
Speculative Parallelization 

Devarshi Ghoshal 

10/10/2011 Indiana University, Bloomington 1 



Agenda 
• Speculative Parallelization 

• FastForward-A Speculation using Checkpoint/Restart 

• System Design 

• Software-based Speculation Systems 

• Analysis 

• Performance Benchmarks 

• Current Status 

• Future Work 

• References 

10/10/2011 Indiana University, Bloomington 2 



Speculative Parallelization 
• A technique to execute loops, which cannot be 

classified as ‘parallel at compile time’, in parallel  

 

• Writing with sequential semantics & letting the 

system figure out whether a region can really be 

parallelized safely 

 

• In case of any dependency, the involved iterations 

are stopped and re-executed ‘in order’ 
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Execution Semantics- 
Case 1: Correct Speculation 
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Case 1: All speculations are correct 

S – Speculator 
V – Verifier 
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Case 2: Incorrect Speculation 
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FastForward- Speculation using 

Checkpoint/Restart 

• Checkpoint/Restart 
o Duplicate and unroll processes dynamically 

 

• No intervention by the kernel 
o Everything occurs in user-space 

o Low overhead, maximum portability 

 

• Distributed speculation over clusters 
o Using DMTCP 

o High interconnection networks for migrating and exchanging data 
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Example 
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void foo(){ 
 double a[NUM_ELEMENTS]; 
 double r[NUM_ELEMENTS]; 
 int p[NUM_ELEMENTS]; 
 : 
 for(i = 0; i < NUM_ELEMENTS; i++){ 
  a[p[i]] = compute_some_value(); 
 } 
 : 
 for(i = 0; i < NUM_ELEMENTS; i++){ 
  r[i] = use_value(a); 
 } 
 :  
} 



FastForward Transformed 
Program 
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void foo(){ 
    double a[NUM_ELEMENTS]; 
    double r[NUM_ELEMENTS]; 
     int p[NUM_ELEMENTS]; 
     : 
    for(i = 0; i < NUM_ELEMENTS; i++){ 
        a[p[i]] = compute_some_value(); 
    } 
    : 
    for(i = 0; i < NUM_ELEMENTS; i++){ 
        r[i] = use_value(a); 
    } 
    :  
} 

void foo(){ 
    : 
    if((type=dmtcpCheckpoint()) == VERIFIER){ 
        for(i = 0; i < NUM_ELEMENTS; i++){ 
            a[p[i]] = compute_some_value(); 
        } 
    } 
    else{ // SPECULATOR 
        #pragma omp parallel for 
        for(i = 0; i < NUM_ELEMENTS; i++){ 
            a[p[i]] = compute_some_value(); 
        } 
    } 
    : 
} 



Execution Pattern 
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Intra-node FastForward 
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Inter-node FastForward 
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Implementation 
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• Directory-Service 
 

• MPI-Helper threads: 
• Remote-communication 

Thread 

• Local-communication Thread 

 

• Multi-level speculation 
 

• One speculator, many 

verifiers model 
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Software-based 
Speculation Systems 

• FastTrack 

 

• Software Behavior Oriented Parallelization 

 

• Transaction Memory 
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Fast Track 
• Creates dual track regions which involves code that 

can be run speculatively 

 

• Runs unoptimized code parallely (against 
sequential version) on multiple processors 

 

• Checks correctness after sequential version is 
executed 

 

• Proceeds with speculative version if results are 
correct / sequential version otherwise 
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Loop Semantics 
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Function Semantics 
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System Design 
• Compiler support 

o Records changes made by both dual track regions 

 

o Compiler’s inherent support for stack variables 

 

o Copy on write + access map for global & heap 

 

• Run time support 
o Transfer pages of modified data using shared pipe 

 

o Compare memory state at the end of dual track region 
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System Limitations 
• No Fault Tolerance 

 

• Kernel Patching 

 

• Limited Use of Resources 

 

• Special care for all Program Termination Points 

inside Speculative Region 
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Software Behavior 
Oriented Parallelization 

• Programmable software speculation 
o Program parallelized based on “partial” information about program 

behavior 

o User or analysis tool marks “possibly” parallel regions 

o Runtime system executes these regions speculatively 

 

• Critical-path minimization 

 

• Value-based correctness checking 

 

• No change to the underlying hardware or 

operating system 

10/10/2011 Indiana University, Bloomington 19 



System Design 
• Possibly Parallel Regions (PPR) 

o Marking the start and end of the region with matching markers: BeginPPR(p) 
and EndPPR(p)  

 

• Protects the entire address space by dividing it into 
possible shared and privatizable subsets 

 

• The execution starts as the “lead” process  

 

• Uses concurrent executions to hide the speculation 
overhead off the critical path 

 

• At a (pre-specified) speculation depth k, up to k 
processes are used to execute the next k PPR instances 
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State Isolation 

• Thread-based systems 
o Weak isolation 

 

o The updates of one thread are visible to other threads 

 

• BOP 
o Strong isolation  

 

o The intermediate results of the lead process are not made visible to 

speculation processes until the lead process finishes the first PPR 

 

o Strong isolation comes naturally with process-based protection 

 

10/10/2011 Indiana University, Bloomington 21 



System Limitations 
• No Fault Tolerance 

 

• Limited Use of Resources 

 

• Extra care for handling of “lead” process 

 

• Validation Overhead 
o Three types of data protection 

• Page-based protection of shared data 

• Value-based checking 

• Likely private data 
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Amdahl’s Law 
• Used to find Speedup for some enhancement 

 

 

 

 

• Fraction(enhanced) - The fraction of the computation 

time in the original computer that can be converted to 

take advantage of the enhancement 

• Speedup(enhanced) - The improvement gained by the 

enhanced execution mode; that is, how much faster the 

task would run if the enhanced mode were used for the 

entire program 
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Mathematical Analysis 
The maximum speedup, S, is given by: 

𝑆 =
𝑡

𝑇𝑠

 

 
Speculation-enabled computation time,  

𝑇𝑠 = 𝑇 +
𝑝𝑘𝑇

𝑠
+ 1 − 𝑝 𝑘𝑇 

 

Total running time of the original code, 𝑡 = 𝑇 𝑘 + 1  
 
where,  
𝑘: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 
T: time to execute each region 
s: speedup of each speculative region 
p: probability of  each successful speculation  
and , there is 1 non-speculative region 
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Performance Benchmarks 
• Intra-node FastForward 
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Using Shared-memory  Using Named-pipes  



Performance Benchmarks 
(cont.…) 

• Inter-node FastForward 
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Varying the speedup of speculative version over 
non-speculative 

Varying the available depth of speculation 



Performance Benchmarks 
(cont.…) 
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Varying the size of data to be compared 
for verification 

Varying the size of checkpoint data Varying the probability of speculation success 



Advantages over Existing 
Systems 

• No Parent-Child Process Relationship 

 

• Inherent Fault Tolerance 

 

• Efficient Use of resources in a Cluster 
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Current Limitations 
• Local communication using pipes 

 

• Reading check-pointed data through NFS 

 

• Only supports basic data-types 

 

• High Energy Usage 
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Future Work 
• Extending the system to support recursive data-

structures and memory references 

 

• Optimizing Implementation 
o Shared memory implementation for inter-node FastForward 

o Incremental checkpointing 

o Checkpointing into memory 

 

• Extending support to higher-level scripting 

languages 
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Questions & Clarifications 


