0; i < NUM_ELEMENTS; i++){
 a[p[i]] = compute_some_value();
 }
 }
 else{ // SPECULATOR
 #pragma omp parallel for
 for(i = 0; i < NUM_ELEMENTS; i++){
 a[p[i]] = compute_some_value();
 }
 }
 :
}

Execution Pattern

10/10/2011 Indiana University, Bloomington 9

Verifier-3

Speculative
region-1

Speculative

region-2

Speculative
region-3

Sequential
region-1

Sequential
region-2

Sequential
region-3

Verifier-2

Verifier-1

∆t

FastForward-ed
Program

Original
Program

Intra-node FastForward

10/10/2011 Indiana University, Bloomington 10

Inter-node FastForward

10/10/2011 Indiana University, Bloomington 11

Implementation

10/10/2011 12

• Directory-Service

• MPI-Helper threads:
• Remote-communication

Thread

• Local-communication Thread

• Multi-level speculation

• One speculator, many

verifiers model

Indiana University, Bloomington

Speculating

Idle

Verifying

FF_fork

Kill_from_parent,

Verifier_fails

Kill_from_parent,

Verifier_succeeds

Software-based
Speculation Systems

• FastTrack

• Software Behavior Oriented Parallelization

• Transaction Memory

10/10/2011 Indiana University, Bloomington 13

Fast Track
• Creates dual track regions which involves code that

can be run speculatively

• Runs unoptimized code parallely (against
sequential version) on multiple processors

• Checks correctness after sequential version is
executed

• Proceeds with speculative version if results are
correct / sequential version otherwise

10/10/2011 Indiana University, Bloomington 14

Loop Semantics

10/10/2011 Indiana University, Bloomington 15

Function Semantics

10/10/2011 Indiana University, Bloomington 16

System Design
• Compiler support

o Records changes made by both dual track regions

o Compiler’s inherent support for stack variables

o Copy on write + access map for global & heap

• Run time support
o Transfer pages of modified data using shared pipe

o Compare memory state at the end of dual track region

10/10/2011 Indiana University, Bloomington 17

System Limitations
• No Fault Tolerance

• Kernel Patching

• Limited Use of Resources

• Special care for all Program Termination Points

inside Speculative Region

10/10/2011 Indiana University, Bloomington 18

Software Behavior
Oriented Parallelization

• Programmable software speculation
o Program parallelized based on “partial” information about program

behavior

o User or analysis tool marks “possibly” parallel regions

o Runtime system executes these regions speculatively

• Critical-path minimization

• Value-based correctness checking

• No change to the underlying hardware or

operating system

10/10/2011 Indiana University, Bloomington 19

System Design
• Possibly Parallel Regions (PPR)

o Marking the start and end of the region with matching markers: BeginPPR(p)
and EndPPR(p)

• Protects the entire address space by dividing it into
possible shared and privatizable subsets

• The execution starts as the “lead” process

• Uses concurrent executions to hide the speculation
overhead off the critical path

• At a (pre-specified) speculation depth k, up to k
processes are used to execute the next k PPR instances

10/10/2011 Indiana University, Bloomington 20

State Isolation

• Thread-based systems
o Weak isolation

o The updates of one thread are visible to other threads

• BOP
o Strong isolation

o The intermediate results of the lead process are not made visible to

speculation processes until the lead process finishes the first PPR

o Strong isolation comes naturally with process-based protection

10/10/2011 Indiana University, Bloomington 21

System Limitations
• No Fault Tolerance

• Limited Use of Resources

• Extra care for handling of “lead” process

• Validation Overhead
o Three types of data protection

• Page-based protection of shared data

• Value-based checking

• Likely private data

10/10/2011 Indiana University, Bloomington 22

Amdahl’s Law
• Used to find Speedup for some enhancement

• Fraction(enhanced) - The fraction of the computation

time in the original computer that can be converted to

take advantage of the enhancement

• Speedup(enhanced) - The improvement gained by the

enhanced execution mode; that is, how much faster the

task would run if the enhanced mode were used for the

entire program

10/10/2011 Indiana University, Bloomington 23

Mathematical Analysis
The maximum speedup, S, is given by:

𝑆 =
𝑡

𝑇𝑠

Speculation-enabled computation time,

𝑇𝑠 = 𝑇 +
𝑝𝑘𝑇

𝑠
+ 1 − 𝑝 𝑘𝑇

Total running time of the original code, 𝑡 = 𝑇 𝑘 + 1

where,
𝑘: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑖𝑜𝑛𝑠
T: time to execute each region
s: speedup of each speculative region
p: probability of each successful speculation
and , there is 1 non-speculative region

10/10/2011 Indiana University, Bloomington 24

Performance Benchmarks
• Intra-node FastForward

10/10/2011 Indiana University, Bloomington 25

Using Shared-memory Using Named-pipes

Performance Benchmarks
(cont.…)

• Inter-node FastForward

10/10/2011 Indiana University, Bloomington 26

Varying the speedup of speculative version over
non-speculative

Varying the available depth of speculation

Performance Benchmarks
(cont.…)

10/10/2011 Indiana University, Bloomington 27

Varying the size of data to be compared
for verification

Varying the size of checkpoint data Varying the probability of speculation success

Advantages over Existing
Systems

• No Parent-Child Process Relationship

• Inherent Fault Tolerance

• Efficient Use of resources in a Cluster

10/10/2011 Indiana University, Bloomington 28

Current Limitations
• Local communication using pipes

• Reading check-pointed data through NFS

• Only supports basic data-types

• High Energy Usage

10/10/2011 Indiana University, Bloomington 29

Future Work
• Extending the system to support recursive data-

structures and memory references

• Optimizing Implementation
o Shared memory implementation for inter-node FastForward

o Incremental checkpointing

o Checkpointing into memory

• Extending support to higher-level scripting

languages

10/10/2011 Indiana University, Bloomington 30

References
• Devarshi Ghoshal, Sreesudhan R Ramkumar, and Arun

Chauhan. Distributed Speculative Parallelization using Checkpoint
Restart. In Proceedings of the International Conference on
Computational Science (ICCS), 2011.

• L.-L. Chen, Y. Wu, Aggressive compiler optimization and parallelization
with thread-level speculation, in: International Conference on Parallel
Processing (ICPP), 2003

• K. Kelsey, T. Bai, C. Ding, C. Zhang, Fast Track: A software system for
speculative program optimization, in: Proceedings of the International
Symposium on Code Generation and Optimization, 2009, pp. 157–168

• N. Shavit, D. Touitou, Software transactional memory, in: Proceedings of
the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing, 1995, pp. 204–213

• J. Ansel, K. Arya, G. Cooperman, DMTCP: Transparent checkpointing for
cluster computations and the desktop, in: Proceedings of the 23rd IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2009

• C. Tian, M. Feng, V. Nagarajan, R. Gupta, Speculative parallelization of
sequential loops on multicores, International Journal of Parallel
Programming 37 (5) (2009) 508–535

10/10/2011 Indiana University, Bloomington 31

10/10/2011 Indiana University, Bloomington 32

Questions & Clarifications

