
Platform Virtualization:
Model, Challenges and Approaches

Fangzhou Jiao, Yuan Luo
School of Informatics and Computing

Indiana University
{fjiao, yuanluo}@indiana.edu

Outlines

• Virtualization Overview
• Virtualization Models
• Formal Definition of Virtualization:

– Popek and Goldberg’s Virtualization Requirements
• Overview of x86 Virtualization: Obstacles

and Solutions
• Virtualization “on the move”

2Fangzhou Jiao & Yuan Luo

Virtualization Overview

• What’s Virtualization?
• Why Virtualization?

3Fangzhou Jiao & Yuan Luo

What’s Virtualization

• Virtualization is a technology that combines or
divides (computing) resources to present one or
many operating environments.

4Fangzhou Jiao & Yuan Luo

Virtualization: What is it, really?

• Virtualization using methodologies such as,
– Hardware/software partitioning (or aggregation)
– Partial or complete machine simulation
– Emulation (again, can be partial or complete)
– Time-sharing (in fact, sharing in general)
– In general, can be M-to-N mapping (M “real” resources, N

“virtual” resources)
– Examples: VM (M-N), Grid Computing (M-1) , Multitasking (1-N)

5Fangzhou Jiao & Yuan Luo

Virtualization Everywhere

Driver

Gas Machine

Gas Station Attendants

Gas Pump

6Fangzhou Jiao & Yuan Luo

Virtualization: Any demands?
• Server consolidation
• Application Consolidation
• Sandboxing
• Multiple execution environments
• Virtual hardware
• Debugging
• Software migration (Mobility)
• Appliance (software)
• Testing/Quality Assurance

7Fangzhou Jiao & Yuan Luo

The Traditional Server Concept

Web Server

Windows

IIS

App Server

Linux

Glassfish

DB Server

Linux

MySQL

EMail

Windows

Exchange

8Fangzhou Jiao & Yuan Luo

And if something goes wrong ...

Web Server

Windows

IIS

App Server

DOWN!

DB Server

Linux

MySQL

EMail

Windows

Exchange

9Fangzhou Jiao & Yuan Luo

The Traditional Server Concept
• Pros

– Easy to conceptualize
– Fairly easy to deploy
– Easy to backup
– Virtually any

application/service can be
run from this type of setup

• Cons
– Expensive to acquire and

maintain hardware
– Not very scalable
– Difficult to replicate
– Redundancy is difficult to

implement
– In many cases, processor

is under-utilized

10Fangzhou Jiao & Yuan Luo

The Virtual Server Concept

Virtual Machine Monitor (VMM) layer between Guest OS and
hardware

11Fangzhou Jiao & Yuan Luo

The Virtual Server Concept
• Pros

– Resource pooling
– Highly redundant
– Highly available
– Rapidly deploy new servers
– Easy to deploy
– Reconfigurable while

services are running
– Optimizes physical

resources by doing more
with less

• Cons
– Slightly harder to

conceptualize
– Slightly more costly (must

buy hardware, OS, Apps,
and now the abstraction
layer)

12Fangzhou Jiao & Yuan Luo

BACK

Virtualization Abstraction Levels
• Instruction Set Architecture (ISA)

– Emulate the ISA in software
• Interprets, translates to host ISA (if required)
• Device abstractions implemented in software
• Inefficient

– Optimizations: Caching, Code reorganization
– Applications: Debugging, Teaching, multiple OS

• Hardware Abstraction Layer (HAL)
– Between “real machine” and “emulator” (maps to real hardware)
– Handling non-virtualizable architectures (code scanning,

dynamic instruction rewriting)
– Applications: Fast and usable, virtual hardware, consolidation,

migration.

13Fangzhou Jiao & Yuan Luo

Virtualization Abstraction Levels cont’d

• Operating System Level
– Virtualized SysCall Interface (may be same)
– May or may not provide all the device abstractions
– Easy to manipulate (create, configure, destroy)

• Library (user-level API) Level
– Presents a different subsystem API to application
– Complex implementation, if kernel API is limited
– User-level device drivers

• Application (Programming Language) Level
– Virtual architecture (ISA, registers, memory, …)
– Platform-independence (highly portable)
– Less control on the system (extremely high-level)

14Fangzhou Jiao & Yuan Luo

Overall Picture
ISA HAL OS Library PL

Performance * **** **** *** **

Flexibility **** *** ** ** **

Ease of
Implementation

** * *** ** **

Degree of
Isolation

*** **** ** ** ***

(more stars are better)

15Fangzhou Jiao & Yuan Luo

Instruction Set Architecture Level
Virtualization

• Technologies
– Emulation: Translates guest ISA to native ISA
– Translation Cache: Optimizes emulation by making

use of similar recent instructions
– Code rearrangement
– Speculative scheduling (alias hardware)

• Issues
– Efficient Exception handling
– Self-modifying code

16Fangzhou Jiao & Yuan Luo

ISA Level Virtualization: Examples
• Bochs: Open source x86 emulator

– Emulates whole PC environment
• x86 processor and most of the hardware (VGA, disk, keyboard, mouse, …)
• Custom BIOS, emulation of power-up, reboot
• Host ISAs: x86, PowerPC, Alpha, Sun, and MIPS

• Crusoe (Transmeta)
– “Code morphing engine” – dynamic x86 emulator on VLIW processor
– 16 MB memory as “translation cache”
– Shadow registers: Enables easy exception handling

• QEMU:
– User space only, and full system emulation
– Multiple target ISAs: x86, ARM, PowerPC, Sparc
– Full-software MMU and simulation(using mmap() system call)
– Dynamic Translation

17Fangzhou Jiao & Yuan Luo

HAL Virtualization Techniques

• Standalone vs. Hosted
– Drivers
– Host and VMM worlds
– I/O

• Protection Rings
– Multilevel privilege domains

• Handling “silent” fails
– Scan code and

insert/replace artificial traps

18Fangzhou Jiao & Yuan Luo

Intel x86 Protection Rings

19Fangzhou Jiao & Yuan Luo

Paravirtualization

• Traditional architectures do not scale
– Interrupt handling
– Memory management
– World switching

• Virtualized architecture interface
– Much simpler architectural interface
– Virtual I/O and CPU instructions, registers, …

• Portability is lost

20Fangzhou Jiao & Yuan Luo

Examples

• Denali
• Xen

21Fangzhou Jiao & Yuan Luo

Programming Level Virtualization
• Java Virtual Machine (JVM)

– Executes Java byte code (virtual instructions)
– Provides the implementation for the instruction set interpreter (or JIT

compiler)
– Provides code verification, garbage collection, etc
– Hardware access through underlying OS

• JVM Architecture
– Stack-based architecture
– No MMU
– Virtual hardware: PC, register-set, heap, method (code) areas
– Rich instruction set

• Direct object manipulation, type conversion, exception throws
• Provides a runtime environment through JRE
• Other Examples: .NET CLI, Parrot (PERL 6)

22Fangzhou Jiao & Yuan Luo

BACK

Virtual Machine Implementation: Issues

• Only one “bare” machine interface to guest system!
• What architectures are considered as virtualizable?

“A virtualizable architecture allows any instruction
inspecting/modifying machine state to be trapped when executed in
any but the most privileged mode”

- Popek & Goldberg (1974)

• What about x86 machines?

23Fangzhou Jiao & Yuan Luo

BACK

x86 Virtualization:
Obstacles and Solutions

Processor Virtualization

• Goal of processor virtualization:

25Fangzhou Jiao & Yuan Luo

Processor Virtualization

• Goal of processor virtualization:
• Identical environment and behavior with

physical machine.
• Efficiency: most instructions should be

directly executed by processor.
• Control to resource: i. Isolation of

resources; ii. Hypervisor can gain control
for allocated resources if needed.

26Fangzhou Jiao & Yuan Luo

Processor Virtualization

• These goals needs instruction set support.
• What features of modern processors can

contribute to these goals of virtualization?

27Fangzhou Jiao & Yuan Luo

Processor Virtualization

• Privilege Levels:
• Hypervisor should run in higher privilege

level than guest OS.
• Memory protection system:
• Virtual memory: offered address isolation
• And more?

28Fangzhou Jiao & Yuan Luo

Processor Virtualization

• First we define the “sensitive instructions”

29Fangzhou Jiao & Yuan Luo

Processor Virtualization

• First we define the “sensitive instructions”
• Sensitive instructions:
• Instructions which can interfere the global

status of system.

30Fangzhou Jiao & Yuan Luo

Processor Virtualization

1. Instructions which changes or references
the state of VM or machine.

2. Instructions which changes or reads the
sensitive register or memory location.

3. Instructions which changes or references
the memory protection system.

4. Instructions which execution results
depends on the state of machine, or
memory protection system, or privilege
level.

31Fangzhou Jiao & Yuan Luo

Processor Virtualization

• Popek and Goldberg’s virtualization
requirements:

• If all the sensitive instructions were privileged,
the instruction set is ready for virtualization.

• What about x86 instructions?

32Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization

• Instructions involved sensitive registers:
• SGDT, SIDT, SLDT
• SMSW
• PUSHF, POPF

33Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization

• Sensitive Registers
– GDTR (Global descriptor table register)
– IDTR (Interrupt descriptor table register)
– LDTR (Local descriptor table register)

• Store segment descriptors which
containing base address, type, length and
access rights for memory segments.

34Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization

• GDTR, IDTR, LDTR
– Typically, x86 processors only have one

register of these three.
– But each virtual machine needs to keep the

segmentation information of themselves.
• When all guest OS sharing one segment

register, the guest OS may see the
segment descriptor of other guest OS or
hypervisor, since the segment register
only can be loaded in CPL 0.

• MSW register similar with this. 35Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization

• Instructions: SMSW, PUSHF, POPF
• SMSW, PUSHF:

– Executing these two instructions involved
checking the content of sensitive registers
(CR0, EFLAGS)

– So the guest OS is able to found it was
running in virtual machine.

36Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization

• Ambiguous result in different privilege
ring:

– POPF (Push/pop EFLAGS)
• Different bits in EFLAGS have different

write privilege levels.
• Guest OS usually not executing in CPL 0,

so POPF will not raise exception not
trapped, only generated results without
modify some bits in EFLAGS.

37Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization

• Instructions which result relies on
memory protection system or privilege
level:

– LAR, LSL, VERR, VERW
– POP, PUSH
– CALL, JUMP, INT, RET
– MOVE

38Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization

• When a guest OS executing such
instructions, it is possible for discovering
itself was not running in CPL=0, thus the
guest OS will not execute properly.

39Fangzhou Jiao & Yuan Luo

Instruction Sensitive Privileged Violated
Rules

Source Destination Semantic Explanation

SGDT Y N 3B [Register] GDTR Memory Store The registers GDTR, LDTR, IDTR, and CR0,
EFLAGS should be maintained as different
registers for different VMs. So the operations to
these registers could lead to result that one VM
modified other VM's state.

SIDT Y N 3B [Register] IDTR Memory /
Register

Store

SLDT Y N 3B [Register] LDTR Memory Store
SMSW Y N 3B [Register] CR0 Memory /

Register
Store

SMSW Y N 3B [Register] CR0 Memory /
Register

Store Still involved registers should be per-VM. Also
these instructions can be executed when have
no enough privilege, but the whole system was
left as an ambiguous state.

PUSHF Y Ambiguous 3B [Register] EFLAGS Stack Push stack
POPF Y Ambiguous 3B Stack [Register]

EFLAGS
Pop stack

LAR Y N 3C Segment

Descriptor
[Register] GP Load (Access

Rights)
Execution of these instructions involved
checking the CPL. The result relies on the CPL.
In guest OS the CPL could be different with the
OS expected, so there would be trouble.

LSL Y N 3C Segment
Descriptor

[Register] GP Load (Segment
Limit)

VERR Y N 3C Segment
Descriptor

N/A Verify (Readable)

VERW Y N 3C Segment
Descriptor

N/A Verify (Writable)

POP Y N 3C Stack [Register] GP Pop stack
PUSH Y N 3C Stack [Register] GP Push stack

CALL Y N 3C Call subroutine Only cross privilege level calls are sensitive.

Croo privilege level calls involved a lot of CPL
check.

JMP Y N 3C Jump to
INT Y N 3C Interrupt
RET Y N 3C Return

STR Y N 3C Task Register

[Segment Selector]
[Register]
GP/Memory

Store When CS or SS register involved, the CPL bits
in CS or SS can be referenced or updated, and
the guest OS can found inconsistency in CPL. MOVE Y N 3C Move

Obstacles of x86 Virtualization:
Memory Management

• For each virtual machine, the address
should be maintained independently and
isolated.

40Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization:
Memory Management

• So in virtualized system, two level address
translation were needed:
– Guest Virtual Address to Guest Physical

Address
– Guest Physical Address to Native Physical

Address

41Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization:
Memory Management

• Traditional solution:
Shadow page tables

• MMU was not aware
of the exist of shadow
page table

• So we need generate
page fault to update
the TLB to keep it
updated with both
page tables

42Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization:
Memory Management

• Shadow Page Table and Guest Page Table

Guest Page Table Shadow Page Table
Address Translation Guest Virtual

Address to Guest
Physical Address

Guest Physical
Address to Native
Physical Address

Visible Guest Hypervisor
Updated by Guest Hypervisor
Numbers Per VM Per VM

43Fangzhou Jiao & Yuan Luo

Obstacles of x86 Virtualization

• x86 machines cannot satisfy the
virtualization requirement...

• So how to cope with these obstacles of
x86 virtualization?

44Fangzhou Jiao & Yuan Luo

x86 Virtualization:
Traditional approach

• First one and the older one:
– Binary translation

• The virtual machine monitoring all the
instructions executed by guest OS, when
founding a sensitive instruction, it
executes a series of dynamic generated
instructions instead of directly execute
the original sensitive instruction.

45Fangzhou Jiao & Yuan Luo

x86 Virtualization:
Traditional approach

• Another, quite new solution:
– Paravirtualization

• Modify the guest operating system,
replace the sensitive operations with
virtualization-safe routines.

46Fangzhou Jiao & Yuan Luo

Processor Virtualization

• Limitations of traditional approach

Binary translation Paravirtualization

Performance Relatively Low Faster

Guest OS
Portability

Need not modify
Guest OS

Guest OS should
be rewrite

47Fangzhou Jiao & Yuan Luo

Processor Virtualization

• One major advantage of x86 platform is
plenty of software.

• Modify the instruction set of x86 for better
support to virtualization is not practical
considering the legacy software.

• So what can we do..?

48Fangzhou Jiao & Yuan Luo

x86 Virtualization: New approach

• Intel VT and AMD-V: Hardware
assisted x86 virtualization.

49Fangzhou Jiao & Yuan Luo

x86 Virtualization: New approach

• New processor states:
– VMX non-root operation mode: for guest OS
– VMX root operation mode: for hypervisor

• State transition between these two state
were assisted by hardware

50Fangzhou Jiao & Yuan Luo

x86 Virtualization: New approach
Example of VMX instructions
1. VMCALL: This simply calls the VM monitor, causing the VM to exit.
2. VMCLEAR: copies VMCS data to memory in case

it is written there
3. VMLAUNCH: launches a virtual machine, and changes the launch state of

the VMCS to be launched, if it is clear.
4. VMPTRLD: loads a pointer to the VMCS.
5. VMPTRST: stores a pointer to the VMCS.
6. VMREAD: read specified field from VMCS.
7. VMRESUME: resumes a virtual machine.
8. VMWRITE: write specified field in VMCS.
9. VMXOFF: terminates VMX operation.
10. VMXON: starts VMX operation.

51Fangzhou Jiao & Yuan Luo

x86 Virtualization: New approach

• VMCS: Virtual Machine Control Structure
– Guest Area: Per-VM information, included

the sensitive registers (CRs, DRs,
RSP/RIP/RFLAGS, Segment registers,
MSR) and other non-register states.

– Host Area: Sensitive registers, and other
machine states which belongs to hypervisor.

52Fangzhou Jiao & Yuan Luo

BACK

x86 Virtualization: New approach
• MMU Virtualization: Nested page table

– MMU knows the exist of “shadow page
tables”, MMU handled gPA->nPA translation

53Fangzhou Jiao & Yuan Luo

BACK

Brief overview to x86 Virtualization: Obstacles and Solutions

Popek and Goldberg’s Ideal
Virtual Machine
Characteristics

Identical environment with
physical machine

Efficiently execution of virtual
machine

Resource Control:
VMM complete control to resources and Resource isolation

between different guest OS.

Obstacles to virtualization in
x86 architecture

Many instructions need to
check CPL (Current Privilege
Level), so a Guest OS is able
to found it was running in a

virtual machine since it could
found the CPL is not in 0,

which is the privilege level for
operating system kernels. Or
some instructions could have

ambiguous result when
executed in different CPLs.

Circumventing
other

obstacles can
lead to serious
performance
downgrade…

Memory virtualization: “Guest physical address
space” should be isolated for different guest

operating systems. Just like an additional level
of virtual memory. However the performance

could be lower since it caused more TLB miss
and page faults.

Virtual machines were
considered as “Logical
processors”, so some

processor state should be kept
as per-VM manner, like

segmentation registers, flag
registers, machine state word,
etc. However x86 only have

one register for these
“sensitive” registers, this could

lead to the violation of
resource isolation.

Traditional solutions

The “Hypercalls”: modify guest
OS to make it can

communicate with hypervisor
explicitly;

or binary translation

“Hypercalls” can reduce the
overhead of binary translation,

however it need to modify
guest OS.

Shadow page tables, etc.
Use binary translation,

“Hypercalls” to implement the
save and load of guest states.

New solution:
Hardware-assisted x86

virtualization

New processor modes:
VMX Root operations and

VMX Non-root operations. You
can just think it as “Privilege
Level -1”, like a new privilege

level for hypervisors.

Hardware based state
transition between guest state
(VMX Non-root) and hypervisor

state (VMX Root). When
sensitive instructions were
encountered, the processor

automatically signals the
hypervisor to handle it.

Nested page tables(aka EPT
for Intel):

CR3 become a per-VM
register and can be

automatically switched when
switching between different

guest OS. Guest physical to
hypervisor physical address

translation were managed
by hardware MMU. Guest OS

now can perform address
translation transparently,

without too much overhead.

VMCS: Virtual Machine
Control Structure

For tracking each guest OS’s
private state. And can be

automatically switched when
context switching between

different guest OS.

Virtualization: on the move

54Fangzhou Jiao & Yuan Luo

BACK

Virtualization on the move

• GPU virtualization?
– GPU is used more and more in HPC
– Allocate the computing resources of GPU

more efficiently.
• Virtualization as resource integration?

– m physical machines to 1 or n (n<=m) virtual
machines?

– ScaleMP

Fangzhou Jiao & Yuan Luo 55

BACK

References
[1] POPEK, G. J., AND GOLDBERG, R. P. , Formal requirements for virtualizable third generation architectures.

Commun. ACM 17, 7 (1974), 412–421.
[2] J. S. Robin and C. E. Irvine, Analysis of the Intel Pentium's ability to support a secure virtual machine monitor. In

Proceedings of the 9th USENIX Security Symposium, Denver, CO, USA, pages 129--144, Aug. 2000.
[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and

Andrew Warfield, Xen and the art of virtualization. In Proceedings of the nineteenth ACM symposium on Operating
Systems Principles (SOSP19), pages 164-177. ACM Press, 2003.

[4] Keith Adams, Ole Agesen, A Comparison of Software and Hardware Techniques for x86 Virtualization. ASPLOS 06
[5] NEIGER, G., SANTONI, A., LEUNG, F.,RODGERS, D., AND UHLIG, R., Intel virtualization technology: Hardware

support for efficient processor virtualization. Intel Technology Journal 10, 3 (2006).
[6] INTEL CORPORATION. Intel Virtualization Technology Specification for the IA-32 Intel R Architecture, April 2005
[7] Advanced Micro Devices, Inc. White paper on AMD-V Nested Paging, Rev. 1.0, July, 2008
[8] Susanta Nanda, Tzi-cker Chiueh, A Survey on Virtualization Technologies. RPE Report, pages 1–42, 2005.
[9] I. Pratt et al, Xen 3.0 and the Art of Virtualization. In Proc. of the Ottawa Linux Symposium, 2005.
[10] VMWare, Inc. Understanding full virtualization, paravirtualization, and hardware assist.

http://www.vmware.com/files/pdf/VMware/paravirtualization.pdf, 2007.
[11] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux virtual machine monitor. In OLS ’07: The 2007

Ottawa Linux Symposium, pages 225–230, July 2007.

Fangzhou Jiao & Yuan Luo 56

Thank You!

Fangzhou Jiao & Yuan Luo 57

	Platform Virtualization:�Model, Challenges and Approaches
	Outlines
	Virtualization Overview
	What’s Virtualization
	Virtualization: What is it, really?
	Virtualization Everywhere
	Virtualization: Any demands?
	The Traditional Server Concept
	And if something goes wrong ...
	The Traditional Server Concept
	The Virtual Server Concept
	The Virtual Server Concept
	Virtualization Abstraction Levels
	Virtualization Abstraction Levels cont’d
	Overall Picture
	Instruction Set Architecture Level Virtualization
	ISA Level Virtualization: Examples
	HAL Virtualization Techniques
	Intel x86 Protection Rings�
	Paravirtualization
	Examples
	Programming Level Virtualization
	Virtual Machine Implementation: Issues
	x86 Virtualization:�Obstacles and Solutions
	Processor Virtualization
	Processor Virtualization
	Processor Virtualization
	Processor Virtualization
	Processor Virtualization
	Processor Virtualization
	Processor Virtualization
	Processor Virtualization
	 Obstacles of x86 Virtualization
	Obstacles of x86 Virtualization
	Obstacles of x86 Virtualization
	Obstacles of x86 Virtualization
	Obstacles of x86 Virtualization
	Obstacles of x86 Virtualization
	Obstacles of x86 Virtualization
	Obstacles of x86 Virtualization:�Memory Management
	Obstacles of x86 Virtualization:�Memory Management
	Obstacles of x86 Virtualization:�Memory Management
	Obstacles of x86 Virtualization:�Memory Management
	Obstacles of x86 Virtualization
	x86 Virtualization:� Traditional approach
	x86 Virtualization:� Traditional approach
	Processor Virtualization
	Processor Virtualization
	x86 Virtualization: New approach
	x86 Virtualization: New approach
	x86 Virtualization: New approach
	x86 Virtualization: New approach
	x86 Virtualization: New approach
	Virtualization: on the move
	Virtualization on the move
	References
	Thank You!

