
441PRODUCTIVITY OF LANGUAGES

DEFINING AND MEASURING THE
PRODUCTIVITY OF PROGRAMMING
LANGUAGES

Ken Kennedy1

Charles Koelbel1

Robert Schreiber2

Abstract

The goal of programming support systems is to make it
possible for application developers to produce software
faster, without any degradation in software quality. How-
ever, it is essential that this goal must not be achieved at
the cost of performance: programs written in a high-level
language and intended to solve large problems on highly
parallel machines must not be egregiously less efficient
than the same applications written in a lower-level lan-
guage. Because this has been a traditional stumbling
block for high-level languages, metrics for productivity
analysis must explore the trade-off between programming
effort and performance.

To that end, we propose the use of two dimensionless
ratios, relative power and relative efficiency, to measure
the productivity of programming interfaces. In this paper
we define these concepts, describe their application, and
explore various ways for measuring them, including both
empirical strategies and expert opinion. Rather than com-
bine these metrics into a single number representing a uni-
versal productivity, we propose that they be represented
graphically in at least two dimensions so that the trade-offs
between abstraction and performance are clearly depicted.
However, we also introduce a single problem-dependent
parameter that allows us to reason about the relative pro-
ductivity of two languages for a given problem.

Key words: Productivity measurement, performance met-
rics, programming support systems, programming lan-
guage effectiveness.

Acknowledgments

This work was sponsored by the Department of Defense
under Department of Interior contract number NBCHC
020087. Opinions, interpretations, conclusions, and recom-
mendations are those of the authors and are not neces-
sarily endorsed by the United States Government.

1 Introduction

The overall objective of programming support systems
is to make it possible to produce software faster with
the same workforce, with no degradation, and possibly an
improvement, in software quality. Generally, there are two
ways to approach this goal. First, we can increase the
effectiveness of individual application developers by pro-
viding programming languages and tools that enhance
programming productivity. Secondly, we can broaden the
community of application developers by making program-
ming more accessible. As it happens, the use of higher-
level languages and programming interfaces supports both
these strategies: by incorporating a higher level of abstrac-
tion, such languages make application development both
easier and faster. (For the purposes of this paper, we will
define “programming language” to encompass the entire
toolset – language, compiler, debugger, tuning tools –
associated with the language.)

We must, however, ensure that these advantages do not
come at the cost of performance. Programs written in a
high-level language and intended to solve large problems
on highly parallel machines must not be egregiously less
efficient than the same applications written in a lower-
level language. If they are, then the language is unlikely to
be accepted. Because this has been a traditional stum-
bling block for high-level languages, our productivity
analysis must incorporate metrics of both programming
effort and performance. Furthermore, these metrics must
be linked so that the trade-off between language power
and program efficiency can be evaluated properly.

Similarly, if high-level languages are to be accepted,
programs written in them cannot exhibit more faults, con-
sume more memory, or be less portable than if written in
low-level competitors. Fortunately, these have not been
troublesome issues in the past, so we feel justified in not
addressing them head-on in this paper, although we do
feel that such factors should be investigated in the future.

Thus, for any given development task, each program-
ming language must be evaluated with respect to at least
two criteria: the time and effort required to write, debug,
and tune the code, and the performance of the code that
results. The goal of this paper is to define these two eval-
uation metrics clearly and unambiguously and to propose
methods by which to measure them.

The International Journal of High Performance Computing Applications,
Volume 18, No. 4, Winter 2004, pp. 441–448
DOI: 10.1177/1094342004048537
© 2004 Sage Publications

1COMPUTER SCIENCE DEPARTMENT, RICE UNIVERSITY,
HOUSTON, TX 77251-1892, USA (KEN@RICE.EDU)

2LABORATORIES, HEWLETT PACKARD COMPANY, PALO
ALTO, CA 94304, USA

www.sagepublications.com

442 COMPUTING APPLICATIONS

2 Primary Metric: Time to Solution

By increasing productivity, we aim, in the end, to reduce
total time to solution of a problem P, which we denote
T(P). That is, we want to minimize

T(P) = I(P) + rE(P) (1)

where P is the problem of interest, I(P) is the implemen-
tation time for a program to solve P, E(P) is the average
execution time per run of the program, and r is a problem-
specific weighting factor that reflects the relative impor-
tance of minimizing execution time versus implementa-
tion time. Thus, r will be larger for programs that are to be
run many times without any change.

If it is more appropriate to focus on the cost of generat-
ing the solution than on the time to solution, we arrive at
essentially the same model

C(P) = D(P) + rM(P)

where D(P) is the cost of developing the application
code, and M(P) is the average cost of machine time for
one run of the application. Because of the isomorphism
between the time and cost models, most of the strategies
we propose can be applied to both problems. For our
present purpose – developing a strategy for defining and
assessing the productivity of a programming interface to
a machine – program development (and tuning) time and
production run time are the first-order, measurable
impacts of the choices we make; therefore, we focus on
time rather than monetary cost.

The formulation in equation (1) assumes that “imple-
mentation” and “execution” are activities that do not
overlap. This is clearly an oversimplification, but to our
mind an acceptable one. However, the formula leaves us
with the vexing problem of choosing for a particular
application the appropriate value for r, which estimates
how many times that application will be executed. If the
application is only to be run once, then r can be 1, but
most important applications will be run many times with
no change between runs, except for data set changes and
minor source tweaks. It is therefore critical to ensure that
r is not underestimated. How does one know how many
times a program will be used over the course of its life-
time? We may need to rely on opinion to obtain an
answer. Indeed, all performance programmers must be
implicitly making and using an estimate of this parame-
ter; for in any program tuning effort, further work is
stopped at a point of diminishing returns, where the
added development time is not compensated for by an
anticipated reduction in execution time as weighted by an
estimate, perhaps only a tacit one, of r. Thus, while r can-
not be known (except in rare cases after a program is

finally retired), we think it can be usefully approximated.
We discuss the use of expert opinion in estimating
parameters of the model in Section 4.

Note that formulation (1) does not include the notion
of compile time. In current languages, compile time is
generally small relative to the running time of the object
code. However, more advanced languages may require
whole-program compilation, which could elevate compi-
lation time to a significant factor in return for lowered
execution time. At the other end of this spectrum, inter-
preted languages remove the compile time penalty, albeit
at execution time cost; for applications that exhibit low r
or low E(P), the resulting gain in user productivity surely
helps to explain their popularity (Cleve Moler estimates
that Matlab has approximately one million users). This
raises the question of whether compile time should be
incorporated into the model explicitly. If so, should it be
an independent term, or should it be bundled in some
way with implementation time or execution time? Our
inclination is include it as a third, independent term. Thus,
we have the more detailed time-to-solution model

T(P) = I(P) + r1C(P) + r2E(P) (2)

where C(P) is the average compilation time, r1 is the
number of compilations and r2 is the number of runs.
Where compile time is a first-order issue, this model is
preferable, but to keep things simpler we drop the com-
pile-time term and user the simple model (1) in the
remainder of the paper.

3 Relative Efficiency and Relative Power
of a Programming Language

The implementation and execution times I(P) and E(P),
which we have explicitly shown to be dependent on the
problem being solved or program being written, clearly
depend on many other things. Among these are the algo-
rithm used, the data structures, the machine, its architecture
and its degree of parallelism, the programming language,
and the programming team and its experience with prob-
lem, machine, and language.

Our central thesis, however, is that within reasonably
bounded and interesting situations, such as the mix of
problems solved at a given supercomputer site, we can
meaningfully define and measure the relative efficiency
and power of two proposed programming languages.
Furthermore, we suspect strongly that in comparing dif-
ferent programming languages, the relative power and
efficiency will not vary widely between sites, but rather
are genuine attributes of the language itself. We therefore
propose two derived measures, relative power, ρ, and
efficiency, ε, as productivity metrics. These relative meas-
ures can be used to compare programming systems.

443PRODUCTIVITY OF LANGUAGES

It will be useful, in any given context (a given problem,
a given machine) to define some programming language
and its toolset as the basis for comparison. Thus, let P0 be
a version of a given program written by a professional in
a standard programming language, which we take as a
reference point. In some contexts, studies on uniproces-
sors for example, this base case might be a sequential For-
tran program. On a small SMP it might be C with the
OpenMP extensions, and on a large cluster it could be
Fortran with Message Passing Interface (MPI). We com-
pare the implementation and execution time of P0 with
those of PL, the equivalent program in a new program-
ming language. The relative power ρL of the language,
measuring its ease of use, is the ratio of implementation
times, while the efficiency εL, measuring performance of
the language, is the ratio of execution times, i.e.

(3)

Generally, ρL > 1 and εL < 1 for high-level languages,
reflecting the trade-off between abstraction and perform-
ance. Both ρ and ε depend on the application; however,
we believe that ρ and ε are relatively constant for a par-
ticular language, i.e. they do not vary by orders of magni-
tude, at least within its chosen domain.

Assigning values to ρ and ε requires developing two
programs in a controlled environment where I(P) and
E(P) can be measured. This is practical for relatively
small benchmark problems. (Of course, running many
small experiments can be very expensive, too; it is there-
fore important that the set of benchmarks be relatively
compact.) For large-scale projects, it is unrealistic to
expect that two or more different languages would be
used in independent, parallel efforts. If one team of pro-
grammers does both implementations, the comparison is
rendered invalid by the experience (concerning the prob-
lem) gained in the first effort.

Relating this back to our goal of reducing time to solu-
tion, we find that

In other words, once we have good estimates for ρL and
εL, it is relatively easy to estimate the time to implement
and run an application in a new language L if we know

the implementation and execution times for the base lan-
guage. With given values of r, I(P0) and E(P0), there may
be several tuples (ρ, ε) that minimize T(PL). It is there-
fore important to consider both metrics in choosing the
programming system. A convenient way to present these
is as a graph in which relative power is displayed on the
y-axis and efficiency on the x-axis, as shown in Figure 1.
Contours on this graph can show productivity trade-offs.
In particular, a contour can be plotted to show (ρ, ε) pairs
that lead to identical T(PL).

Figure 1 illuminates an important issue: how one can
improve productivity by improving programming lan-
guages and their implementation. Generally, this can be
done in two ways (or combinations thereof). First, one
can take existing high performance languages and improve
their power, possibly by adding advanced features, with-
out sacrificing their performance. Thus, Fortran could be
improved by adding powerful new language primitives;
this was a goal of the Fortran 90, 95, and 2000 efforts.
Unfortunately, the performance of applications written in
these new generations of Fortran has been compromised
by the inefficient object code generated by immature
compiler technology, thus reducing the expected produc-
tivity gains. Secondly, one can enhance productivity by
improving the performance of very high-level languages
such as Matlab. This is the goal of a number of efforts to
provide full or partial compilation facilities for Matlab
(DeRose and Padua, 1999; Chauhan et al., 2003).

We propose to use graphs like that in Figure 1, rather
than a simple scalar measurement, as the main way of dis-
playing productivity to users. Note that this lets the end
user determine whether a language is powerful enough to
compensate for the incurred level of inefficiency. It allows

ρL

I P0()
I PL()
-------------=

εL

E P0()
E PL()
--------------.=

T PL() I PL() rE PL()+=

I P0() I PL()
I P0()
------------- rE P0()

E PL()
E P0()
--------------⋅+⋅=

1
ρL

-----I P0() 1
εL

----rE P0().+=

Fig. 1 Power–efficiency graph.

444 COMPUTING APPLICATIONS

us to reason about productivity goals in terms of the rela-
tive power–efficiency plane.

It will be quite instructive to plot (ρ,ε) pairs for a col-
lection of data points, each generated by a different appli-
cation, to verify our assertion that they will cluster, with
one cluster for each distinct, interesting language and tool-
set. If the clustered structure is not so simple, we will have
learned something interesting about our programming
languages.

Although we believe this two-dimensional representa-
tion to be the best way to display language productivity,
it may nevertheless be useful to distill the measurements
of performance and effort across tasks into a single quan-
tity that characterizes the productivity achieved by the
use of a given language, recognizing that any reduction
from the multidimensional measured data to a single sca-
lar loses information. This suggests that a plausible met-
ric for the productivity of a language is some measure
that incorporates its relative power and the relative per-
formance of its object code. In order to combine these
two dimensionless quantities in a meaningful way, we
need an exchange rate. Consider that the ratio of times to
solution is

where X = rE(PL) / I(PL). Thus, the problem-dependent
parameter X allows us to combine the relative power and
the efficiency of a programming language into a relative
productivity metric:

productivity . (4)

If, as we assert above, the relative power and the effi-
ciency of a language are largely problem-independent,
then it follows that the effect of the problem on overall
productivity, defined as the relative time to solution, is
captured by the problem-dependent parameter X. For the
base language L0, ρ = ε = 1; hence, productivity for the
base language is fixed at 1. From equation (4), it is easy
to see why, for long-running applications, programmers
might be willing to sacrifice language power to achieve
much higher efficiencies through parallelism. For exam-
ple, if it took five times longer to reprogram a Fortran
application using MPI to achieve a speedup of 50, the
overall productivity of Fortran plus MPI, relative to sin-
gle-processor processor Fortran, would be at least 25,
assuming that the ratio X of total running time to imple-
mentation time remained greater than 1.

For languages of higher power than the base, where we
expect that ρ > 1 and ε < 1, productivity, as defined by
equation (4), declines with increasing values of X from a
high of ρ at X = 0 to asymptotically approach a lower
bound of ε as X grows. This behavior is illustrated by the
curve in Figure 2.

Figure 2 also shows the importance of achieving high
efficiency in a high-productivity language. For example,

Fig. 2 Productivity as a function of running time over implementation time.

T P0()
T PL()

I P0() rE P0()+
I PL() rE PL()+
------------------------------------=

ρLI PL() εLrE PL()+
I PL() rE PL()+

--=

ρL εLX+
1 X+

--------------------=

ρ εX+
1 X+

----------------=

445PRODUCTIVITY OF LANGUAGES

if some new language has a power that is two times
greater than the base language, but only half the effi-
ciency, productivity is 1.25 when X = 1 and it equals that
of the base language when X = 2. If, on the other hand,
the efficiency of the new language is 75% of that of the
base language, the crossover point occurs at X = 4, illus-
trating the value of rather modest improvements in effi-
ciency. Generalizing, if we define X1 as the value of X for
which productivity of the new language is the same as for
the base language (i.e. productivity = 1), then from equa-
tion (4) we obtain

These discussions lead us to consider whether there is
some lower bound on acceptable language performance
for long-running applications. As an illustration, consider
Matlab. In the high performance computing (HPC) com-
munity today, the power of Matlab and its implementa-
tion is not enough to compensate for the low performance
delivered by the Matlab interpreter on large-scale appli-
cations. Thus, Matlab remains a prototyping language
and “serious” applications are usually rewritten in a
lower-level programming language. This implies a sec-
ond effect, not directly captured by the metrics ρ and ε
alone: there is a minimum level of acceptable perform-
ance, and a programming language that fails to deliver at
this minimum level cannot be useful for “production”
applications, no matter how greatly it reduces program-
ming time and effort. This effect is reflected in the model
above by productivity dropping below 1 for a relatively
small value of X.

4 Measuring Application Performance
and Efficiency

There is a well-developed literature for measuring appli-
cation performance in parallel systems, which we will
not try to summarize here. Suffice it to say that experi-
ence has shown that standard sets of benchmarks provide
a fair means of comparing systems (including hardware,
software, and languages).

We are examining the relationship between program
development time and execution time, as they are influ-
enced by choice of language. In so doing, it is important
to consider the full power of a new language. It may be
possible to write Fortran-like code in Java, but that would
tell us little about the power or efficiency of Java. Thus,
when comparing two programming models on the same
application benchmark, it is essential that the application
be coded in a natural style for each of the programming
models. The goal is not to show that you can write a pro-
gram of comparable performance in a higher-level pro-

gramming system, but rather to measure the performance
cost paid when you write that application in the most nat-
ural style. Thus, it is best that the different versions of the
applications be written by developers with no knowledge
of how the optimizing compilers work for each model.

It is also vital that the set of benchmarks be representa-
tive of the actual applications run on the system, lest the
system developers optimize inappropriately. The apocry-
phal story of an OS team achieving a 50% performance
gain in the system’s idle wait loop comes to mind. Care
must be taken to specify the rules (as was done in the NAS
parallel benchmarks; Bailey et al., 1994) so as to elimi-
nate the temptation to indulge in one of Bailey’s twelve
abuses (Bailey, 1991).

Given accurate measures of execution time, it is sim-
ple to calculate ε from its definition:

5 Measuring Programmer Performance
and Relative Power

This leaves us with the problem of measuring relative lan-
guage power, which is much more challenging. While it
is often possible to agree that some languages are more
powerful (or easier to program in) than others, it is
extremely difficult to measure in any precise way the
degree of difference. What we would really like to meas-
ure is development time. In other words, we need a metric
that fairly compares the time taken to produce the same
application by programmers starting out at the same time
in the two different languages.

In their paper in the present issue, Faulk et al. (2004)
describe several standard measurement techniques, their
advantages, and their drawbacks. We consider these tech-
niques here for the purpose of measuring program devel-
opment time. In the terminology of Faulk et al., they are
“time and motion studies,” which is the direct measure-
ment of program development time, the “structured inter-
view” technique, in which the opinions of experienced
developers constitute the primary data, and “automated
measurement,” in which the program development tools
generate useful effort-related statistics as a byproduct of
their use by programmers.

Automating the tools would offer a straightforward
way to measure compile time, a component of the detailed
model (2). Statistics such as the number of compiles per
day might prove to be informative as well, as might the
nature of the changes to program text between compiles.
Tools can provide counts of lines, statements, “function
points” and other direct code metrics. However, the
often-used “source lines of code” metric does not appear
to us to be generally reliable as a direct predictor of pro-

X1
ρ 1–
1 ε–
------------.=

ε
E P0()
E PL()
--------------.=

446 COMPUTING APPLICATIONS

gram development time, especially when programs in
different languages are to be compared. Development
time encompasses coding time, debugging time, and per-
formance tuning time; the average coding, debugging,
and tuning time per line of code may vary from one lan-
guage to another. For example, it is generally conceded
that a Java program takes less time to develop than a C++
program of roughly the same length, because Java is
strongly typed and garbage collected, so there are fewer
opportunities to introduce errors. Thus, some models (in
this issue, see Post and Kendall, 2004) apply a language-
specific multiplicative factor to the lines of code meas-
ure. Further study is clearly needed to decide on the
proper role of automated measurement as a way to assess
and understand development effort and time, and the
effect of programming tools on productivity. A disadvan-
tage, clearly, is that these tools provide their estimates as
the program is developed, not before. Two parallel efforts,
in separate languages, would be needed to measure their
relative power.

To measure implementation time directly, we would
set up experiments in which two different sets of program-
mers implement the same application in two different
programming languages. Then the power of the higher-
level language would be the ratio of implementation time
in the lower-level language to implementation time of the
same program in the higher-level language, based on the
previous definition:

Unfortunately, measurements of this sort, which seem
tractable in principle, usually turn out to be invalid
because it is difficult to factor out individual ability, par-
ticularly in a task such as programming where some
remarkable individuals can be integer factors more pro-
ductive than others and where the resources devoted to
the measurement task make a sufficiently large sample
group impossible. Moreover, if L is a newly proposed
language, there will not generally be a pool of talented,
experienced L programmers. A comparison of novice L
programmers against novice Fortran programmers would
not be a valuable indicator of anything.

Because of these difficulties, we believe that expert
opinions, solicited through carefully crafted questions
before, after, or during a project, can generate useful esti-
mates of relevant information, including program devel-
opment effort. In other words, we will need to incorporate
the views of the end users in evaluating the productivity
scores of different languages, including their best guesses
as to the relative power compared to a base language. As
an example, consider Matlab. Most scientists and engi-
neers now believe that programming in Matlab is far

more productive than programming in, say, Fortran. So
how much more productive is Matlab than Fortran? Pro-
grammers may have an opinion about this, and we can
measure their opinions. In other words, it may be possi-
ble, through structured interviews to have expert pro-
grammers estimate the time to completion of an
implementation of each of a set of benchmark problems
in both the new programming language L and the base
language L 0. These opinions can then be aggregated into
cumulative distribution functions that can be used to esti-
mate I(PL) and I(P0). Strategies for obtaining and inte-
grating the opinions of a group of experts have been used
in the well-known “Delphi” method (Dalkey, 1969) and
in computer–human interface evaluations for many years.
Recent enhancements of methods for the aggregation of
expert opinions offer promise for improving the predic-
tive power of this approach (Chen et al., 2003).

6 Other Issues

So far, we have assumed that each language has a single
value of ρ and a single value of ε for all relevant compu-
tations. This is seldom (if ever) precisely the case. We can
compensate by measuring power and efficiency for a
standard collection of benchmarks or a collection particu-
larly suitable for a given customer or computer purchase.

If a single power or efficiency metric is desired, then an
overall value can be computed from the individual bench-
marks. Let be the set of benchmark pro-
grams written in the base language and let
be the programs written in the higher-level language.
Then the power and efficiency for that collection of
benchmarks is

If desired, the times for the benchmarks could be weighted
to reflect their importance, or to normalize for expected
execution times different from the benchmarks. Alterna-
tively we may use the ratio of the sum over all programs
of time-to-solution. However, as stated above, we think
that the best use of a collection like this is to plot all the
data in the power/efficiency space and observe the clus-
ters that emerge.

The ratio of sums is preferable to an arithmetic mean
of the individual ratios because the arithmetic mean would

ρ
I P0()
I PL()
-------------.=

P0
1 P0

2 … P0
n, , ,{ }

PL
1 PL

2 … PL
n, , ,{ }

εL

 E P0
j()

j 1=

n∑
 E PL

j()
j 1=

n∑
-------------------------------=

εL

 I P0
j()

j 1=

n∑
 I PL

j()
j 1=

n∑
-----------------------------.=

447PRODUCTIVITY OF LANGUAGES

emphasize outliers. For example, if language 0 is really
great on one benchmark, it creates an enormous ratio for
that benchmark which gets averaged in. The ratio of
weighted sums is more defensible as the ratio of runtimes
on a hypothetical composite workload consisting of a
weighted mix of the given workloads. Another outlier-
tolerant approach could be to use the median of the indi-
vidual ratios.

We have used time as the primary measurable quantity
for both implementation and execution. Depending on the
context, it may make sense to use other measures. One
that is rather natural in large procurements is cost. On the
implementation side (I(P) and ρ), this would represent the
cost of programmer time, and possibly cost of ownership
of development machines. On the execution side (E(P)
and ε), this would represent the cost of the machine time,
which could take all costs of ownership (purchase, staff-
ing, electric bill) into account. One still measures largely
the same primary data (run times, program development
hours) and then applies a time-to-cost conversion. Our
definitions or relative power, efficiency, and productivity
can still be used.

The value of the computed result is another important
facet of the productivity problem. If it is a constant for the
given problem P, independent of all other factors, then lit-
tle changes. If, as is often true, the computation has some
time value, then using time-to-solution as the appropriate
metric still seems right. Measuring the value of computa-
tions directly is hard, but if the need arises, intelligent
aggregation of market-based estimates, as advocated by
Chen et al. (2003) will be an interesting approach.

Other issues are not so easily incorporated into the
analysis above. For example, if a code will be modified
many times over its lifetime, the assumption of separate
development and execution passes needs re-examination.
We would want a way to quantify maintainability, modi-
fiability, code reuse, and so forth. Defining and measur-
ing correctness, security, maintainability, reusability, or
other less qualitative properties of codes is difficult; Faulk
et al. (2004) report that these virtues are generally viewed
as impossible to accurately measure. One approach would
be to allow subjective ratings for these aspects of the proc-
ess, and report significant differences in ratings between
languages. Faulk et al. propose a way to do this for main-
tainability, as an example of this approach. Given our lan-
guage-centric point of view, an interesting question is
whether, and to what extent, the programming language
(as opposed to the programming style adopted) influences
the reusability of HPC code developed in it, and whether
there is a reusability–efficiency trade-off like the relative
power–efficiency trade-off discussed in this paper.

7 Summary

We propose the use of two dimensionless ratios, relative
power ρ and relative efficiency ε, to measure the produc-
tivity of programming interfaces. Determining the values
of these metrics for a new language may require writing a
fixed class of benchmarks in the new language and meas-
uring the implementation effort and running time incurred.
These measures will be compared with the corresponding
measures for a base language such as C or Fortran. (We
note that the measurement of implementation effort, and
of performance, may involve subjective measure such as
the opinions of developers.) Rather than combine these
metrics into a single number representing a universal pro-
ductivity, we propose that they be represented graphically
in at least two dimensions so that the trade-offs between
abstraction and performance are clearly depicted. On the
other hand, we introduce a single problem-dependent
parameter that allows us to reason about the relative pro-
ductivity of two languages for a given problem.

AUTHOR BIOGRAPHIES

Ken Kennedy is the John and Ann Doerr University
Professor of Computer Science and Director of the Center
for High Performance Software Research (HiPerSoft) at
Rice University. He has supervised 36 PhD dissertations
and published two books and over 190 technical articles
on compilers and programming support software for high
performance computer systems. In recognition of his con-
tributions to software for high performance computation,
he received the 1995 W. Wallace McDowell Award, the
highest research award of the IEEE Computer Society. In
1999, he was named the third recipient of the ACM SIG-
PLAN Programming Languages Achievement Award.

Charles Koelbel is a research scientist in the compu-
ter science department at Rice University. His area of
expertise is in languages, compilers, and programming
paradigms for parallel and distributed systems. He has
contributed to many research projects while at Rice, mostly
through the Center for Research on Parallel Computation,
an NSF-funded Science and Technology Center with the
mission to make parallel computation usable by scientists
and engineers. He was executive director of the High Per-
formance Fortran Forum, an effort to standardize a lan-
guage for parallel computing. More recently, he served
for three years as a program director at the National Sci-
ence Foundation, where he was responsible for the
Advanced Computational Research program and helped
coordinate the Information Technology Research program.
He is co-author of The High Performance Fortran Hand-
book, MIT Press, 1993, and many papers and technical
reports. He received his PhD in computer science from
Purdue University in 1990.

448 COMPUTING APPLICATIONS

Rob Schreiber is with the Advanced Computer Sys-
tems Laboratory at Hewlett Packard Laboratories. He is
known for important basic research in sequential and par-
allel algorithms for matrix computation, and compiler opti-
mization for parallel languages. He has been a professor
of Computer Science at Stanford and at RPI. He has been
chief scientist and the lead architect at Saxpy Computer.
He has been a developer of the sparse-matrix extension of
Matlab, and a leading designer of the High Performance
Fortran programming language. He was one of the devel-
opers of the NAS parallel benchmarks. He has written the
matrix computation libraries at Maspar. At HP, Rob has
been a technical leader and an implementer of PICO, a
groundbreaking tool for hardware synthesis from high-
level specifications. His current research is in optimiza-
tion of the system software and programming interfaces
for highly parallel clustered systems.

References

Bailey, D. H. 1991. Twelve ways to fool the masses when giving
performance results on parallel computers. Supercomputer
Review 4(8):54–55.

Bailey, D. H. et al. 1994. The NAS Parallel Benchmarks. Tech-
nical Report RNR-94–007, NASA Ames Research Center,
CA.

Chauhan, A., McCosh, C., Kennedy, K., and Hanson, R. 2003.
Automatic type-driven library generation for telescoping
languages. Proceedings of the ACM International Confer-
ence for High Performance Computing and Communica-
tions (SC2003), Phoenix, AZ, November 15–21.

Chen, K-Y., Fine, L. R., and Huberman, B. A. 2003. Predicting
the future. Information Systems Frontiers 5(1):47–61.

Dalkey, N. C. 1969. Analyses from a group opinion study.
Futures 2(12):541–551.

DeRose, L. and Padua, D. 1999. Techniques for the translation
of Matlab programs into Fortran 90. ACM Transactions
on Programming Languages and Systems 21(2):286–323.

Faulk, S., Johnson, P., Porter, A., Tichy, W., and Votta, L.
2004. Measuring HPC productivity. International Journal
of High Performance Computing Applications 18(4).

Post, D. E. and Kendall, R. P. 2004. Software project manage-
ment and quality engineering practices for complex, cou-
pled multiphysics, massively parallel computational
simulations: lessons learned from ASCI. International
Journal of High Performance Computing Applications
18(4).

