.:.r.ur.).,_

T Vs
—

r







s IL.P
* Exploiting ILP
® Dynamic scheduling

® Thread-level Parallelism

* Memory Hierarchy

* Other topics through student presentations
* Virtual Machines

B629: Practical Compiling for Modern Machines



© 2007 Elsavier, Inc. All rights







DADD R1, R2, R3

DSUB R4, R1, RS

W
=
S
3
E
e
o
S
s
@
x
@
£
8
o
o

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

© 2007 Elsavier, Inc. All rights resarved.




a) From before

DADD R1, R2, R3

becomes

if R2 = 0 then

b) From target

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 =0 then

becomes

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 =0 then

£ 2007 Elsavier, Inc. All rights resarved.

c) From fall-through

DADD R1, R2, R3

if R1 = 0 then

OR R7, R8, R9

DSUB R4, R5, R6

becomes

DADD R1, R2, R3

if R1 = 0 then

DSUB R4, R5, R6




nteger unit

FP/integer multiply

FP/integer divider

i iii

© 2007 Elsavier, Inc. All ri




.'.‘".. 4. -T“;- iy
finteger divide( |
'ii |

Inc. Al :

& i
T

© 2007 Elsavier, Inc. All rights resarved.




nteger unit

FP/integer multiply

FP/integer divide( |
I

© 2007 Elsavier, Inc. All resarved.




Exploiting 1LLP Through Compiler lechniques

* Loop unrolling

* Making use of branch delayed slots
® Static branch prediction

* Loop fusion

* Unroll and jam

B629: Practical Compiling for Modern Machines



Dynamic Branch Prediction

Address bits

bits to index BPB

Branch
Prediction
Buffer

B629: Practical Compiling for Modern Machines




Not taken

Predict taken Predict taken
11 10

Not taken

Not taken

Not taken

£ 2007 Elsavier, Inc. All rights




General n-bit Correlating Branch Predictors

Address bits

bits to index BPB

Branch
Prediction
Buffer

global shift register
(m bits)

Use Branch Target Buffers (BTBs) for caching branch targets

B629: Practical Compiling for Modern Machines




rom instruction unit

Instruction FP registers
queue

Load-store
operations
Operand

= Floatqu-pount buses
operations

.

~ Store buffers

[ 3 Load buffers |
—

. Operation bus l

Reservation

Common data bus (CDB)

£ 2007 Elsavier, Inc. All rights resarved.




Tomasulo’s Approach: Observations

* RAW hazards handled by waiting for operands
* WAR and WAW hazards handled by register
renaming

* only WAR and WAW hazards between instructions
currently in the pipeline are handled; is this a problem?

* larger number of hidden names reduces name dependences

* CDB implements forwarding

B629: Practical Compiling for Modern Machines




Tomasulo’s Approach + Speculation
Fields in ROB —

t twer Reorder buffer
% W From instruction unit
3. Value

4. Ready

: Reg # Y y Data
Instruction ]
queue

FP registers

Load-store

operations

v Operand
Floating-point buses

operations

Address unit

Load buffers

\
Operation bus

Reservation
stations

Address
Memory unit FP adders

Load
data Common data bus (CDB)

© 2007 Elsavier, Inc. All rights reserved.

B629: Practical Compiling for Modern Machines




Observations on Speculation
* Speculation enables precise exception handling
* defer exception handling until instruction ready to commit
® Branches are critical to performance

* prediction accuracy
* latency of misprediction detection

* misprediction recovery time

® Must avoid hazards through memory

* WAR and WAW already taken care of (how?)
* for RAW

* don’t allow load to proceed if an active ROB entry has
Destination field matching with A field of load

* maintain program order for effective address computation

(why?)

B629: Practical Compiling for Modern Machines




Common name

Issue
structure

Hazard
detection

Scheduling

Distinguishing
characteristic

Examples

Superscalar
(static)

dynamic

hardware

static

in-order execution

mostly in the
embedded space:
MIPS and ARM

Superscalar
(dynamic)

dynamic

dynamic

some out-of-order
execution, but no
speculation

none at the present

Superscalar
(speculative)

dynamic

hardware

dynamic with
speculation

out-of-order execution
with speculation

Pentium 4,
MIPS R12K, IBM
Power5

VLIW/LIW

static

primarily
software

static

all hazards determined
and indicated by compiler
(often implicitly)

most examples are in
the embedded space,
such as the TT C6x

primarily static

primarily

mostly static

all hazards determined
and indicated explicitly
by the compiler

[tanium




Dyn. Scheduling+Multiple Issue+Speculation

* Design parameters
* two-way issue (two instruction issues per cycle)
* pipelined and separate integer and FP functional units
* dynamic scheduling, but not out-of-order issue

* speculative execution

* Task per issue: assign reservation station and update
pipeline control tables (i.e., control signals)

* Two possible techniques
* do the task in half a clock cycle

* build wider logic to issue any pair of instructions together

® Modern processors use both (4 or more way
superscalar)

B629: Practical Compiling for Modern Machines




Processor

Processor

Processor Processor

One or
more levels
of cache

One or
more levels
of cache

Main memory

£ 2007 Elsavier, Inc. All rights

One or One or
more levels more levels
of cache of cache

I/O system




Processor Processor
+ cache

I/O

Processor Processor Processor Processor
+ cache + cache + cache + cache

© 2007 Elsavier, Inc. All rights




Other Ways to Categorize Parallel Programming

B629: Practical Compiling for Modern Machines




wme miss for this block

Invalldate for
this block
CPU

Read miss

Cache state transitions for this block | cache state transitions based
based on requests from CPU on requests from the bus

CPU write miss

Write-back cache block
Place write miss on bus

PU write hit
PU read hit

© 2007 Elsavier, Inc. All rights resarved.




Processor Processor Processor Processor
+ cache + cache + cache + cache

omon {70 [Waron (70 [veron {70 [voron

Processor Processor
+ cache + cache

© 2007 Elsavier, Inc. All rights resarved.




Fetch
invalidate

R 4
3
o
o
-
=
3
s
©
o

Invalidate

CPU read

Send read miss message

CPU write

Send write miss message

Modified

(read/write)
CPU write miss

Data write back
Write miss

Shared
(read only)

Data
write back

Uncached

Data value reply;

Sharers = {P} Shared
(read only)

Write miss

Data value reply;
Sharers = {P}

(read/write)

Read miss

Data value reply
Sharers = Sharers + {P}

Fetch/Invalldate

Data value reply
Sharers = {P}




Other Topics

* x86 assembly programming
e VLIW /EPIC

® Vector processors

* Embedded systems

* Scientific applications

* GPUs and GPGPUs

e CUDA and OpenCL

® [nterconnection networks

¢ Virtualization

B629: Practical Compiling for Modern Machines



e

TL ST
' I, " S0
-7

.

=
£
Z
%
=
T
=

i

h:__.m }




Future

* Continued importance of parallel programming
* challenge: how to program multiprocessors

* role of programming languages and compilers

* Convergence or specialization?

* “standardization” of general purpose architecture

* migration of “special-purpose” CPUs for general use

B629: Practical Compiling for Modern Machines




2 Login/create account

article | | discussion | | edit || history |

The Lan of Parallel Computing Research: A View
From %er e?pe PUting

(Redirected from Main Page)

* A View From Berkeley
"ﬁ-r The recent switch to parallel microprocessors is a milestone in the history of computing. A
multidisciplinary group of researchers here in Berkeley has been meeting since Spring 2005 to discuss
~ navigation this change from the conventional wisdom. Our white paper & summarizes our learings from these
= Berkeley View discussions. This wiki is a meetingplace for us as a research community to explore the future of parallel
The View Blog processing. The video interview @& with Dave Patterson, Krste Asanovic and Kurt Keutzer, or Dave
People Patterson's presentation & at a recent Distinguished Colloguium here at Berkeley are great introductions

| |

| |

= Publications to the Berkeley View project. Here are the slides from a related talk by Dave Patterson .
= Articles
| |

| |

| |

Presentations
Symposiums
Recent changes = People

= The View Blog &

] = White Paper &
D = Chip Multi Processor Watch

(Go) (Search) = Parallel Programming Model Watch
toolbox X = Dwarf Mine
= What links here = Autotuners
= Related changes = Benchmarks and Performance Metrics
= Upload file = Glossary of terms
| |
| |
| |

search

Special pages
Printable version
Permanent link

We believe that much can be learned by examining the success of parallelism at the extremes of the
computing spectrum, namely embedded computing and high performance computing. This led us to



http://view.eecs.berkeley.edu/wiki/Main_Page
http://view.eecs.berkeley.edu/wiki/Main_Page
http://view.eecs.berkeley.edu/wiki/Main_Page

