Array SSA form and its use in Parallelization

Kathleen Knobe
Digital Cambridge Research Laboratory
One Kendall Square, Building 700
Cambridge, MA 02139, U.S.A.

Email: knobe@erl.dec.com

Abstract

Static single assignment (SSA) form for scalars has been
a significant advance. It has simplified the way we think
about scalar variables. It has simplified the design of some
optimizations and has made other optimizations more ef-
fective. Unfortunately none of this can be be said for SSA
form for arrays. The current SSA processing of arrays views
an array as a single object. But the kinds of analyses that
sophisticated compilers need to perform on arrays, for exam-
ple those that drive loop parallelization, are at the element
level, Current SSA form for arrays is incapable of providing
the element-level data flow information required for such
analyses. .
In this paper, we introduce an Array SSA form that ca

tures precise element-level data flow information for array
variables in all cases. It is general and simple, and coincides
with standard SSA form when applied to scalar variables.
It can also be used for structures and other variable types
that can be modeled as arrays. An important application
of Array SSA form is in automatic parallelization. We show
how Array SSA form can enable parallelization of any loop
that is free of loop-carried true data dependences. This in-
cludes loops with loop-caxried anti and output dependences,
unanalyzable subscript expressions, and arbitrary control
flow within an iteration. Array SSA form achieves this level
of generality by making manifest its ¢ functions as runtime
computations in cases that are not amenable to compile-time
analysis.

1 Introduction

Static single assignment (SSA) form for scalar variables has
been a significant advance. It has simplified the design of
some optimizations and has made other optimizations more
effective. Some of the earliest applications of SSA form
were in the design of new algorithms for global constant
propagation [17] and global value numbering [2, 12]. The
popularity of SSA form surged after an efficient algorithm
for computing SSA form was made available [5]. SSA form
is now a standard representation used in modern optimizing
compilers in both industry and academia.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the capies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.

POPL 98 SanDiego CA USA

Copyright 1998 ACM 0-89791-979-3/98/01..83.50

Vivek Sarkar
MIT Laboratory for Computer Science
545 Technology Square, NE43-206
Cambridge, MA 02139, U.S.A.

Email: vivek@lcs.mit.edu

The salient properties of SSA form are as follows:
1. Each definition is assigned a unique name.

2. At certain points in the program, new names are gen-
erated which combine the results from several defini-
tions.

3. Each use refers to exactly one name generated from
either of the two rules above.

In the scalar case, combining (rule 2) is via a ¢ function
which determines which of several values to use based on
the flow path traversed. For example, SSA form converts
the code in Figure 1 to that in Figure 2. The combining
function, ¢ depends on the path taken through the if state-
ment. Notice that this path is unknown until runtime and
may vary with each dynamic execution of this code.

Given the code in Figure 3, we might consider dealing
with arrays in a similar way by recognizing this special case
in which all elements of X are written in either the then
branch or the else branch. We could use a combining ¢
function that chooses the first or the second definition of
the whole array depending on the path taken at runtime.
However, the situation becomes complicated if the nesting
of the condition and the loops are reversed as in Figure 4.
The combining ¢ function for this example must merge the
two definitions on an element-by-element basis based on the
value of the conditional which is now an array of booleans.
This complication arises for arrays because an assignment
to an array element does not necessarily kill a previous
assignment £o the same array variable. (The same problem
arises for poirters and aliases as well.)

Thus, the analysis required to generate a useful SSA form
for array variables is more complex than for scalar variables.
In this paper, we introduce an Array SSA form that cap-
tures precise element-level data flow information for array
variables in all cases. It is general and simple, and coincides

“with standard SSA form when applied to scalar variables. It

can also be used for structures and other variable types that
can be modeled as arrays. The three rules in standard SSA
form also apply to Array SSA form. However, combining
in Array SSA form is via a more powerful ¢ function that
can merge values from distinct definitions on an element by
element basis.

To further understand the difference between standard
SSA and Arxray SSA forms, consider loop L in Figure 5 which
we will use as a running example in the rest of the paper.
The use of an element X[j] after the loop may refer to the
initial value of X or to the value defined inside the loop. If

I e E ST N B e R e oA EA Ty o Y AT tupE A A f Tt

a if (C) then
Si=...

else
S=...

end if

Figure 1: Control Flow with Scalar Definitions

if {(C) then

L end if

T S3 1= ¢(S1, 52)

Figure 2: Traditional Scalar SSA

if {C) then
do i:=...
X[} =...
. ‘ end do
else
do i:=...
X =...
end do
end if

Figure 3: Trivial Array SSA Problem

do 1:=... -
if (C[i]) then
fi):=...
else
X[:=...
end if
end do

Figure 4: Not so Trivial Array SSA Problem

{X initialized here.}
do %...
if (C[i]) then
X[f(@E] =...
endif
enddo
co= X[

Figure 5: Loop L with Conditional and Indirection

subscript expression £{i) is not a permutation, the value of
a given element of X may be written several times by the
same static assignment. The ¢ functions in Array SSA form
are capable of handling this complexity effectively.

There are several potential uses for Array SSA form
in compiler analysis and optimization for uniprocessor and
multiprocessor systems. In this paper, we focus on the
application of Array SSA form to the area of automatic par-
allelization. In general, paralle! execution in a program may
be inhibited by a variety of control and data dependences.
Of these dependences, only frue data flow dependences can-
not be broken. Several transformations have been proposed
in past work to break other kinds of data dependences {(anti
and output) by renaming and privatization and to break
cortrol dependences by IF conversion and speculation {18],
‘We show that the renaming and ¢ functions present in Array
SSA form can enhance automatic parallelization by break-
ing antifoutput dependences and control dependences in
more general ways than has been done in the past for ar-
ray variables. Specifically, we first show that Array SSA
form can enable parallelization of any loop that is free of
loop-carried true data dependences. This includes loops
with loop-carried anti and output dependences, unanalyz~
able subscript expressions, and arbitrary control flow within
an iteration (such as loop L in Figure 5). We present perfor-
mance measurements for the parallelization of a computer
graphics rasterization application using this technique, We
also show bow Array SSA form can be used to enable spec-
ulative execution so as to parallelize loops with loop-carried
true data dependences that are present in cycles that also
contain control dependences. Finally, we show how Array
SSA form can be used $o break loop-independent output
and anti data dependences to enable parallel execution of
distinct regions in a program.

The rest of the paper is organized as follows. Section 2
introduces Array SSA form and discusses the placement,
semantics, and opfimization of ¢ functions in Array SSA
form. Section 3 shows several different ways that Array SSA
form can be used for parallelization., Section 4 discusses
related work, and Section 5 confaing our conclusions and
indicates possible directions for future work.

2 Array SSA Form

Section 2.1 addresses the issue of ¢ function placement in
Array SSA form, and section 2.2 discusses the semantics
of ¢ functions and how ¢ functions can be implemented
at runtime when so desired. Finally, section 2.3 outlines
optimizations that can be performed on @ functions and ¢
functions.

2.1 ¢ Function Placement

This section addresses the question of where to place ¢
functions in Array SSA form. As in scalar SSA, the key
requirement on ¢ placement is that it enable each use to
refer to a single name. The initial placement that we present
here is an extension of the ¢ placement used by scalar §84;
however, this choice is not fundamental and subsequent op-
timization of ¢ nodes (addressed in Section 2,3) may result
in a different but semantically equivalent’ placement of ¢
functions.
Initial placement of ¢ functions follows two rules:

1. define ¢ y

A ¢ function is inserted immediately after each def
inition of an array variable that does not completely

108

T TR S P et ¥ €3 T4 T N ST AT RS

e
i

PR s FEP . 3

-t i . ol

e

kill the array value. This define ¢ merges the values
of the element(s) modified in the definition with the
values available immediately prior to the definition.
Define ¢'s need not be inserted for definitions of scalar
variables because such a definition completely kills the
old value of the variable and there is no need to merge
modified elements and unmodified elements.

For example, consider the def X[f(i)] := in figure 5,
and assume that the def has been renamed to Xz[f(3)] :=.
Also, let X be the def of variable X that reaches the
point just prior to the def of X3. Then, the ¢ function,
Xs 1= ¢(X2,X1) is inserted immediately after the def
of X to represent an element-by-element merge of X
and X;; any subsequent use of variable X (before an
intervening def) will simply refer to X3 instead.

. merge ¢

A ¢ function is inserted at exactly at the same loca-
tions where scalar SSA would have inserted a ¢ func-
tion (at the dominance frontier). As in scalar SSA,
the purpose of this merge ¢ function is to merge values
computed along distinct control paths.

One way to think of any of these ¢ functions is simply as
an identity assignment of the form X := X (called pseudo-
assignments in {14]). Such an assignment by itself is seman-
tically void, but during conversion to SSA the LHS becomes
a newly generated name. The RHS combines elements from
other names generated for the same source array (those
listed as arguments to the ¢). As in scalar SSA, after each
¢ is given 2 unique name and each source definition is given
a unique name, any use in the source will simply point to
{be renamed as) one of these newly generated names.

As an example, we can see that placement of these de-
fine ¢ and merge ¢ functions would convert the code for
loop L in Figure 5 to the Array SSA form shown in figure 6.
The algorithm for computing the initial Array SSA form for
a program uses the ¢ placement algorithm for scalar SSA
form [5] to determine the placement of merge ¢ functions. In
addition, define ¢ functions are inserted as described above.
Details of the placement algorithm for Array SSA form have
been omitted for the sake of brevity.

An important property of the numbers assigned to def-
initions by Array SSA form is that they are topologically
sorted i.e., if there exists a forward path (a path that does
not include a back edge [1]) in the control flow graph from def
X; to def Xj;, then we require that ¢ < j. This topological
numbering simplifies the discussion of ¢ function semantics
in the next section.

2.2 ¢ Function Semantics and Implementation

Now that we know where the ¢ functions are placed in
Array SSA form, this section addresses their semantics and
implementation. For some uses of Array SSA, such as static
analysis, the ¢ functions are not manifest at runtime and
incur no runtime overhead. In such cases, only the semantics
are relevant, The implementation of ¢ functions becomes
relevant if Array SSA form is used in a way that requires
runtime evaluation of ¢ functions (as in our parallelization
examples in the section 3). As we describe the semantics of
¢ functions in Array SSA form, it might appear that we are
introducing a lot of runtime overhead. Section 2.3 presents
optimizations of the ¢ functions to reduce this overhead.
The experimental results presented later in Section 3 also

/* Xp is the initializing definition from figure 5 */

Xo[...] =
doi:=1, n
Xl = ¢(X4,Xo)
if (C[i]) then
Xalf@)] = ...
X3 = ¢(X»,X1)
end if
X4 = ¢(X3,X1)
end do
X5 = ¢(X4,Xo0)

Xsl..

Figure 6: Array SSA form for loop L in figure 5
/* All @ array elements have initial value = 1 */

Q@Xo[l : m]:=L ; @Xi[1:m]:=1 ; @X3[l:m]:=1 ;
QXz[l:m] =1 ; @X4[l:m]:=1 ; @X5[1:m]:=1 ;

Xol..] ==
@Xol..]: =0
doi:=1, n

Xy := ¢(X4, Xo)
@X; = max(@X4,0Xo)
if (C[i]) then

Xa|f(3)]

@X3
end if
Xy = ¢(Xs,X1)

@X4 = max(@Xa,@Xl)
end do
X5 = ¢(X4,Xo)
QXy := max(@X4,@Xu)
eer 2= Xs[..]

:= max(@X,,0X;)

Figure 7: Insertion of @ Computation

if

else
end if
if
else
end if
if
else
end if
if
else
end if

@X§7j] > @Xo[j] then Xi '[5]

X;14] Xol4]

I

. @xilj] = @xi[j] then Xj[j]
X3l4 Xili
@xi[j] = @Xi[j] then Xj[j]
Xilil

QX7[j]l = @Xo[j] then XZ[j]
Xol3]

X3l

Xsli]

Figure 8: Semantics of the ¢ functions in Loop L

109

provide evidence that the remaining overhead is not signif-
icant for a rasterization application that has a high-level
structure similar to loop L.

To define the semantics of ¢ functions, we introduce the
concept of an @ arrey. For each static definition X the
@ array @X;[j] identifies the most recent “time” at which
each element of X was modified by this definition. The
initial value of each @ array element is 1, @Xi[j] =1,
which indicates that element j has not (yet} been modified
by static definition Xj.

For an acyclic control flow graph, a static definition X
may execute either zero times or one time. These two cases
can be simply encoded as @X{j] =1 and @X;[j] #L (for
each element §). For a control flow graph with eyeles {loops),
a static definition X} may execute an arbitrary number of
times. Therefore, we need more detailed information for
the @X3[7] #1 case so as to distinguisk among different
dynamic execution instances of static definition X. Specif-
ically, @X.[7] contains the iteration vector at which element
j was last modified by static definition Xj.

The dteration vector of a static definition X is a single
point in the iteration space of the set of loops that enclose
the definition. Let = be the number of loops that enclose
a given definition. A single point in the iteration space
is specified by the iteration vector 7 = {(i1,...,%n), which
is an n-tuple of iteration numbers one for each enclosing
loop. The construction of Array SSA form does not require
that the surrounding loops be structured counted loops (i.e.,
like Fortran DO loops) or that the surrounding loops be
tightly nested. Our only assumption is that all loops are
single-entry, or equivalently, that the control flow graph is
reducible [8, 1. For single-entry loops, we know that each def
executes at most once in a given iteration of its surround-
ing loops. All structured loops {e.g., do, while, repeat-
until) are single-entry even when they contain multiple
exits; also, most unstructured loops (built out of goto state-
ments) found in real programs are single-entry as well. A
multiple-entry loop can be transformed into multiple single-
entry loops by node splitting [8, 1].

The values of @ array elements can be computed as
follows. We assume that all @ array elements, @X[7], have
the value L at the start of program execution. For each
real (non-¢) definition, X¢[s], we assume that a statement
of the form @Xy[s] := 7 is inserted immediately after the def
(where s is an arbitrary subscript value and { is the current
iteration vector for all loops that surround Xi). Each ¢
definition also has an associated @ array. Figure 7 shows
the result of inserting @ array computations into figure 6 so
as to obtain the complete Array SSA form for loop L.

Consider @ array @X; for static definition Xa[f(7)] :=.
Recall that nothing is known about subscript function f(i)
— it need not be monotonic, and it need not even be a
permutation. Nevertheless, setting @Xz[j] = (7) correctly
records the “most recent” iteration in which static definition
X, assigned a value to element j = f(¢). Notice that this
cemputation is accurate even if f is not a permutation since
@X, may be overwritten in subsequent iterations but the
final value indicates the iteration number of the last modifi-
cation. It is also accurate in the presence of the conditional
since @X is updated exactly when the definition would have
occurred.

This leads us to the notion of dynemic definitions. An
array element may be defined multiple times during the
execution of the program. Fach of these is called a dynamic
deﬁmtwn of the elemené. A dynamxc definition of an element
is specified by

» a specific static definition and
» a point in the iteration space of that definition.

Consider the dynamic definition for element X{17) in

T?m’nrp B, “The two nn*n-z!) static definitions are the initial-

ization outside the loop (Xo) and the one assigning through
the indirection vector, f, within the loop (X2). Maybe Xo
defined element X[17] in the initialization and X2 defined
element X[17] on iterations ¢ = 10, i = 39 and ¢ = 82, These
are all dynamic definitions. In this case, @Xo[17] will be set
to (), and @X2[17] will be set to (10), (39), (82) in iterations
10, 39, 82, with a final value of @X,[17] = (82).

For a given array element and execution poini in the
program, the last dynamic definition to have executed is
visible. Dynamic definitions executed earlier are occluded
by subsequent ones. Each element has at most one visible
dynamic definition at any time, The role of the ¢ function is
to identify the visible dynamic definition for each individual
element of an array array.

Thus, the semantics of ¢ functions is specified most nat-
urally by conditional expressions. For example, the define ¢
function, X3 = ¢(X2, X1) in figure 7 represents an element-
by-element merge of array values X» and X (recall $hat this
¢ function has no analog in scalar SSA form). The condi-
tional expression for this ¢ function is defined as follows

: if @XQL’]] = @Xl [j] then Xg["]]
Xilll = else Xi[j)
end if

where the notation X} denotes the value of the dynamic
definition of definition X in iteration £ of loop L.

> represents the lezicographic > relationship on iter-
ation vectors (@ array element values). The conditional
expression dictates that the value of array element X3[4)
comes from either X3[j] or from X3{j] depending on which
element was computed more recently. This selection is con-
trolled by the value of @ array elements @X4(5) and @Xi[j]:
if @Xi{j] > @Xi{j] then the conditional expression scts
X35l = X3[j], and if @Xl[]} > @X3i[j] the conditional
expression sets X3[f] = Xi[j]. In the case that @XZIJ]
@X{[4], the conditional expression sets Xi[j] = X3[j]; static
definition X is selected instead of X because for two defi-
nitions with the same iteration vector the topological num-
bering property of Array SSA form guarantees that the
definition with the largest number will be more recent,

Since @ arrays @Xs and @X; are used in the ¢ function,
the definition of ¢ as a pure function actually includes these
@ arrays as arguments e.g., Xz = $(X2,@X2, X1,08X1)
However, for conciseness, we often omit writing the @ ar-
rays as explicit arguments and instead just write X3 =
&(X2,X1).. Note that in scalar SSA, a ¢ function such
a8 X3 = ${X2,X1) is not a pure function of X» and X
but also depends on implicit information analogous to the
@ variables that identifies the control path taken.

Notice in figure 7 that the @ array for each ¢ def X, =
¢(Xn,,Xn,) is computed as @Xp = max{@Xy,,@X},) This
is because, for each element j, the ¢ function selects as its
tesult the input X,[j] value with the largest @X,{j] value.

Analagous to the define ¢, the value of the merge ¢ X4 :=
$(X3,X1) in figure 7 can be expressed as a conditional
expression for element X3[5] as follows:

_ i€ @Xizexil] then Xifj
X} = else Xif]
end if

Sorki Uune LI ST A s cat e it D L B POLMING

g 2P -

In the semantics of ¢ functions in scalar SSA form, a
conditional expression is built from branch conditions; heré,
in Array SSA from, the @ arrays capture the merging of
elements due to branch conditions as well as the merging of
elements assigned in different iterations. Figure 8 shows the
conditional expressions for all the ¢ functions from figure 7.

Consider the computation of the merge ¢ value X3[17],
using the conditional expression from figure 8. If @X>[17]
is mot L, X3[17] takes its value from X>[17] rather than
from Xp[17] becanse the two static assignments are in no
shared loops and X has a larger topological number than
Xo (because there is a forward path from Xo to X2).

The Array SSA form presented thus far is defined for
array variables and (as a special case) for scalar variables.
However, Array SSA form can be easily constructed for
structure variables since a structure can be viewed as a fixed-
size array. A read/write operation of a structure element
can be viewed as a read/wnte operation of an array element
through a subscript that is a compile-time constant. Opera-
tions that read/write multiple elements of a structure (e.g.,
structure copy) can be modeled by read/write operations
on sets of structure elements. The ¢ function in Array SSA
form can then merge distinct fields modified in distinct parts
of the code exactly as it merges distinct elements for array
variables. In fact, Array SSA form for structure variables
is a simpler representation than for general arrays, because
all element accesses can be resolved at compile-time. This
technique directly extends to construction of Array SSA
form for nested arrays and structures. For example, an array
of rank % of structures can be modeled as an array of rank
n+1,

In concluding this section, we observe that Array SSA
form enables a new optimization, “element-level dead code
elimination”. Notice that the code in our example may com-
pute many instances of the right hand side of the assignment
to X» that are not used after the loop. If they are not used
within the loop and they have no side-effects, then they need
not be computed at all. We simply suppress the assignment
Xo[f(3)] := rhs(i) within the loop. The ¢ after the loop tells
us exactly which computations are needed. If we determine
that element j is the one computed on iteration i = @X;[j],
we execute X5[j] := rhs(i) in the finalization loop instead
of computing rhs(i) for each iteration of the execution loop.
Notice that classical dead code elimination typically elimi-
nates static instances of code. Although statically, this code
is required, we have eliminated its execution dynamically for
many elements.

2.3 Optimization of ¢ Functions and @ Arrays

In this section, we outline how @ arrays and ¢ functions can
be optimized to reduce runtime overhead (in cases where
these functions are made manifest in the output code).
The first observation is that, in unoptimized Array SSA
form, a distinct @ array is created for each real (non-¢)
definition of an array variable. For many assignments, how-
ever, the conditions under which the assignment occurs is
completely analyzable at compile time. In such cases neither
the storage nor the computation of @ arrays are needed. For
example, an assignment to X|i] in a loop from imin to imaz
needs no @ array. If a ¢ function needs to test for (@X{j] =L
)} we can instead substitute the test, (j < imin or j > imax).
In addition, we will show that @ arrays and ¢ func-
tions can be analyzed and optimized just like other vari-
ables and instructions/statements in a compiler’s interme-
diate language. The conditional expression semantics of ¢

i

functions gives it some very useful properties e.g., we will
show that ¢ functions are associative. Therefore, traditional
optimizations such as copy propagation, loop-invariant code
motion, common subexpression elimination, elimination of
partial redundancies, dead store elimination, etc. can all be
used to eliminate or reposition computations for @ arrays
and ¢ functions. We illustrate this by showing how the code
structure from figure 7 with naive placement of @ and ¢
computations can be transformed to obtain the optimized
code structure in figure 11.

Consider the Arxray SSA form with @ arrays shown in
figure 7. Qur goal is to remove as much computation of @ ar-
rays and ¢ functions as possible. As a first step, we can copy
propagate the def of X; 1 into the two uses of X; and the def of
@X; into the two uses’ of @X; to obtain the code structure
shown in figure 9. Since max is an associative function, a
nested max expression such as max(@Xs, max(@X4, @Xp))
in figure 9 can be rewritten more simply as max(@X>, @X},
@Xo). Further, we can prove that ¢ functions are associative
because composing ¢ functions is equivalent to nesting of
conditional expressions. For example, we can show that
P(Xz2, §(Xa4, Xo)) = p($(X2,X4), Xo) by noting that X :=
¢(Xz, §(X4, Xo)) and X3 := ¢(¢(X2, X4), Xo) would result
in the same nested conditional expression for X3 {examples
of conditional expressions for ¢ functions can be seen in

figure 8):

if @X3[j] = @Xj[j] then Xi[j]
else if @X] '[j] = @Xo[j] then X:™'[j]
else Xols]

end if

X3l

Since ¢ is associative, we use ¢(X2, X4, Xo) as shorthand
for ¢(X2, $(X4,Xo)) in our example.

‘We now continue with figure 9 and copy propagate the
defs of X3 and @X3 to obtain the code structure shown
in figure 10 (which also uses the flattened representations
of max functions and ¢ functions): It is easy to see that
max(@X,, @X4, @Xo, @X4,@Xo) in figure 10 can be sim-
plified to max(@X,, @X4, @Xp) . Further, because of the
> relation used in defining the conditional expressions for
¢ functions, we can also simplify ¢(X2, X4, Xo, X4, Xo)) to
¢(X2:X4: Xo)

The simplified max computation forms a recurrence as
follows, @Xj := max(@X3i,@X3!,@X,). Note that the
value of an @ array must be monotonically nondecreasing
as a function of i i.e., @X}[j] = @X;'[4] for each element
j and each iteration 7 > 1 (assuming that @XJ[4] represents
the initial .1 value of @Xz[]]) Therefore the recurrence can
be solved to obtain @X}[j] = max(@X3[4], Xolj]).

Similarly, the conditional expression for the simplified ¢
definition X4 := ¢(X2, X4, Xo) is really a recurrence that
defines X3[4] as a function of X3 *[4] as follows:

if @X;[j] = @X;7'[j] then X3[j]
else if @X:1[j] = @Xo[] then Xi~l[j]
else Xo[j]

end if

Xih

Again, observing that @X3[j] is monotonically nondecreas-
ing as a function of ¢ leads to the following solution to the

1ror simplicity, we do not show copy propagation of @X into the
implicit uses of @X3; in the two ¢ functions that take X3 as input.

ADIA P’ I LI Bl Yol B I ook > ST YL OB S A it 3 PR PN AT SRR Wl 3 S S

Xol..] :=
axXel...]:=0

dot:=1, n
if (C[]) then
Xolf(3)] := .

@X{f(3)] := (i)
X3 = ¢(X2;¢(X4:X0D
@X; := max{@X,, max{(@X4, @Xp))
end if
Xy := ¢(X3s¢(X4:X0))
@X4 = max(@Xs,max(@X4,@Xu))
end do
X5 = ¢(Xa, Xo)
@Xs = max(@X4,@Xo)
s 1T Xs[...]

Figure 9: Transformation of figure 7 after copy propagation
of X; and @X;

Xol..] =
@Xo[.. =)
doz =1, n
if (C[i])) then
X[f))] o= ...
@X5[f()} = ()
end if
Xq := ¢(Xz2, X4, Xo, Xs, Xo)
QXy := max(@Xz,@X4,@Xo,@X4,@Xo)
end do
X5 := ¢(X4,Xo)
@X5 = max(@X4,@Xo)
ves 2T Xs[]

Figure 10: Transformation of figure 9 after copy propagation
of Xa and @Xs

do i :=1, n
Xo[f{g)] := ...
QX,(f(z)] := (&)
end if
end do
Xs = ¢'(X2,Xo)
@X5 = ma.x(@Xz,@Xo)
ves 25 Xs[]

Figure 11. Transformation of figure 10 after solving recur-
rences for X; and @X and copy propagation out of the
loop

112

recurrence;
_ i OXj{j]= @Xo[j] then X{[j]
Xilll = else Xolj)
end if
= X; = ¢(X3,Xo)

Thus, the recursive ¢ definition for Xy, X5 = p(XE,
X', Xo), is equivalent to the non-recursive ¢ definition
X} = ¢{X;3, Xo), assuming that X and @X- contain all
the values that were written during 1...% of the loop. If
we use the non-recursive definitions, we observe that there
is no use of X4 or @X4 inside this loop and hence the
final values, X7 and @X}, can both be propagated outside
the loop to obtain X5 = ¢(¢(X2,Xo),Xo} and QX5 1=
max({max(@Xa,@Xp),@Xp), which can be further simpli-
fied to X5 1= ¢(X2, Xo) and @Xs = max{@Xz,QXs) re-
sulting in the optimized code structure shown in figure 11,
Because the' ¢ definition for X5 includes the final values
computed by the loop, we also refer to this ¢ function as
a finalizelion ¢. Note that the code structure in figure 11
is very efficient because it does not have any ¢ function
compautations inside the loop.

Note that the loop in figure 11 still contains an @ array
computation, which is unavoidable for this example because
there is only a single real def to the array variable and it
contains an unanalyzable subscript expression. As we will
see in section 3, the overhead of the @ computation in this
example is small encugh to not be a significant performance
impedimeni. However, the overhead of @ array compu-
tations could become significant for a loop that contains
multiple defs if each real def is accompanied by an @ array
computation. So we conclude this section by briefly men-
tioning some optimizations that can be used to reduce the
computation and storage overhead of maintaining @ arrays.

Consider the following loop after insertion of @ array
computations. Assume there is no contrel flow within tho
loop.

doi=1ln
X[f@)) =...
Q@Xa[f{5)] = (3)

Yilg(F)] = ...
eVilg(F(&)] = ()

Zf(g(i)] = .
@Zu[Fg(iN] = (3)

endde

{Since this discussion is focused on @ array computations,
we do not show the ¢ function details in the above loop.)

As before, we allow f to be an arbitrary function. Let us
consider how we might derive @Y, array values from QX
array values. We assume that function g is known to have
a unique inverse i.c., £l # 32 & g(zl) # g(z2), Then

@v1fj] = max({ili <i<n and g(f(#)) =j})
= max ({ill <i<n and f(i)= !)'-l(.?')})
= @Xufg'().

Therefore, we can avoid computing array @Y by using tho
identity, @Y31{j] = @Xi{g~1(4)], to lock up its value from
@X;. If g~(4) fails outside the range of array @X; then wa
just set @Yi[j] =L (which includes the case when g~*(j)

R

is not an integer). For example, if g(f(7)) = 2f(i), we
have @Y1[j] = @X;[j/2]. This means that @Y[j] =L for
all odd values of j, which reflects the fact that an odd-
numbered element of array Y; could not have been set by
the assignment statement Y3]2f(#)] = The fact that
iteration 7 modifies element Y;[2f(2)] is captured by exam-
ining @X1[(21(3))/2] = @X1[f(3)], which would have been
set to @X,[f(%)] = (). The extra overhead in looking up
@X lies in computing g~!(j) so this optimization is best
suited to cases in which g™ is a simple function e.g., when
g(f(3)) = constanty X f(i)+ constant (note that making g~}
a simple function does not place any constraint on function
F(9)). This reuse of the @ array is valid if both assignments
are identically control dependent.

Now consider how we might derive @Z; array values from
@X,; array values. We make the additional assumption that
g is a monotonically increasing function i.e., z1 < 22 &
g(x1) < g(x2). Then

@Z1[j] = max({ilt <i<n and F(9()) =35}
max ({g7 (@)1 < g7'() < n and f(i') =3})
g~ (@Xy[4])

Therefore, we can also avoid computing array @Z; by using
the identity, @Z1[j] = ¢~ *(@X1[j]), to look up its value
from QX 1.

These optimizations for eliminating @ array computation
are quite general in nature, and can easily catch common
cases such as g(f(#)) = f(i) & constant. For example, we
can just use one @ array for the four defs Xa[f(3)], Yalf (?)],
Xa[f(4) + 1] and Xs[f(i + 1)].

‘We have shown some of the optimization techniques used
to reduce the potential overhead of the ¢ and @ compu-
tations. These include compile time analysis of @ arrays,
how classical optimizations such as reassociation and copy
propagation can be applied and how a single @ function can
be used for distinct assignments.

3 Using Array SSA form for Automatic Parallelization

As mentioned earlier, there are several potential uses for
Array SSA form in compiler analysis and optimization. In
this section, we focus on the application of Array SSA form
to the area of automatic parallelization. Other possible uses
of Array SSA form are mentioned briefly in section 5 as
subjects for future work.

Due its renaming of array variables and the ability to
compute @ arrays and ¢ functions at runtime, Array SSA
form enables parallelization of a wider range of loops than
past techniques. In the following discussion, we assume
that parallelization-enhancing transformations such as loop
distribution [18] have been performed as a pre-pass, so that a
loop-carried true data dependence only inhibits paralleliza-
tion if it belongs to a cycle of data dependences. Serial
execution is fundamentally necessary for 2 cycle of true data
dependences, in which a value in one iteration is computed
using a value from the previous iteration {and the two state-
ments cannot be distributed into separate loops). However,
programs often rely on serial execution for other reasons. If
an array element may be modified in multiple iterations (i.e.,
there is a dependence cycle containing an output depen-
dence), serial execution ensures that the correct final values
are visible when the loop terminates. If an array element
computed in one iteration is used to determine the direction
of a conditional branch in a subsequent iteration that may

113

modify an element of the same array (i.e., there is a depen-
dence cycle containing a loop-carried true data dependence
and a loop-independent control dependence), again serial
execution ensures the correct final values are visible when
the loop terminates. However, the ¢ function in Array SSA
form is an alternative way of ensuring that the correct values
are visible of ensuring that the correct values are visible on
loop termination without requiring serial execution.

The rest of this section is organized as follows. Sec-
tion 3.1 describes a new loop parallelization technique based
on Array SSA form that can enable paraiielization of any
loop that is free of loop-carried true data dependences. This
includes loops with loop-carried anti and output dependences,
unanalyzable subscript expressions, and arbitrary control
flow within an iteration. Section 3.2 shows Array SSA form
can be used to enable speculative execution so as to par-
allelize loops with loop-carried true data dependences that
are present in cycles that also contain control dependences.
Section 3.3 shows how Array SSA form can be used to
break loop-independent output and anti data dependences
to enable parallel execution of distinct regions in a program.

3.1 Parallelization Across Loop lterations

In this section, we show how Array SSA form can be used
to parallelize loops containing loop-carried anti and out-
put data dependences but no loop-carried true data de-
pendences. This parallelization technique works for loops
containing arbitrary array subscript expressions and is thus
much more general in scope than loop parallelization tech-
niques proposed in the past that are based on array data
flow analysis and array privatization for loops containing
affine array subscript expressions.

‘We illustrate loop parallelization via Array SSA form
with our running example from the previous section, loop
L in figure 5. This loop contains a conditional write to
array element X[f(z)] where f() is an arbitrary subscript
expression that may depend on program input. The sub-
script expression may also be many-to-one i.e., X{f(%1)] and
X[f(i2)] may map to the same element for two distinct iter-
ations i1 # #2. To the best of our knowledge, loop L cannot
be parallelized by any compiler today, though it could be
amenable to speculative parallel execution combined with
renaming using the software approach described in [11]} or
building on the hardware approaches described in [15, 16,
10]. In contrast, the loop parallelization transformation
described in this section is not speculative; after renaming
arrays and inserting ¢ function computations, the compiler
knows at compile-time that the loop can be safely executed
in parallel at run-time.

The rest of this section is organized as follows. Sec-
tion 3.1.1 describes an abstract parallelization of loop L
that follows directly from the optimized Array SSA form.
Abstract parallelization reveals the potential parallelism in
the loop without paying attention to overhead issues on real
machines. Section 3.1.2 then describes a concrete paral-
lelization of loop L for a small-scale multiprocessor. Con-
crete parallelization directs the parallelism so as to obtain
efficient code for a given machine.

3.1.1 Abstract Parallelization

‘We first present an abstract parallelization that reveals the
potential parallelism in the program without commiting to
any specific computation mapping or data distribution. Our
goal is to transform the stylized serial code produced by Ar-
ray SSA analysis to parallel form. For the code in figure 11,

B LRI S 288 97 Vs -

the only dependences that prevent parallel execution are
the output dependence between distinct assignments to X,
and the output dependence between distinct assignments to
@X,. Both are due to the fact that f may result in multiple
medifications to the same location.

To enable these assignments to execute in parallel, we ez-
pand [18] both X and @X along the iteration axis (adding
a dimension of the same extent as the range of 7). This
expansion permits distinct iterations 43 # 42 of loop L to
concurrently write into Xo[f(i1),41] and into Xo[f(iz), 2]
even when f(i1) = f(i2). The loop in figure 11 can now
be executed in parallel. However, the computation of the
¢ function, X5 := ¢(Xs, Xp), outside the loop in figure 11
now needs to be transformed so that it can work with the
expanded arrays. ‘

Using the semantics of ¢ functions introduced in sec-
tion 2, the conditional expression for the finalization ¢ func-
tion, X5 := ¢(Xs, Xp), before array expansion of X; and
@X> can be expressed as:

if QXP[] = @Xolj]

. _ then X2{j]
Xsli) = else Xofjl
end if

In general, the computation of the finalization ¢ function
after array expansion of its inputs needs to be performed
in two steps. First, a single-assignment reduction is per-
formed for each static assignment. Then a multi-assignment
reduction is performed to combine the results of the single-
assignment; reductions on the same array variable.

First consider the single-assignment reduction. The se-
rial version reduced the {potentially multiple) iterations on
which Xo[k] might have been modified to a single last it-
eration simply by overwriting them into a single location
@X2[k] in order. This serial in-order execution ensured
that the largest iteration was assigned last. The parallel
expanded version instead performs $his compufation as a re-
duction operation that Iocates the largest value in @X;[%, 1 :
n}. The multi-assignment reduction combines the results
of distinct assignments. We simply modify the conditional
expression for the ¢ function, X5 := ¢(Xz, Xo), in teh above
conditional expression to instead refrieve its value from the
correct location in the expanded X» or from Xo.

The resulting abstract parallel version is found in fig-
ure 12. Step 1 in figure 12 performs the initiclization for the
abstract parallelization. It allocates array temporaries Xz,
QX>, and X, as dictated by the optimized Array SSA form.
Step 2 in figure 12 performs the ezecution of the modified
original loop. Step 3 in figure 12 performs the finalization
recreating the view of the arrays as in the source for use
by the remainder of the program. The single-assignment
reduction for X5 is performed by the mMaX function. The
mulfi-assignment reduction for X (i.e., combining Xj and
X3) is performed by the if construct.

The total O{m x n} time spent in the MAX computation
is the.largest amount of extra work introduced by abstract
parallelization, where m is the size of the original array X
and 7 is the number of iterations in the loop. This can be
a significant source of overhead even though this work can
be done in O(lag n) parallel time. As we will see, the total
amount of work required for the MAX operation gets reduced
to O(m x P} in the concrete parallelization, where P is the
number of processors in the target machine.

114

3.1.2 Concrete Parallefization

Figure 13 shows a concrete parallelization of the abstract
parallelism in figure 12. Concrete parallelization requires
that the data and computation be mapped to a limited
number of processors in the target machine. We assume
that each processor executes its iterations in the same rel-
ative order as the original loop. The concrete target wo
assume in this discussion is a small-scale multiprocessor with
physically distributed memories and hardware support for
shared address space.

Step 1 in figure 13 performs the inifialization for concreto
parallelization. It only allocates array temporaries X3 and
©X: but not X;. More importantly, the size of the array
temporaries is m X P in the concrete parallelization com-
pared to m X n in the abstract parallelization, which is a
significant reduction in the amount of temporary storage
required. The data distributions in step 1 are provided
as an optimization; the correctness of our parallclization
transformation does not depend on the data distributions.

Step 2 in figure 13 performs the ezecution of the concrete
parallelization. It is legal to execute this transformed loop
in parallel because the expansion of arrays X; and @X3
ensure that no data races occur {the assumption that each
processor executes its iterations in the same relative order ag
the criginal loop is also necessary for ensuring correctness),
Note that the data distributions ensure that all writes to
arrays X» and @X; are local in this concrete parallelization.
However, due to the unpredictable nature of the f(i} array

“subscript expression, the uniprocessor spatial locality of the

writes performed by the original loop and by the paralielized
loop may be poor. :

Step 3 in figure 13 performs the finalization for the con-
crete parallelization. As in the abstract parallelization, the
finalization loop in step 3 is a parallel loop, but its extont
equals m, the number of elements in array X rather than
1, the number of iterations in loop L. It involves the same
two step process described earlier; single-assignment reduc-
tion followed by multi-assignment reduction. Recall that
the single-assignment reduction was achieved via overwrit-
ing in the serial case and via an actual reduction across
an expanded dimension in the abstract case. The concrete
case accomplishes this reduction via overwriting within cach
processor and a reduction across processors,

The single-assignment reduction for X2 computes temp :=
MAXLOG(@X,{j, P]), the index number of the processor that
assigned to X[j] with the largest iteration number, The
total amount of time spent in the MAXLOC computation
is O(m x P), which can be done in O(m) parallel time
on P processors. The finalization loop makes a significant
number of remote memory references, but these references
have good spatial locality (unlike the memory references in
the execution loop) and hence should be amenable to latency
hiding techniques such as prefetching. Though we show the
MAXLOC computation as accessing shared non-local data, it
is also well understood how to perform a MAXLOG reduction
in a distributed-memory execution model with no hardware
support for a shared address space.

The multi-assignment reduction determines the final value
of X[7] by adapting the conditional expression for Xp's ¢
functior derived in section 2. If @Xu[j, temp] > 0, wo sot
X{j] = Xolj,temp], the last value of element j computed
on processor # temp. Otherwise (when temp = 0), element
J was not written in loop L and we leave X[j] unchanged,

‘We can expect this concrete parallelization to sealp lin-
early so long as the total work in loop L is at least O(m x
P). This will be trueif n > m X P or if n = m and

SO SR e b T P AT R P VOORE S N

PPN TRl Dt g s

N

P e TV AV ONCRE AVS b

1. /* INITIALIZATION. Allocate array temporaries.
Note that array X» has been expanded. */
allocate Xofl : m,1: 7], @X>[1:m,1: n], X5[1 : m]
Also initialize @Xo[x,+] := 0

2. /* EXECUTION. Execute loop in parallel using array
temporaries Xz and @X5. At this abstract level, the
computation model is one processor per iteration. */

doall i := 1, n
if (C[i]) then
Xalf (i) 3= -..
Q@Xo[f(),4] := i
end if
end doall

3. /* FINALIZATION. Compute final value in X5 */

doall j := 1, m
temp = MAX(@X.[j,1:n])
if (temp > 0} then
Xe[d] == Xolf, temp]
else
Xs[j] := Xoli]
end if
end doall

4. free X3[l:m,1: 7}, QX1 : m,1: 1], Xs[1: m]

Figure 12: Abstract parailelization of loop L

each iteration of loop L does at least O(P) work. Note
that the distribution of the f(Z) subscript function values
does not affect the scalability of concrete parallelization.
The concrete parallelization will scale linearly even if f{3)
happens to map to the same element in all iterations (as-
suming that the total work in loop L is at least O(m x P)).
This is in contrast to schemes proposed in hardware for
dynamic address resolution (e.g., [15]) in which a single
location can become a performance bottleneck if it receives
a disproprotionately large number of memory operations.

3.1.3 Experimental Results

In this section, we present some performance results for a
rasterization [6] example from computer graphics using the
concrete parallelization technique from the previous section.
Rasterization (also known as “scan conversion”) is a simple
example of a real application that includes a loop containing
loop-carried output data dependences but no loop-carried
trne data dependences. Polygons are “painted” onto a dis-
play buffer from back to front i.e., in decreasing order of
their 2 values.

For the serial program in our experimental results, we
used the code for generic convex polygon scan conversion
written by Paul Heckbert that is distributed with the “Graph-
ics Gems” book [7]. This scan conversion code was called on
n randomly generated triangles, for a target display buffer
that contains m = 1024 x 1024 = 10° pixels. Each tri-
angle was generated as follows. First, the same (randomly
generated) z value was assigned to all three of its vertices.
Next, a randomly generated (z,y) pair was selected as the
first vertex. Finally, the 2 and y offsets for the second and
third vertices, with respect to the first vertex, were randomly
selected from the range —50... 3 50. Measurements were

1. /* INITIALIZATION. Allocate array temporaries. We
assume a multiprocessor target with distributed shared
memory, and a data distribution for arrays X» and
@X> that places each column on a separate processor.
Compared to the abstract parallelization, note that
we only need arrays X2 and @X: and that their
expansion factor is P (= # processors) instead of n
(= # iterations). */

allocate X5l :m,1: P], @X3[1:m,1: P
distribute Xs[*, BLOCK], @X32[*, BLOCK]
Also initialize Xo[*,*] := 0

2. /* EXECUTION. Execute loop in parallel using array
temporaries X and @X, */

/* At the concrete level, the computation model is that
a processor may execute many iteration but it executes
its iterations in the same relative order as the original
laop. */

doall i := 1, n
g := processor number for iteration %
if (C[i]) then
Xo[f(3),q] := ...
@Xa[f(),ql = i
end if
end doall

3. /* FINALIZATION. Update array X with final value.
Execute loop j with a BLOCK computation mapping to
exploit spatial locality in arrays X, Xo, @X,. */

doall j :=1, m
/* Due to the shrinking of arrays X2 and @X»
from m X n to m X P, we need to use
MAXLOC instead of MAX. MAXLOC(@X:[f,1:n])]
returns (the smallest) z such that
Vi<k<n@Xolj, 2] > @Xo[5, k). */
temp := MAXLOC(@X3[j,1: P))
if (@X3[j,femp] > 0) then
X[3] := Xalj,temp]
end if
end doall

4, free X[l :m,1: P], @X3[1:m,1: P]

Figure 13: Concrete parallelization of loop L

Parallel | Parallel
Serial || Version | Version
n Version |} (P=1) | (P =4) || Speedup
10,000 || 36s || 38s | l4s 2.6 X
50,000 || 17.ds || 174s | 48s 3.6 X
100,000 || 345s || 340s 9.1s 3.8 x

Figure 14: Execution time measurements (in seconds) for
rasterization of n» polygons on a 4 processor SMP using the
concrete parallelization transformation from section 3.1.2

]
E
i
;
{
A
H
1
i
i
i
v
!

'
£
!

- NI ML

PRI el LSO DR ALT W PP ST ORI S S

made separately for n = 10,000, 50,000, and 100,000 to cover
a reasonable range for the number of polygons typically
encountered in rasterization {6].

The parallel version of this code was obtained by re-
naming and expanding the display buffer array variable by
hand, according to the concrete parallelization technique
described in section 3.1.2. 1In the execution phase on P
processors, each processor performed rasterization for 1/P
of the randomly generated polygons and stored the out-
put in its local copy of the expanded display buffer while
also updating a local @ array. The finalization phase then
performed the reduction described in section 3.1.2 using
the local @ arrays to obtain the final value of the global
display buffer. In section 3.1.2, we said that we expected
the concrete parallelization to scale linearly so long as the
total work in the loop is at least O{m x P). If T is the
average time to rasterize one triangle, this means that we
expect linear speedup so long asT is at least O(m x P/=n).
Note that the array size, m = 10, is much larger than the
values used for n, the number of iterations (polygons), which
means that it will be harder to obtain linear speedup as n
decreases.

For each value of n, figure 14 shows the wallclock ex-
ecution times measured for the rasterization phase (after
geaeration of » random triangles) in three cases:

1. Serial version — the sequential code for generic con-
vex polygon scan conversion written by Paul Heckbert
that is distributed with the “Graphics Gems” book [7].
This code was executed on a single processor.

2. Parallel version (P = 1} — the code obfained by con-
crefte parallelization, but executed on 2 single proces-
Sor. '

3. Parallel version (P = 4) — the code obtained by con-
crete parallelization, and executed on four processors.

The execution times were measured on a Digital AlphaServer
4100 SMP containing four Alpha 21164 400 MHz pocessors.
The speedup column reports the ratio of the execution time
of the parallel version on four processors to the execution
time of the serial version. The speedups for n = 100,000 and
n = 50,000 are close to linear (3.8x and 3.6x respectively},
whereas the speedup for n = 10,000 drops to 2.6x. This
shows that the concrete parallelization transformation from
section 3.1.2 can be effective in delivering speedup for a real
application.

3.2 Parallelization with Specufative Execution

In this section, we show how Array SSA form can be used
to enable speculative execution so as to parallelize loops
with loop-carried true data dependences, so long as each
cycle containing a loop-carried true data dependence also
includes a loop-independent control dependence. As in sec-
tion 3.1, this parallelization transformation works for loops
with loop-carried anti and output dependences, unanalyz-
able subscript expressions, and arbitrary control flow within
an iteration.

As an example, consider loop P shown in figure 15. The
main difference from loop L in section 3.1 is that there is
now a loop-carried data dependence from statement s3 fo
statement s2 on variable X. The key dependence cycle in
this code is formed by this loop-carried data dependence
and by a loop-independent control dependence from s2 to
53 due to the if construct. The Array SSA form for locp P
with full insertion of @ arrays and ¢ functions is shown in

116

{X initialized here.}
do 1i:=imin,imaz

s2: if (f(X{[g(i)])) then

s3: X{h{i)] == rhs(i)
endif
enddo
=X[...]

Figure 15: Example loop P

Xo[. . } =
@Xof...]:= ()
do %:=imin,imax
X; := (X4, Xo)
@X; := ma.x(@X4, @Xo)
if (f{X1[g(z}])) then
X2[h(3)] := rhs(3)
@Xo[h(3)] := (3)
X3 1= ¢(Xe, X1)
@Xs = max(@Xg,@Xl)
endif
Xy 1= ¢(X3,X1)
QX4 := max(@Xa,@Xl)
enddo
X5 1= $(X4,Xo)
@X5 = max(@X4,@Xo)
...:=X5[...]

Figure 16: Array SSA form for loop P

figure 16. Figure 18 shows the optimized Array SSA form
for loop P obtained by using copy propagation as described
in section 2.3 {we show @X; as an explicit argument to the
¢ functions to make it easier to see the dependence structure
of the loop).

Consider statements s3 and s4 in figure 18, Note that
statement s4: @X,[h(1)) := () cannot be executed specula-
tively because it is an @ array computation and the correct-
ness of Array SSA form depends on element @X3[h(z)] being
set = (7) only for those iterations in which the if condition
in s2 evaluates to true. However, Array SSA form gives us
the option of computing statement s3: Xafh(3)] := rha(i)
speculatively for each iteration ¢, assuming that rhs(i) has
no side effects that inhibit speculative execution. There is
no problem if statement s3 initializes extra elements of array
Xo, because @Xo will be used by the ¢ functions to select
ounly those elements of Xo that would have been computed
by statement s3 in the original program {figure 15).

Figure 17 shows the dependences graphs for different
versions of loop P. The dependence graph for the original
loop P from figure 15 is shown in figure 17(a). We use the
standard direction vector notation (=) and (<) to identify
loop-independent and loop-carried dependences (18}, In ad-
dition tc the true, output, and anti data dependences on
variable X, there is a loop-independent control dependence
from s2 to s3 due to the if construct. Figure 17(b) shows
the dependence graph for the optimized Array SSA form in
figure 18. Two new statements have been introduced, s1 for
the ¢ function and s4 for the @ array computation., This de-
pendence graph can be computed using standard techniques
once Array SSA form has been constructed., Notice that
there are no anti or output dependences in this dependence
graph. Finally, figure 17{c) shows the dependence graph

-

R A ol o ST o ST * R L g RS 1 At -G BT

Bl BN o s Pann wir) Tt Sl T AEINIR NG Fo i

True data dependence

Anti data dependence -
Output data dependence ——
Control dependence —

(a) Dependence graph for original loop P in figure 15.

(b) Dependence graph for optimized Array SSA form in

figure 18.

(c) Dependence graph after selecting statement s3 for

speculative execution.

Figure 17: Dependence graphs for loop P

117

Xo[. .] _
@Xol...]:= ()
do 2 :=1min,imazx

s1: Xh 1= ¢(X2,0X>, Xo)

s2: if (f(Xai[g(?)])) then

s3: Xa[h(3)] := rhs(z)

s4: Q@X2[R(3)] :== (3)
endif

enddo

X5 = $(X2, @X2, Xo)

QX5 := ma.x(@Xz, @Xo)

= X5[. . .]

Figure 18: Optimized SSA for loop P

1. /* INITIALIZATION. Allocate array temporaries.

Note that array X has been expanded. */
allocate Xz[1:m,1 : n], @X2[1 : m], X5[1 : m)
Also initialize @X;[+] := 0

2. /* The EXECUTION phase consists of a parallel loop

for statement s3 and a sequential loop for statements
s1, s2, and s4. ¥/

doall i :=imin,imaz
s3: X2[h(3),4] := rhs(3)

enddo

do i :=imin,imazx

sl: /* Set temp:= Xi[g(i)] */
j=g(
if (@X32[j] > 0) then
temp = Xs(j, @X2[j]]
else
temp := Xo[j]
end if
s2: if f(temp) then
sd: Q@Xofh{z)] =1
endif
enddo

3. /* FINALIZATION. Compute final value in X5 */

doall j :=1, m
if (@X3[j] > 0) then
Xs[j] := Xa[j, @X2[j]]
else
Xs[j] = Xols]
end if
end doall

4. free Xzl : m,1: nj, @X3[1: m,1: 0], Xs{1 : m]

Figure 19: Abstract parallelization for loop P

e e .

i
!
]

(XTI e, T I At SR SR e, X AR

SR S

that is obtained when we decide fo execute statement s3
speculatively. Statement s3 is no longer control dependent
on statement s1. This reduces the dependence cycle for loop
P to only contain statements si s2 and s4. Assummg that
there was significant work in computmg rhs(i) in statement
s3, this makes the critical cyt;le significantly shorter than
before. In fact, array X» can be speculatively precomputed
in parallel as we will now see.

Figure 19 shows the abstract parallelization of the opti-
mized Array SSA form in figure 18, using speculative execu-
tion of statement s3. Analogous to thé abstract paralleliza-
tion transformation in secfion 3.1.1, the transformed code
in figure 19 consists of an initialization phase, an execution
phase, and a finalization phase. The initialization phase
allocates arrays Xo, @Xo, and X5, of which only array
X is expanded. Since this an abstract parallelization, the
expansion factor for array X, equals the number of iterations
in the loop (as in section 3.1.1). As before, a concrete
parallelization will instead limit the expansion factor to be
< P, the number of processors. The execution phase in
figure 19 consists of a parailel loop and a sequential loop.
The parallel loop speculatively precomputes expanded array
X2, and the sequential loop executes the dependence cycle
consisting of statements s1, s2 and s4. -No expansion is
required for @X, because it is computed in the sequential
loop. The following conditional expression for ¢{X2, X0)
is used as the basis for computing X; and X5 at different
points in figure 19:

if @Xz[j] >0 then Xs[f,@X>[f]]
else Xofj]
end if

Xailf] = Xsli] =

For X1, statement s1 in the sequential loop in the execution
phase simply computes temp = X1{g(2)] to obtain the value
of the single element of array X; that is used by statement
s2 in iteration i. Array Xs is computed in the finalization
phase, analogous to the finalization phase in section 3.1.1.
Though the parallel loop in figure 19 is written as a doall,

a full barrier is not required between the parallel loop and
the sequential loop in the execution phase. The parallel
loop has to simply stay ahead of the sequential loop so that
iteration i of the parallel loop is completed before iferation ¢
of the sequential loop begins. How this is best accomplished
depends on the target architecture. One possible concrete
parallelization is shown in figure 20. It is based on pipelining
chunks of iterations of the parallel and sequential loops. For
a chunk size of n iterations, a single pipeline cycle consists of
executing chunk %k +1 of the the parallel loop in conjunction
with chunk k of the sequential loop. Thus, the degree of
parallelism in a single pipeline cycle is (n» + 1) The array
expansion factor for Xz only needs to be n for this concrete
parallelization. For convenience, figure 20 only shows the
concrete parallelization for a single pipeline cycle of the
execution phase, and excludes the prolog and epilog for this
software pipeline. The chunk size n establishes the granu-
larity of synchronization. Figure 20 does not address the
mapping of the work in a single pipeline cycle to processors;
the granularity of the processor mapping will depend on the
amount of work in the parallel and sequential loops and on
the target machine.

3.3 Parallelism Across Regions

The array renaming provided by Array SSA form can also
be used to break loop-independent output and anti data

/* Execute the {k + 1)*® chunk of the parallet loop. */

doall i:=nx(k+1), nx(k+2)~1
Xo[h{z),1 mod n] := rhs(i)

enddo

/* Execute the &' chunk of the sequential loop. */

do i:=nx*k, nx(k+1)-1
si: /# Set temp:= Xi[g(i)] »/
j=g(i)
if (@Xz[j] >0) then
temp := Xa[j, @X2{j] mod nj

else
temp = Xolj]
end if
s2: if f{temp) then
s4: @Xs[h(3)] =
endif
enddo

Figure 20: Concrete parallehzatlon for loop P: one pipeline
cycle

(X initialized here.}

/* Region 1 */
do i:=

XIf@)] =

enddo

/* Region 2 */

do t:=...
if (crmd(i)) then
X{g(®}=...
endif
enddo

Figure 21: Example code fragment with regions

dependences to enable parallel execution of distinct regions
in a program.

As an example, consider the code fragment in figure 21.
Its Array SSA form after optimizing the ¢ functions is shown
in figure 22. We will consider three regions in figure 22: the
two original loops that compute X1 and X respectively, and
the finalization ¢ that computes X3. If region 2 does not
use values computed by region 1, regions 1 and 2 can be
executed concurrently. Region 3 uses the ¢ function,

X5 = tﬁ(Xz, QXy, X3,QX;, Xo)
to combine the resulis of regions 1 and 2 as follows:

if @Xofj]# L then Xafj)
else if @Xilj]# L then Xi[j]
else Xo[q]

end if

Xsli] =

In this example, renaming removed an output depen-
dence which enabled parallel execution. If the reference to
array X in region 1 in figure 21 were a use rather than a
definition, renaming would have broken an anti-dependence
and would also have enabled parallel execution. In that case,
the final ¢ would only need to combine values X2 and Xj.

-G asna A=t RV PR CIL NN Oy vy 2t st b i S R A

Y
fds

3 e

Xol...] :=
@xXol...]:==0

/* Region % */

do i:=...
Xf@)]=...
axh[f ()] == (3)
enddo

/* Region 2 */
do i:=..,
if cond(i) then
Xalg(@)] :=...
Q@X[g(i)] == (2)
endif
enddo

/% Region 3 */
Xs = ¢(X2,@X2,X1, @Xl,Xo)

Figure 22: SSA form for region parallelism

We only discussed abstract parallelization in this section.
The appropriate strategy for concrete parallelization will
depend on the level of parallelism to be exploited e.g., task
parallelism, multi-threading, parallel sections, or instruction
level parallelism.

4 Related Work

There are currently several important approaches to pro-

gram analysis. We discuss three below, scalar SSA, data

dependence analysis and array data flow analysis. They
attack the problem in three quite distinct ways and have
distinct strengths and weaknesses. In brief, scalar SSA cap-
tures control flow and does renaming but lacks array index
information and so is not useful for arrays. Dependence
analysis has historically been very useful for arrays because
it performs sophisticated index analysis, but it does not
capture control flow or perform any renaming. Array data
flow analysis captures both control flow and index analysis
but does not include any renaming other than array pri-
vatization. The array SSA form presented in this paper
incorporates control flow analysis, index analysis and array
renaming more generally than in past approaches.

Static single assignment (SSA) form for scalar variables
has been a significant advance. It has simplified the design
of some optimizations and has made other optimizations
more effective. Some of the earliest applications of SSA form
were in the design of new algorithms for global constant
propagation [17] and global value numbering [2, 12]. The
popularity of SSA form surged after an efficient algorithm
for computing SSA form was made available [5). SSA form
is now a standard representation used in modern optimizing
compilers in both industry and academia.

However, it has been widely recognized that SSA form is
much less effective for array variables than for scalar vari-
ables. The approach recommended in [5] is to treat an entire
array like a single scalar variable in SSA form. For example,
in this approach an assignment to a single array element
A[j] == v gets translated to an operation on the entire
array A := Update(A, 7, v) which after SSA renaming would
become Ay := Update(A,, j,v). The most serious limitation

119

of this approach is that it lacks precise data flow information
on a per-element basis. Array SSA form addresses this
limitation by providing ¢ functions that can combine array
values on a per-element basis.

Data dependence analysis [18] has historically been the
analysis of choice in the parallel community. It performs
detailed analysis of subscripts to determine if two references
to the same array within common loops can ever touch the
same element. However, as has been observed in the past,
dependence analysis is location based and is thus insufficient
for array data flow analysis.

Array data-flow analysis has received an increasing amount
of attention recently (e.g., see [9, 4, 3]). Of the approaches
suggested in past work, the last write tree (LWT) in [9] is the
most closely related to Array SSA form. The LWT identifies
the instance of the last write operation that provides the
array element value for a given instance of a read operation,
where instances of read/write operations are defined with re-
spect to common surrounding loops. Several restrictions are
placed on a program region to enable construction of LWT’s.
It is assumed that the only control fiow in the region consists
of structured counted loops (i.e., like Fortran DO loops).
It is also assumed that all array subscripts contain affine
functions of the index variables of surrounding loops. Array
SSA form is far more general in scope than IWT’s. As dis-
cussed earlier in the paper, Array SSA form supports general
reducible control flow and places no restrictions whatsoever
on array subscript expressions. The network of ¢ functions
connecting a use to its defs in Array SSA form can be viewed
as a generalization of the LW'T. The combining rules for the
¢ functions identify which def to follow in each case. Even
for the special cases in which LWT’ can be created, the
¢ functions represent the same information more efficiently
because a separate LWT structure need not be created for
each read operation.

In summary, Array SSA form is more precise than clas-
sical SSA form for array variables because it is an element
level approach. It is more precise than dependence analysis
because it takes control flow into account. It is more general
in scope than the last write tree representation because it
allows arbitrary control flow and arbitrary index expressions
and provides inherent support for array renaming.

There has been some past experience with runtime struc-
tures similar to @ arrays. A notable example is the use of the
inspector/executor medel to enable runtime parallelization
of loops containing unanalyzable array references [13]. The
focus of that work is on runtime scheduling and commu-
nication optimization on codes that operate on irregular
grids. In contrast, our focus is on exposing @ arrays and
¢ functions in Array SSA form so as to increase the scope
of compiler analysis and transformation.

5 Conclusions and Future Work

In this paper, we introduced an Array SSA form that cap-
tures precise element-level data flow information for array
variables. It is general and simple, and coincides with stan-
dard SSA form: when applied o scalar variables. Its power
lies in a very simple meckanism that combines control flow
analysis, array index analysis and renaming,

One important application of our Array SSA form is
in automatic parallelization. We showed that Array SSA
form can enable parallelization of any loop that is free of
loop-carried true data dependences. This includes loops
with loop-carried anti and output dependences, arbitrary
conditionals, unanalyzable loop bounds and strides, and un-

analyzable subscript expressions. We validated this use of
Array SSA form on a rasterization code which showed good
speedups indicating that the overkead of the technique is
minimal.

For future work, we plan to pursue other applications of
Array SSA form including its use in representing data flow
information for pointer accesses and other forms of aliasing.
In this way, Array SSA form can be exfended to serve as a
universal SSA form for all classes of variables. We also plan
to study the improvements that can be obtained in register
allocation and instruction scheduling by using Array SSA
information. We plan on investigating its use in supporting
compilation problems requiring summaries of array accesses
using systems of linear inequalities.

Acknowledgments

We would like to thank Rishiyur Nikhil, Bert Halstead, Matt
Frank, Norm Rubin, Leonidas Kontothanassis, Roy Ju and
especially Carl Offner and Saman Amarasinghe for technical
discussions coentributing to the ideas presented here. In ad-
dition, we would like to thank Bert Halstead for suggesting
the graphics algorithm, Satyan Coorg for help in accessing
and understanding the graphics code.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
1986.

2] Bowen Alpern, ‘Mark N. Wegman, and F. Kenneth
Zadeck. Detecting Equality of Variables in Programs.
Fifteenth ACM Principles of Programming Longuages
Symposium, pages 1-11, January 1988. San Diego, CA.

[3] S. P. Amarasinghe. Parallelizing Compiler Techniques
Based on Linear Inequalities. PhD thesis, Com-
puter Systems Laboratory, Stanford University, Jan-
uary 1997.

[4] R. Bodik and R. Gupta. Array Data-Flow Analysis for
Load-Store Optimizations in Superscalar Architectures.
Lecture Notes in Computer Science, (1033):1-15. Pro-
ceedings of Eighth Annual Workshop on Languages and
Compilers for Parallel Computing, Columbus, Ohio,
August 1995.

[5] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently Comput-
ing Static Single Assignment Form and the Control De-
pendence Graph. ACM Transactions on Programming
Languages and Systemns, 13(4):451-490, October 1991,

{6] James Foley, Andries van Dam, Steven Feiner, and John
Hughes. Computer Graphics: Principles and Practice.
Addison-Wesley Publishing Company, 1996.

[7] Andrew S. Glassner. Graphics Gems. Academic Press,
1993.

{8] Matthew S. Hecht. Flow Anelysis of Computer Pro-
grams. Elsevier North-Holland, Inc., 1977.

[9] Dror E. Maydan, Saman P. Amarasinghe, and Mon-
ica S. Lam. Array Data-Flow Analysis and its Use
in Array Privatization. Conf. Rec. Tweniieth ACM
Symposium on Principles of Programming Languages,
January 1993.

120

[10] Jeffery Oplinger, David Heine, Shih-Wei Lino,
Basem A. Nayfeh, Monica S. Lam, and Kunle QOluko-
tun. Software and hardware for exploiting speculative
parallelism with a multiprocessor. Technical Report
CSL-TR-97-715, Stanford University Computer Sys-
tems Lab, February 1997.

{11} Lawrence Rauchwerger and David Padua. The LRPD
Test: Speculative Run-Time Parallelization of Loops
with Privatization and Reduction Parallelization. Pro-
ceedings of the ACM SIGPLAN °95 Conference on
Progremming Language Design and Implementation,
June 1995.

{12} Barry K. Rosen, Mark N. Wegman, and F, Kenncth
Zadeck. Global Value Numbers and Redundant Com-
putations. Fifteenth ACM Principles of Programming
Languages Sympostum, pages 12-27, January 1988, San
Diego, CA.

{13} J. Saltz, K. Crowley, R. Mirchandaney, and H. Berry-
man. Run-time scheduling and execution of loops on
message passing machives. Jowrnal of Parallel and
Distributed Computing, 8(4), April 1990,

[14] R. M. Shapiro and H. Saint. The Representation of
Algorithms. Technical report, Massachusetts Computer
Associates; February 1970. Technical Report CA-7002-
1432,

[15] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multi-
scalar. Processors. Proceedings of the 22nd International
Symposium on Computer Architecture, 1995,

[16] J. Gregory Steffan and Todd C. Mowry. The Potential
for Thread-Level Data Speculation in Tightly-Coupled
Mutltiprocessors. Technical Report CSRI-TR-350, De-
partment of Electrical and Computer Engineering, Uni-
versity of Toronto, February 1997.

{17] Mark Wegman and Ken Zadeck. Constant Propagation
with Conditional Branches. Conf. Rec. Twelfth ACM
Symposium on Principles of Pragramming Languages,
pages 291-299, January 1985,

[18] Michael J. Wolfe. Optimizing Supercompilers for Super-
computers. Pitman, London and The MIT Press, Cam-
bridge, Massachusetts, 1989. In the serics, Research
Monographs in Parallel and Distributed Computing.

PR o S .y T e S e T st TN Sy v e AR e T O, AT et SR T v ~ - [TR A L UL P S temgt v
st e R e e N R R R T e T R o T T R TSI e R S A

