
Array SSA form and its use in Parallelization

Kathleen Knobe
Digital Cambridge Research Laboratory

One Kendall Square, Building 700
Cambridge, MA 02139, U.S.A.

Email: km be @m-l. dec. corn

Abstract

Static single assignment (SSA) form for scalars has been
a significant advance. It has simplified the way we think
about scalar variables. It has simpliied the design of some
optimizations and has made other optimizations more ef-
fective. Unfortunately none of thii can be be said for SSA
form for arrays. The current SSA processing of arrays views
an array as a single object. But the kinds of analyses that
sophisticated compilers need to perform on arrays, for exam-
ple those that drive loop parallelization, are at the element
level. Current SSA form for arrays is incapable of providing
the element-level data flow information required for such
analyses.

In this paper, we introduce an Array SSA form that cap-
tures precise element-level data flow information for array
variables in all cases. It is general and simple, and coincides
with standard SSA form when applied to scalar variables.
It can also be used for structures and other variable types
that can be modeled as arrays. An important application
of Array SSA form is in automatic parallelization. We show
how Array SSA form can enable parallelization of any loop
that is free of loop-carried true data dependences. This in-
cludes loops with loop-carried anti and output dependences,
unanalyzable subscript expressions, and arbitrary control
flow within an iteration. Array SSA form achieves this level
of generality by making manifest its 4 functions as runtime
computations in cases that are not amenable to compile-time
analysis.

1 Introduction

Static single assignment (SSA) form for scalar variables has
been a significant advance. It has simplified the design of
some optimizations and has made other optimizations more
effective. Some of the earliest applications of SSA form
were in the design of new algorithms for global constant
propagation [17] and global value numbering [2, 121. The
popularity of SSA form surged after an eflicient algorithm
for computing SSA form was made available 151. SSA form
is now a standard representation used in modern optimizing
compilers in both industry and academia.

Permission to make digital/hard copies ofrll or part of thii material for
petsonnl or &.wroom use is granted without fee provided that the copies
are IIOL made or distributed for profit or commercial odv~tagc, the wpy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission ofthe ACM, Inc. To copy othenvise,
IO republkh, to post on servers or to rediibute to iii requires specific
permission a&or fee.
POPL 98 Ssn Diego CA USA
Copyright 1998 ACM O-89791-97931981 OLS3.50

Vivek Sarkar
MIT Laboratory for Computer Science

545 Technology Square, NE43-206
Cambridge, MA 02139, U.S.A.

Email: uiuek@lcs. mit. edu

The salient properties of SSA form are as follows:

1. Each definition is assigned a unique name.

2. At certain points in the program, new names are gen-
erated which combine the results from several de&i-
tions.

3. Each use refers to exactly one name generated from
either of the two rules above.

In the scalar case, combining (rule 2) is via a 4 function
which determines which of several values to use based on
the flow path traversed. For example, SSA form converts
the code in Figure 1 to that in Figure 2. The combining
function, $ depends on the path taken through the if state-
ment. Notice that this path is unknown until runtime and
may vary with each dynamic execution of this code.

Given the code in Figure 3, we might consider dealing
with arrays in a similar way by recognizing this special case
in which all elements of X are written in either the then
branch or the else branch. We could use a combining 4
function that chooses the fhst or the second definition of
the whole array depending on the path taken at runtime.
However, the situation becomes complicated if the nesting
of the condition and the loops are reversed as in Figure 4.
The combiig 4 function for this example must merge the
two definitions on an element-by-element basis based on the
value of the conditional which is now an array of booleans.
This complication arises for arrays because an assignment
to an array element does not necessarily kill a previous
assignment to the same array variabIe. (The same problem
arises for pointers and aliases as well.)

Thus, the analysis required to generate auseful SSA form
for array variables is more complex than for scalar variables.
In this paper, we introduce an Array SSA form that cap-
tures precise element-level data flow information for array
variables in all cases. It is general and simple, and coincides

-with standard SSA form when applied to scalar variables. It
can also be used for structures and other variable types that
can be modeled as arrays. The three rules in standard SSA
form also apply to Array SSA form. However, combining
in Array SSA form is via a more powerful 4 function that
can merge values from distmct definitions on an element by
element basis.

To further understand the difference between standard
SSA and Array SSA forms, consider loop L in Figure 5 which
wewilluseasa running example in the rest of the paper.
The use of an element Xtjl after the loop may refer to the
initial value of X or to the value defined-inside the loop. If

107

__- -- --

if (C) then
s:=...

else
s :=...

end if

Figure 1: Control Flow with Scalar Definitions

if (C) then
Sl :=...

else
s2 := . . .

end if
s3 := f#(Sl,S2)

Figure 2: Traditional Scaler SSA

if (c) then
do i:=...

X[ij := . . .
end a0

else
do i:=...

X[i] := . . .
end do

end if

Figure-S: ‘Evial Array SSA Problem

do i:=...
if (C[i]) then

X[ij := . . ,
else

X[i] := . . .
end if

end do

Figure 4: Not so ‘lEvia Array SSA Problem

(X initia&ed here.)
do i...

if (C[i]> then
X[f(i>] := . . .

endif
enddo

*= X[. . .J

Figure 5: Loop L with Conditional and Indirection

subscript expression f(i) is not a permutation, the value of
a given element of X may be written several times by the
same static assignment. The 4 functions in Array SSA form
are capable of handling this complexity effectively,

There are several potential uses for Array SSA form
in compiler analysis and optimization for uniproccssor and
multiprocessor systems. In this paper, we focus on tho
application of Array SSA form to the area of automatic par-
allelization. In general, parallel execution in a program may
be inhibited by a variety of control aud data dependences.
Of these dependences, only true data flow depondences can-
not be broken. Several transformations have been proposed
in past work to break other kinds of data dependences (anti
and output) by renaming and privatization and to break
control dependences by IF conversion and speculation [18].
We show that the renaming and 4 functions present in Array
SSA form can enhance automatic parallelization by break-
ing anti,‘output dependences and control dependenccs in
more general ways than has been done in the past for ar-
ray variables. Specifically, we first show that Array SSA
form can enable parallelization of any loop that is free of
loop-carried true data dependences. This includes loops
with loop-carried anti and output dependences, unanalyz-
able subscript expressions, and arbitrary control fiow within
an iteration [such as loop L in Figure 5). We present perfor-
mance measurements for the parallelization of a computer
graphics rasterization application using this technique, We
also show how Array SSA form can be used to enable spec-
ulative execution so as to parallelize loops with loop-car&d
true data dependences that are present in cycles that also
contain control dependences. Finally, we show how Array
SSA form can be used to break loop-independent output
and anti data dependences to enable parallel execution of
distinct regions in a program.

‘fhe rest of the paper is organized as folIows. Section 2
introduces Array SSA form and discusses the placement,
semantics, and optimization of $ functions in Array SSA
form. Section 3 shows several different ways that Array SSA
form can be used for parallelization. Section 4 discusses
reIated work, and Section 5 contains our conclusions and
indicates possible directions for future work.

2 Array SSA Form

Section 2.1 addresses the issue of 4 function placement in
Array SSA form, and section 2.2 discusses the semantics
of 4 functions and how r$ functions can be implemented
at runtime when so desired. Finally, section 2.3 outlines
optimizations that can be performed on 0 functions and (b
functions.

2.1 4 Function Placement

This section addresses the question of where to place 4
functions in Array SSA form. As in scalar SSA, the key
requirement on 4 placement is that it enable each uso to
refer to a single name. The initial placement that we present
here is an extension of the 4 placement used by scalar SSA;
however, this dhoice is not fundamental and subsequent op-
timization of rj nodes (addressed in Section 2.3) may result
in a different but semantically equivalent placement of I#
functions.

Initial placement of 4 functions follows~ two rules:

1. define r$
A 4 function is inserted immediately after each def-
inition of an array variable that does not completely

. .

kill the array value. This de&c 4 merges the values
of the element(s) modified in the definition with the
values available immediately prior to the definition.
Define 4’s need not be inserted for definitions of scalar
variables because such a definition completely kills the
old value of the variable and there is no need to merge
modified elements and unmodified elements.
For example, consider the def X[f(i)] := in figure 5,
and assume that the def has been renamed to X2 [f(i)] :=.
Also, let X1 be the def of variable X that reaches the
point just prior to the def of X2. Then, the 4 function,
X3 := 4(X2,X1) is inserted immediately after the def
of X2 to represent an element-by-element merge of X2
and Xr ; any subsequent use of variable X (before an
intervening def) will simply refer to X3 instead.

2. merge q5

A 4 function is inserted at exactly at the same loca-
tions where scalar SSA would have inserted a r$ func-
tion (at the dominance frontier). As in scalar SSA,
the purpose of thii merge 4 function is to merge values
computed along distinct control paths.

One way to think of any of these 4 functions is simply as
an identity assignment of the form X := X (called pseudo-
assignments in [14]). Such an assignment by itself is seman-
tically void, but during conversion to SSA the LHS becomes
a newly generated name. The FtHS combines elements from
other names generated for the same source array (those
listed as arguments to the 4). As in scalar SSA, after each
4 is given a unique name and each source definition is given
a unique name, any use in the source will simply point to
(be renamed as) one of these newly generated names.

As an example, we can see that placement of these de-
fine Q and merge 4 functions would convert the code for
loop L in Figure 5 to the Array SSA form shown in figure 6.
The algorithm for computing the initial Array SSA form for
a program uses the 4 placement algorithm for scalar SSA
form [5] to determine the placement of merge rp functions. In
addition, define 4 functions are inserted as described above.
Details of the placement algorithm for Array SSA form have
been omitted for the sake of brevity.

An important property of the numbers assigned to def-
initions by Array SSA form is that they are topologicdy
sorted i.e., if there exists a forward path (a path that does
not include a buck edge [l]) in the control flow graph from def
Xi to def Xj, then we require that i < j. This topological
numbering simplifies the discussion of 4 function semantics
in the next section.

2.2 C/J Function Semantics and Implementation

Now that we know where the 4 functions are placed in
Array SSA form, this section addresses their semantics and
implementation. For some uses of Array SSA, such as static
analysis, the 4 functions are not manifest at runtime and
incur no runtime overhead. In such cases, only the semantics
are relevant, The implementation of 4 functions becomes
relevant if Array SSA form is used in a way that requires
runtime evaluation of 4 functions (as in our paralleliiation
examples in the section 3). As we describe the semantics of
4 functions in Array SSA form, it might appear that we are
introducing a lot of runtime overhead. Section 2.3 presents
optimizations of the 4 functions to reduce thii overhead.
The experimental results presented later in Section 3 also

109

/* Xe is the initializing definition from figure 5 */
Xl&..] :=
do i -= 1, n .

Xl := qqX4,Xo)
if (C[i]) then

xp)] := . . .
:= 4(X2,X1)

end if
x4 := qqX3,Xl)

end do
X5 := &Y4,XO)
. . . := X5[. . .]

Figure 6: Array SSA form for loop L in figure 5

/* All 0 array elements have initial value = 1 */
@Xo[l:m] :=I ; @Xr[l :m]:=I ; @X2[1 :m] :=I ;
@Xa[l:m] :=I ; @X4[1:m]:=I ; @XrJl:m]:=I ;

Xl := $(X4,X0)
@Xl := max(QX4, @X0)
if (C[i]> then

@x3 : = max((QX2, @XI)
end if
x4 := 4(X3,X1)
@X4 := max(@Xa,@Xr)

end do
x5 := 4(X4,X0)
exy =573x4, @X0)
._. 5 . . .

Figure 7: Ins&ion of @ Computation

if
Xf fj] = eke

@Xi-‘b] 2 @X&l then Xi-lb]
Xdil

end if
if

X$] = else
@3X$] 2 @Xj[jl then X$j]
QA

end if
if

if $XiIbJ 2 @XO~] then Xfb]
X5[jl = else 0 *

end if

Figure 8: Semantics of the # functions iu Loop L

provide evidence that the remaining overhead is not signif-
icant for a rasterization application that has a high-Ieve
structure similar to loop L.

To define the semantics of # functions, we introduce the
concept of an @ urroy. For each static definition Xk the
0 array @Xkb] identifies the most recent “time” at which
each element of Xk was modified by this definition. The
initial vaiue of each Q array element is 1, @X&j] =I,
which indicates that element j has not {yet) been modified
by static definition Xj .

For an acyclic control flow graph, a static definition Xk
may execute either zero times or one time. These two cases
can be simply encoded as @Xklj] =I and @X.&j] #l (for
each element j). For a control flow graph with cycles (loops),
a static definition Xk may execute an arbitrary number of
times. Therefore, we need more detailed information for
the,QXk(jl fl case so as to distinguish among different
dynamic execution instances of static definition Xk. Specif-
ically, OX&] contains the iteruts’on erector at which element
j was last modified by static definition Xk.

The &%ztion vector of a static definition Xk is a single
point in the iteration space of the set of loops that enclose
the definition. Let n be the number of loops that enclose
a given definition. A single point in the iteration space
is specified by the iteration vector 7 = {ir, . . . , in), which
is an n-tuple of iteration numbers one for each enclosing
loop. The construction of Array SSA form does not require
that the surrounding loops be structured counted loops (i.e.,
like Fortran DO loops) or that the surrounding loops be
tightly nested. Our only assumption is that all loops are
single-entry, or equivalently, that the control flow graph is
r-educe’& [8,1]. For single-entry loops, we know that each def
executes at most once in a given iteration of its surround-
ing loops. All structured loops (e.g., do, while, repeat-
until) are single-entry even when they contain multiple
exits; also, most unstructured loops (built out of goto state-
ments) found in real programs are single-entry as well. A
multiple-entry loop can be transformed into multiple single-
entry loops by node splitting [8, 11.

The values of Q array elements can be computed as
follows. We assume that all Q array elements, @Xkb], have
the value I at the start of program execution. For each
real (non-+) definition, Xk[s], we assume that a statement
of the form @X,&r] := ;is inserted immediately after the def
(where s is an arbitrary subscript value and ?is the current
iteration vector for ah loops that surround Xk). Each 4
definition also has an associated @ array. Figure 7 shows
the result of inserting 0 array computations into figure 6 so
as to obtain the complete Array SSA form for loop L.

Consider Q array 0x2 for static definition Xz[f(i)] :=.
Recall that nothing is known about subscript function f(i)

it need not be monotonic, and it need not even be a
Grmutation. Nevertheless, setting @X$] = (i) correctly
records the “most recent” iteration in which static definition
X2 assigned a value to eIement j = f(i). Notice that tbis
computation is accurate even if f is not a permutation since
42x2 may be overwritten in subsequent iterations but the
final value indicates the iteration number of the last modifi-
cation. It is also accurate in the presence of the conditional
since @X2 is updated exactly when the definition would have
occurred.

This leads us to the notion OF dynamic definitions, An
array element may be defined multiple times during the
execution of the program. Each of these is called a dynamic
definition of the element. A dynamic definition of an element
is specified by

l a specific static definition and

l a point in the iteration space of that definition.

Consider the dynamic definition for element X{17] in
Figure 6. The two non-4 static definitions arc the initinl-
ization outside the loop [Xo) and the one assigning through
the indirection vector, f, within the loop (X2). Maybe Xe
defined element X117] in the initialization and Xr defined
element X[l7] on iterations i = 10, i = 39 and i = 32. These
are al1 dynamic definitions. In this case, @X0(17] will bo set
to (), and @X$7] will be set to (lD), (39), (82) in iterations
10, 39, 82, with a final value of QXa[17] = (82).

For a given array element and execution point in the
program, the last, dynamic definition to have executed is
visible. Dynamic definitions executed earlier arc occluded
by subsequent ones. Each element has at most one visiblo
dynamic definition at any time. The role of the 4 function is
to identify the visible dynamic definition for each individual
element of an array array.

Thus, the semantics of $J functions is specified most nat-
urally by conditional expressions. For example, the define $
function, X3 = $(X2, Xr) in figure 7 represents an cIcment-
by-element merge of array values XZ and Xr (recall that this
q5 function has no andog in scalar SSA form). The condi-
tional expression for this 4 function is defined as follows1

if
X&l = else

OX&] 2 @Xfb] then XiLj]
x%1

end if

where the notation XL denotes the value of the dynamic
definition of deilnition Xr, in iteration i of loop L.

2 represents the lexicographic 2 relationship on itcr-
ation vectors (Q array element values). The conditional
expression dictates that the value of array element Xi[j]
comes from either Xi[j] or from Xiij] depending on wh~cb
element was computed more recently. This selection is con-
trolled by the value of 0 array elements OXifi] and @IX; [jl:
if 0X.$] > OX&J then the conditional expression sots
Xi[j] = X&& and if QXib] > @$Jj] the conditional
expression sets Xib] = XiG]. In the case that @X$j] =
@Xi[jl, the conditional expression sets Xib] = Xilj]; stntic
definition Xz is selected instead of X1 because for two dofl-
nitions with the same iteration vector the topological num-
bering property of Array SSA form guarantees that the
definition with the largest number wiI1 be more recent,

Since Q arrays QXs and @Xl are used in the 4 function,
the definition of 4 as a pure function actually includes these
@ arrays a3 arguments e.g., X3 = #(X2, @Xa,Xl,OXr)
However, for conciseness, we often omit writing the Q ar-
rays as explicit arguments and instead just write Xs =
4(Xs,Xr).. ‘Note that in scalar SSA, a 4 function such
as X3 = #(X2,X1) is not a pure function of X2 and X1
but also depends on implicit information analogous ro the
Q variables that identifies the control path taken.

Notice in figure 7 that the Q array for each 4 dcf Xk :=
d(Xhr ,XhZ) is computed as 4BXk = max(@!Xh, , QXhn) This
is because, for each element j, the, 4 function selects as its
result the input Xhb] vaIue with the largest @XhIj] value.

Analagous to the define 4, the value of the merge 4 X4 :=
$(Xa,Xr) in figure 7 can be expressed as a conditional
expression for element X$j] as follows:

if
X&] = else

@Xib] k OXiIj] then XiIj]
xxi1

end if

In the semantics of Q, functions in scalar SSA form, a
conditional expression is built from branch conditions; here,
in Array SSA from, the Q arrays capture the merging of
elements due to branch conditions as well as the merging of
elements assigned in different iterations. Figure 8 shows the
conditional expressions for all the Q functions from figure 7.

Consider the computation of the merge 4 value Xs[17],
using the conditional expression from figure 8. If @X417]
is not I, Xs[17] takes its value from X&7] rather than
from Xs[17] because the two static assignments are in no
shared loops and Xz has a larger topological number than
Xo (because there is a forward path from Xo to Xz).

The Array SSA form presented thus far is defined for
array variables and (as a special case) for scalar variables.
However, Array SSA form can be easily constructed for
structure variables since a structure can be viewed as a fixed-
size array. A read/write operation of a structure element
can be viewed as a read/write operation of an array element
through a subscript that is a compiletime constant. Opera-
tions that read/write multiple elements of a structure (e.g.,
structure copy) can be modeled by read/write operations
on sets of structure elements. The Q function in Array SSA
form can then merge distinct fields modified in distinct parts
of the code exactly as it merges distinct elements for array
variables. In fact, Array SSA form for structure variables
is a simpler representation than for general arrays, because
all element accesses can be resolved at compile-time. This
technique directly extends to construction of Array SSA
form for nested arrays and structures. For example, an array
of rank n of structures can be modeled as an array of rank
n+ 1.

In concluding thii section, we observe that Array SSA
form enables a new optimization, “element-level dead code
elimination”. Notice that the code in our example may com-
pute many instances of the right hand side of the assignment
to Xz that are not used after the loop. If they are not used
within the loop and they have no side-effects, then they need
not be computed at all. We simply suppress the assignment
Xz[f(i)] : = rhs(i) within the loop. The 4 after the loop tells
us exactly which computations are needed. If we determine
that element j is the one computed on iteration i = @Xz[jl,
we execute X&j] := &s(i) in the finalization loop instead
of computing rhs(i) for each iteration of the execution loop.
Notice that classical dead code elimination typically elimi-
nates static instances of code. Although staticshy, thii code
is required, we have eliminated its execution dynamically for
many elements.

2.3 Optimization of 4 Functions and @ Arrays

In thii section, we outline how @ arrays and 4 functions can
be optimized to reduce runtime overhead (m cases where
these functions are made manifest in the output code).

The first observation is that, in unoptimized Array SSA
form, a distinct Q array is created for each real (non+)
definition of an array variable. For many assignments, how-
ever, the conditions under which the assignment occurs is
completely analyzable at compile time. In such cases neither
the storage nor the computation of Q arrays are needed. For
example, an assignment to X[i] in a loop from irnin to imox
needs no Q array, If a 4 function needs to test for (@Xfj] =I
) we can instead substitute the test, (j < imin or j > imax).

In addition, we will show that Q arrays and r$ func-
tions can be analyzed and optimized just like other vari-
ables and instructions/statements in a compiler’s interme-
diate language. The conditional expression semantics of 4

functions gives it some very useful properties e.g., we will
show that 4 functions are associative. Therefore, traditional
optimizations such as copy propagation, loop-invariant code
motion, common subexpression elimination, elimination of
partial redundancies, dead store elimination, etc. can all be
used to eliminate or reposition computations for Q arrays
and 4 functions. We illustrate this by showing how the code
structure from figure 7 with naive placement of @ and 4
computations can be transformed to obtain the optimized
code structure in figure 11.

Consider the Array SSA form with Q arrays shown in
figure 7. Our goal is to remove as much computation of 0 ar-
rays and 4 functions as possible. As a fist step, we can copy
propagate the defof Xl into the two uses of Xr and the def of
@Xl into the two uses’ of @Xl to obtain the code structure
shown in figure 9. Since max is an associative function, a
nested max expression such as mex(@Xz, max(@X4,@Xe))
in figure 9 can be rewritten more simply as max(QXz, 63x4,
@X0). Further, we can prove that 4 functions are associative
because composing 4 functions is equivalent to nesting of
conditional expressions. For example, we can show that
$(X2,4(X4, XO)) = 4(4(X2,x4), XO) by noting that X3 :=
f$(x2,4(X4, X0)) and x3 := #(#(x2, X4), X0) would XSllh
in the same nested conditional expression for X3 (examples
of conditional expressions for 4 functions can be seen in
figure 8):

if 63X$] 2 ox:b] then X&l
x;b] = else if @Xi-‘[jlk OXob] then Xj-‘ljl

else -WI
end if

Since 4 is associative, we use $(X2, X4, Xo) as shorthand
for +(X2,4(X4, X0)) in our example.

We now continue with figure 9 and copy propagate the
de& of X3 and QXs to obtain the code structure shown
in figure 10 (which also uses the flattened representations
of max functions and 4 functions): It is easy to see that
max(~Xz,@X4,@XoI~X4,@Xo) in figure 10 can be sim-
plified to max(@Xz,@X4,@Xo) . Further, because of the
k relation used in defining the conditional expressions for
4 functions, we can also simplify $(X2, X4, X0, X4, X0)) to
$(x2,x4,x0).

The sim$fied max computation forms a recurrence as
follows, @Xi := max(@X& @Xi-‘,@Xo). Note that the
value of an Q array must be monotonically nondecreasing
as a function of i i.e., 0X$] 2 @?X;-‘b] for each element
j and each iteration i > 1 (essuming that QXib] represents
the initial 1 value of @Xz[jl). Therefore the recurrence can
be solved to obtain 62X$] = max(@X$], X&j]).

Siilarly, the conditional expression for the simplified Q
definition X4 := 4(Xz,Xq,Xo) is really a recurrence that
defines X&] as a function of Xi-‘b] as follows:

if OX@] k @Xi-‘b] then X$]
xib] = else if @Xi-‘[j] k OXo[j] then Xj-‘[jl

else Xdil
end if

Again, observing that @X&l is monotonically nondecreas-
ing as a function of i leads to the following solution to the

‘For simplicity, we do not show copy propagation of @Xl into the
implicit uses of 62x1 in the two 4 functions that take Xl as input.

111

recurrence:

Xo[. ..] :=
QXo[. . .] := ()
do i := 1, 92

if (G[i]) then

@X3 := msx(@X2, mex{@X4, @X0))
end if

:= &x3 $(X4 X0))
: = m&@Xe: max(QX4, @X0))

end do
x5 := gqX4,Xo)
@X5 := max(@X4,@Xe)
. . . := X5h..]

, :

Figure 9: Transformation of figure 7 after copy propagation
of Xl and @XI

XI&..] :=
QXo[. . .] := ()
do i := I, IZ

if (G[i]) then
Xz[f{i)] := . . .
@Xz[f(i)] := (i)

end if
x4 := (g(x2,x4,xo,x4,xo)
QX4 : = max(@Xz, QX4,QXo, @X4, @&X0)

end do

&5
:= 4(X4 X0)
:= mai(QX4, @X0)

, * . := X,[...],

Figure 10: Transformation of,figure 9 after copy propagation
of X3 and QX3

:
X*i...l :=
@xJ[.: .] := ()
do i := i, 7~

if (C[i]) tlien
Xz[f(i)]* ‘:= . . .*

ena@~ifb~l := (4
end do
x5 := @G!,Xo)
@X5 := max(@Xs, @X0)
. . . := X5L.J

Figure 11: Transformation of figure 10 after solving recur-
rences for X4 and QX4 and copy propagation out of the
loop

Thus, the recursive 4 definition for X4, Xi := I$(,$,
X:-r, Xe), is equivalent to the non-recursive 4 dcfinitlon
Xi := (p(X&Xe), assuming that X2 and QXs contain all
the values that were written during 1.. .i of the loop. If
we use the non-recursive definitions, we observe that there
is no use of X4 or OX4 inside this loop and hence the
final values, Xz and @X,“, can both be propagated outside
the loop to obtain Xs := @(Xe,Xe),Xe) and QXs :=
max(max(@Xz,QXo),QXe), which can be further simpli-
fied to X5 := $(X2,X0) and @X5 := max{OXz, @X5) rc-
sulting in the optimized code structure shown in figure 11,
Because the’ 4 definition for Xe includes the final values
computed by the loop, we also refer to this 4 function es
a finalization 4. Note that the code structure in figure 11
is very efficient because it does not have any + function
computations inside the loop.

Note that the loop in figure 11 still contains au Q array
computation, which is unavoidable for this example because
there is only a single real def to the array variable and it
contains an unanalyzable subscript expression. As we will
see in section 3, the overhead of the Q computation in this
example is small enough to not be a significant performance
impediment. However, the overhead of Q array compu-
tations could become significant for a loop that contains
multiple defs if each real def is accompanied by au @ array
computation. So we conclude this section by briefly mcn-
tioning some optimizations that can be used to reduce tho
computation and storage overhead of maintaining 0 arrays.

Consider the following loop after insertion of Q array
computations. Assume there is no control flow within tbo
loop.

do i=l,n
X*[f(i)] := . . .
@Xl[f{i)] := (a)
. . .
Yl[S(f(i))] :=. * ,
@xlS(fwI := (9
. . .
Z,[f(g(i))] := . . .
@zlIfM~>>l := (4

enddo

(Since this discussion is focused on Q array computations,
we do not show the 4 function details in the above loop,)

As before, we allow f to be an arbitrary function, Let us
consider how we might derive QYr array values from @Xl
array values. We assume that function g is known to hava
a unique inverse i.e., zl # 22 ($ g(sl) # g(z2), Then

@Yrb] = max({ill 5 i 5 n and g(f(i)) = j))

= mex [{ill 5 i 5 n and f(i) = g”[j)))

= @Xl [g-l (j)] .

Therefore, we can avoid computing array QYr by using tho
identity, QYrb] = QXr [g-r (j)], to look up its value from
QXl. If g-‘(j) fails outside the range of array 0x1 then we
just set @!YI [jl =I (which includes the case when g-r(j)

is not an integer). For example, if g(f(i)) = 2f(i), we
have @Yr [jl = QXr b/2]. Thii means that @Y&l =I for
all odd values of j, which reflects the fact that an odd-
numbered element of array Yr could not have been set by
the assignment statement Yr[2f(i)] = The fact that
iteration i modifies element Yr[2f(i)] is captured by exam-
ining OXr[(Zf(i))/2] = @Xr[f(i)], which would have been
set to @Xr[f(i)] = (i). The extra overhead in looking up
@Xl lies in computing g-‘(j) so this optimization is best
suited to cases in which 9-l is a simple function e.g., when
9(f (4) = constant1 x f (i)+ constar& (note that making 9-l
a simple function does not place any constraint on function
f(i)). This reuse of the Q array is valid if both assignments
arc identically control dependent.

Now consider how we might derive @Zl array values from
8x1 array values. We make the additional assumption that
g is a monotonically increasing function Ce., 21 < 22 H
g(z1) < g(z2). Then

QZl~] = max({i]l 5 i _< n and f (g(i)) = j})

= max ({g-r(i’)]l 5 g-l(?) 5 n and f (i’) = j})

= g-‘(Q&[jl)

Therefore, we can also avoid computing array @Zr by using
the identity, @Z&j] = g-‘(OXlfi]), to look up its value
from @Xi.

These optimizations for eliminating Q array computation
are quite general in nature, and can easily catch common
cases such as g(f (i)) = f(i) f constant. For example, we
can just use one 0 array for the four defs Xl[f (i)], Yl[f (i)],
Xz[f (i) + l] and Xz[f (i + l)].

We have shown some of the optimization techniques used
to reduce the potential overhead of the 4 and @ compu-
tations. These include compile time analysis of Q arrays,
how classical optimizations such as reassociation and copy
propagation can be applied and how a single @ function can
be used for distinct assignments.

3 Using Array SSA form for Automatic Parallelization

As mentioned earlier, there are several potential uses for
Array SSA form in compiler analysis and optimization. In
this section, we focus on the application of Array SSA form
to the area of automatic parallelization. Other possible uses
of Array SSA form are mentioned briefly in section 5 as
subjects for future work.

Due its renaming of array variables and the ability to
compute Q arrays and 4 functions at runtime, Array SSA
form enables parallelization of a wider range of loops than
past techniques. In the following discussion, we assume
that parallelization-enhancing transformations such as loop
distribution [18] have been performed as a pre-pass, so that a
loop-carried true data dependence only inhibits paralleliza-
tion if it belongs to a cycle of data dependences. Serial
execution is fundamentally necessary for a cycle of true data
dependences, in which a value in one iteration is computed
using a value from the previous iteration {and the two state
ments cannot be distributed into separate loops). However,
programs often rely on serial execution for other reasons. If
an array element may be modified in multiple iterations (i.e.,
there is a dependence cycle containing an output depen-
dence), serial execution ensures that the correct final values
are visible when the loop terminates. If an array element
computed in one iteration is used to determine the direction
of a conditional branch in a subsequent iteration that may

modify an element of the same array (i.e., there is a depen-
dence cycle containing a loop-carried true data dependence
and a loop-independent control dependence), again serial
execution ensures the correct final values are visible when
the loop terminates. However, the $ function in Array SSA
form is an alternative way of ensuring that the correct values
are visible of ensuring that the correct values are visible on
loop termination without requiring serial execution.

The rest of this section is organized as follows. Sec-
tion 3.1 describes a new loop parallelization technique based
on Array SSA form that can enable parallelization of any
loop that is free of loop-carried true data dependences. This
includes loops with loop-carried anti and output dependences,
unanalyzable subscript expressions, and arbitrary control
flow within an iteration. Section 3.2 shows Array SSA form
can be used to enable speculative execution so as to par-
allelize loops with loop-carried true data dependences that
are present in cycles that also contain control dependences.
Section 3.3 shows how Array SSA form can be used to
break loop-independent output and anti data dependences
to enable parallel execution of diitinct regions in a program.

3.1 Parallelization Across Loop Iterations

In this section, we show how Array SSA form can be used
to paralleliie loops containing loop-carried anti and out-
put data dependences but no loop-carried true data de-
pendences. This paralleliiation technique works for loops
containing arbitrary array subscript expressions and is thus
much more general in scope than loop parallelization tech-
niques proposed in the past that are based on array data
flow analysis and array privatization for loops containing
afline array subscript expressions.

We illustrate loop parallelization via Array SSA form
with our running example from the previous section, loop
L in figure 5. This loop contains a conditional write to
array element X[f (i)] where f(i) is an arbitrary subscript
expression that may depend on program input. The sub-
script expression may also be many-to-one i.e., X[f (iI)] and
X[f (iz)] may map to the same element for two distinct iter-
ations ir # iz. To the best of our knowledge, loop L cannot
be parallelized by any compiler today, though it could be
amenable to specdatiwe parallel execution combined with
renaming using the software approach described in [11] or
building on the hardware approaches described in [15, 16,
lo]. In contrast, the loop parallelization transformation
described in this section is not speculative; after renaming
arrays and inserting 4 function computations, the compiler
knows at compiletime that the loop can be safely executed
in parallel at run-time.

The rest of this section is organized as follows. Sec-
tion 3.1.1 describes an abstract parallelization of loop L
that follows directly from the optimized Array SSA form.
Abstract paralleliiation reveals the potential parallelism in
the loop without paying attention to overhead issues on real
machines. Section 3.1.2 then describes a concrete paral-
lelization of loop L for a small-scale multiprocessor. Con-
crete parallelization directs the parallelism so as to obtain
efhcient code for a given machine.

3.1.1 Abstract Parallelization

We first present an abstract psrallelization that reveals the
potential parallelism in the program without commiting to
any specific computation mapping or data distribution. Our
goal is to transform the stylized serial code produced by Ar-
ray SSA analysis to parallel form. For the code in figure 11,

113

the only dependences that prevent paraIIe1 execution are
the output dependence between distinct assignments to X2
and the output dependence between distinct assignments to
QXZ. Both are due to the fact that f may result in multiple
modifications to the same location.

To enable these assignments to execute in parallel, we ex-
pand [18] both XZ and @X2 aIong the iteration axis (adding
a dimension of the same extent as the range of %I. This
expansion permits distinct iterations il # i2 of Ioop L to
concurrently write into Xz[f(il),il] and into X~ff(&.),&]
even when j[il) = f(iz). The loop in figure 11 can now
be executed in parallel. However, the computation of the
$ function, X5 := 4(X2, Xe), outside the loop in figure 11
now needs to be transformed so that it can work with the
expanded arrays.

Using the semantics of 4 functions introduced in sec-
tion 2, the conditional expression for the finalization 4 func-
tion, X5 := $(X2,X0), before array expansion of X2 and
@X2 can be expressed as:

In general, the computation of the finalization 4 function
after array expansion of its inputs needs to be performed
in two steps. First, a single-assignment reduction is per-
formed for each static assignment. Then a multii-msignment
reducte’on is performed to combine the results of the single-
assignment reductions on the same array variable.

First consider the single-assignment reduction. The se-
rial version reduced the (potentially multiple) iterations on
which Xz[k] might have been modified to a single last it-
eration simply by overwriting them into a singIe location
QX@] in order. This serial in-order execution ensured
that the la~ge.$ iteration was asSigned last. The parallel
expanded version instead performs this computation as a re-
duction operation that locates the largest value in @X@, 1:
n]. The multi-assignment reduction combines the resuIts
of distinct assignments. We simply modify the conditional
expression for the # function; X5 := $(X2, Xo), in teh above
conditional expression to instead retrieve its value from the
correct location in the expanded X2 or from X0.

The resulting abstract parallel version is found in fig-
ure 12. Step 1 in figure 12 performs the a’nita’alizetion for the
abstract parallelization. It allocates array temporaries X2,
QXZ, and X5, as dictated by the optimized Array SSA form.
Step 2 in figure 12 performs the execution of the modified
original loop. Step 3 in figure 12 performs the finalization
recreating the view of the arrays as in the source for use
by the remainder of the program. The single-assignment
reduction for X2 is performed by the hlAX function. The
multi-assignment reduction for X {i.e., combining X0 and
X2) is performed by the if construct.

The total O(m x n) time spent in the MAX computation
is the.largest amount of extra work introduced by abstract
parallelization, where m is the size of the original array X
and n is the number of iterations in the loop. This can be
a significant source of overhead even though this work can
be done in O(1og n) parallel time. As we will see, the total
amount of work required for the MAX operation gets reduced
to O{m x P) in the concrete parallelization, where P is the
number of processors in the target machine.

3.1.2 Concrete Paralfelization

Figure 13 shows a concrete parallelization of the abstract
parallelism in figure 12. Concrete parallelizaGm rcquircs
that the data and computation be mapped to a limited
number of processors in the target. machine. We assumo
that each processor executes its iterations in the samo rol-
ative order as the original loop. The concrete target wo
assume in this discussion is a small-scale multiprocessor with
physicalIy distributed memories and hardware support for a
shared address space.

Step 1 in figure 13 perfofms the G!~r&izalion for concrcto
paraIIelization. It only allocates array temporaries X2 and
@X2 but not X5. More importautIy, the size of the array
temporaries is m x P in the concrete parallelization com-
pared to m x n in the abstract parallelization, which is a
significant reduction in the amount of temporary storage
required. The data distributions in step 1 arc provided
as an optimization; the correctness of our parallclization
transformation does not depend on the data distributions,

Step 2 in figure 13 performs the execution of the concroto
paraIIeIization. It is legal to execute this transformed loop
in pa&e1 because the expansion of arrays X2 and OXa
ensure that no data races occur (the assumption that each
processor executes its iterations in the same relative order as
the original Iqop is also necessary for ensuring corrcctncss),
Note that the data distributions ensure that, all writes to
arrays X2 and QX2 are local in this concrete parallclization,
However, due to the unpredictable nature of the f(i) array
subscript expression, the uniprocessor spatial locality of the
writes performed by the original loop and by the parallelizcd
loop may be poor. ’

Step 3 in figure 13 performs the jnalizatdon for the con-
crete pardlelization. As in the abstract parirllclization, the
finalization loop in step 3 is a parallel loop, hut its extent
equals m, the number of elements in array X rather than
n, the number of iterations in loop L. It involves the samo
two step process described earlier; single-assignment reduc-
tion followed by multi-assignment reduction. Recall that
the single-assignment reduction was achieved via overwrit-
ing in the serial case and via an actual reduction across
an expanded dimension in the abstract case. The concrete
case accomplishes this reduction via overwriting within each
processor and a red&ion across processors.

The single-assignment reduction for X2 computes temp :=
MAXIOG(@X&~ P]), the index number of the processor that
assigned to Xb] with the largest iteration number. The
total amount of time spent in the MAXLOC compuhation
is O(m x P), which can be done in o(m) parallel time
op P’processors. The finalization loop makes a significant
number of remote memory references, but these references
have good spatial locality (unlike the memory refercnccs in
the execution loop) and hence should be amenable to latency
hiding techniques such as prefetching. Though WC show tho
~~~~o~~omputation as accessing shared non-local data, It 
is also well understood how to perform a MAXLOC reduction 
in a distributed-memory execution model with no hardware 
support for a shared address space. 

The muIti-assignment reduction determines the final value 
of Xlj] by adapting the conditional expression for Xc’s 4 
.function derived in section 2. If QX$, temp] > 0, wo sot 
X[j] := X&temp], the last value of element j computed 
on processor # temp. Otherwise (when temp = 0), clement 
j was not written in loop L and we leave X[jl unchanged, 

We can expect this concrete paralIelization to scaIo lin- 
early so Iong as the t&al work in Ioop L is at Icast O(m x 
P). This will be true if n 2 m x P or if n = m and 

114 



1. /* INITIALIZATION. Allocate array temporaries. 
Note that array Xz has been expanded. */ 
allocate Xz[l : m, 1 : 721, OX& : m, 1 : n], Xs[l : m] 
Also initialize OXz[*, *] := 0 

2. /* EXECUTION. Execute loop in parallel using array 
temporaries Xz and @X2. At this abstract level, the 
computation model is one processor per iteration. */ 

doall i := 1, n 
if (C[i]) then 

Xz[f(i),i] := . . . 
@X,[f(i),i] := i 

end if 
end doall 

3. /* FINALIZATION. Compute final value in Xs */ 

doall j := 1, m 
temp := MAX(@&[j, 1: n]) 
if (temp > 0) then 

X5b] : = X& temp] 
else 
end=fbl := Jwl 

end doall 

4. free Xs[l : m, 1 : n], QXs[l : m, 1 : n], X5[1 : m] 

Figure 12: Abstract paralleliiation of loop L 

each iteration of ioop L does at least O(P) work. Note 
that the distribution of the f(i) subscript function values 
does not affect the scalability of concrete parallelization. 
The concrete parallelization will scale linearly even if f(i) 
happens to map to the same element in all iterations (as- 
suming that the total work in loop L is at least O(m x P)). 
This is in contrast to schemes proposed in hardware for 
dynamic address resolution (e.g., [15]) in which a single 
location can become a performance bottleneck if it receives 
a disproprotionately large number of memory operations. 

3.1.3 Experimental Results 

In thii section, we present some performance results for a 
rasterization [S] example from computer graphics using the 
concrete parallelization technique from the previous section. 
Rasterization (also known as “scan conversion”) is a simple 
example of a real application that includes a loop containing 
loop-carried output data dependences but no loop-carried 
true data dependence-s. Polygons are “painted” onto a dis- 
play buffer from back to front i.e., in decreasing order of 
their z values. 

For the serial program in our experimental results, we 
used the code for generic convex polygon scan conversion 
written by Paul Heckbert that is distributed with the UGraph- 
its Gems” book [7]. This scan conversion code was called on 
n randomly generated triangles, for a target display bnffer 
that contains m = 1024 x 1024 M lo6 pixels. Each tri- 
angle was generated as follows. Fist, the same (randomly 
generated) z value was assigned to all three of its vertices. 
Next, a randomly generated (z, y) pair was selected as the 
first vertex. Finally, the 2 and y offsets for the second and 
third vertices, with respect to the first vertex, were randomly 
selected from the range -50.. . -!- 50. Measurements were 

1. /* INITIALIZATION. Allocate array temporaries. We 
assume a multiprocessor target with distributed shared 
memory, and a data distribution for arrays Xz and 
@X2 that places each column on a separate processor. 
Compared to the abstract parallelization, note that 
we only need arrays X2 and @Xc and that their 
expansion factor is P (= # processors) instead of n 
(= # iterations). */ 

allocate Xs[l : m, 1: P], @Xz[l : m, 1 : P] 
distribute &[*,BLOCK], @&[*,BLocK] 
Also initialize Xz[*, *] := 0 

2. /* EXECUTION. Rxecnte loop in parallel using array 
temporaries Xz and @X2 */ 
/* At the concrete level, the computation model is that 
a processor may execute many iteration but it executes 
its iterations in the same relative order as the original 
loop. */ 

doall i := 1, n 
q := processor number for iteration i 
if (C[i]) then 

Xz[f(i),q] := . . . 
@Xz[f(i),q] := i 

end if 
end doall 

3. /* FINALIZATION. Update array X with final value. 
Execute loop j with a BLOCK computation mapping to 
exploit spatial locality in arrays X, X2, @Xc. */ 

doall j := 1, m 
/* Due to the shrinking of arrays X2 and @X2 
from rnxn to mx P, we need to use 
MAXLO~ instead of MAX. MAXLOC(@&[j,l :n])] 
returns (the smallest) z such that 
y.k;&3X2" 4 2 @X21j, r;] - */ 

:= MAXLOC(@&[j,l:P]) 
if (@X2 [i, temp] > 0) then 

X[31 := X&j, temp] 
end if 

end doall 

4. free Xz[l : m, 1: P], @Xz[l : m, 1: P] 

Figure 13: Concrete parallelization of loop L 

Parallel Parallel 
Serial Version Version 

n Version (P= 1) (P=4) Speedup 
10,000 3.6 s 3.8 s 1.4 s 2.6 x 
50,000 17.1s 17.4 s 4.8 s 3.6 x 

100,000 34.5 s 34.0 s 9.1 s 3.8 x 

Figure 14: Execution time measurements (in seconds) for 
rasterization of n polygons on a 4 processor SMP using the 
concrete parallelization transformation from section 3.1.2 

115 



made sewratelv for n = 10.000.50.000, and 100.000 to cover 
a reasoiable range for the number of polygdns typically 
encountered in rssterization 161. 

The parallel version of this code was obtained by re- 
naming and expanding the display buffer array variable by 
hand, according to the concrete parallelization technique 
described in section 3.1.2. In the execution phase on P 
processors, each processor performed rasterization for l/P 
of the randomly generated polygons and stored the out- 
put in its local copy of the expanded display buffer while 
also updating a local @ array. The finalization phase then 
performed the reduction described in section 3.1.2 using 
the local Q arrays to obtain ‘the final value of the global 
display buffer. In section 3.1.2, we said that we expected 
the concrete parallelization to scale linearly so long as the 
total work in the loop is at least O(m x P). If T is the 
average time’ to rasterize one triangle, this means that we 
expect linear speedup so long as~T is at least O[m x P/n). 
Note that the array size, m M 1D6, is much larger than the 
values used for n, the number of iterations (polygons), which 
means that it will be harder to obtain linear speedup as n 
decreases. 

For each value of n, figure 14 shows the wallclock ex- 
ecution times measured for the rasterization phase (after 
generation of n random triangles) in three cases: 

Serial version - the sequential code for generic con- 
vex polygon scan conversion written by Paul Heckbert 
that is distributed with the “Graphics Gems” book [7]. 
This code was executed on a single processor. 

Paralld version (P = 1) - the code obtained by con- 
crete parallelization, but executed on a single proces- 
sor. 

Parallel version (P = 4) - the code obtained by con- 
crete parallelization, and executed on four processors. 

The execution times were measured on a Digitd AlphaServer 
4100 SMP containing four Alpha 21164 400 MHz pocessors. 
The speedup column reports the ratio of the execution time 
of the parallel version on four processors to the execution 
time of the serial version. The speedups for n = 100,000 and 
n = 50,000 are close to linear (3.8x and 3.6x respectively), 
whereas the speedup for n = 10,000 drops to 2.6x. This 
shows that the concrete parallelization transformation from 
section 3.1.2 can be effective in delivering speedup for a real 
application. 

3.2 Parallelization with Speculative Execution 

In this section, we show how Array SSA form can be used 
to enable speculative execution so as to paralIeIize Ioops 
with loop-carried true data dependences, so long as each 
cycle containing a loop-carried true data dependence also 
includes a Ioop-independent control dependence. As in sec- 
tion 3.1, this parahelization transformation works for Ioops 
with Ioop-carried anti and output dependences, una.naIyz- 
able subscript expressions, and arbitrary control ffow within 
an iteration. 

As an exampIe, consider loop f shown in figure 15. The 
main difference from loop L in section 3.1 is that there is 
now a loop-carried data dependence from statement s3 .to 
statement e.2 on variable X. The key dependence cycIe in 
this code is formed by thii loop-carried data dependence 
and by a Ioop-independent contro1 dependence from s2 to 
s3 due to the if construct. The Array SSA form for loop P 
with full insertion of Q arrays and 4 functions is shown in 

(X initiakxd here.} 
do i:= imin, imax 

s2: if ( f{X[g(i)]) > than 
s3: X[h(i)] := rhs(i) 

endif 
enddo 
. . . := X[. . .] 

Figure 15: Example loop P 

Xl&..] := 
@X0(. . .] := () 
a0 i:=imin,imax 

Xl := 4(X4,X0> 
@XI := max(@Xd , @X0) 
if C f{Xx [g(i)]) 1 then 

Xz[h(i)] := rhs(i) 
@X,(h(i>] := (i) 
x3 := #(X2, Xl) 

@X3 := max@Xz, @Xl> 
endif 
x4 := 6(X3,X1) 

@X4 : = max(@Xs , @Xl ) 
enddo 
x5 : = 4(X4,X0) 
QX5 := max(QXd,QXe) 
. . . := X5[. . .] 

Figure 16: Array S!?A form for loop P 

figure 16. Figure 18 shows the optimized Array SSA form 
for loop P obtained by using copy propagation as described 
in section 2.3 (we show 0x2 as an explicit argument to tha 
4 functions to make it easier to see the dependence structure 
of the loop). 

Consider statements s3 and s4 in figure 18, Note that 
statement s4: QXz[h(i)] := (i) cannot be executed spccula- 
tively because it is an 0 array computation and the corrcct- 
ness of Array SSA form depends on element @X$(i)] being 
set = (i) only for those iterations in which the if condition 
in s2 evaluates to true. However, Array SSA form gives us 
the option of computing statement s3: Xc@(i)] := rhs(i) 
speculatively for each iteration i, assuming that rhs(i) has 
no side effects that inhibit speculative execution. There is 
no problem if statement s3 initializes extra elements of array 
X2, because @X2 will be used by the # functions to select 
only those elements of X2 that would have been computed 
by stktement s3 in the original program (figure 15). 

Figure 17 shows the dependences graphs for diffcrcnt 
versions of loop P. The dependence graph for the original 
loop P from figure 15 is shown in figure 17(a). We use the 
standard direction vector notation (=) and (<) to identify 
loop-independent and loop-carried dependences (181. In nd- 
dition to the true, output, and anti data dependenccs on 
variable X, there is a loop-independent control dependence 
from s2 to s3 due to the if construct. Figure 17(b) shows 

the dependence graph for the optimized Array SSA form in 
figure 18. Two new statements have been introduced, si for 
the 4 function and s4 for the 0 array computation. This de- 
pendence graph can be computed using standard techniques 
once Array SSA form has been constructed, Notice that 
there are no anti or output dependences in this dependence 
graph. Finally, figure 17(c) shows the dependence graph 



True data dependence 

Anti data dependence 

Output data dependence 

Control dependence 

s2 
X 

I=? 
x 

~ 

(4 T (=I 
s3 

X (4 

(a) Dependence graph for original loop P in figure 15. 

(b) Dependence graph for optimized Array SSA form in 
figure 18. 

0 s3 
(=I x2 

sl 

k 

(<=) Xl 

s2 
k) 

f 

C 54 

(c) Dependence graph after selecting statement s3 for 
speculative execution. 

Figure 17: Dependence graphs for loop P 

117 

Xo[. . .] := 
@X,[. . .] := () 
do i := imin, imax 
sl: X1:=qqX2,QX2,XI3) 
s2: if ( f(Xl[g(i)]) 1 then 
s3: X2 Ml := rhs(i) 
s4: @Xz[h(i)] := (i) 

endif 
enddo 
x5 := ~(X2,OX2,Xo) 

Figure 18: Optimized SSA for loop P 

1. /* INITIALIZATION. Allocate array temporaries. 
Note that array X2 has been expanded. */ 
allocate Xz[l : m, 1 : n], @Xs[l : m], X5[1 : m] 
Also initialize @0X&] := 0 

2. /* The EXECUTION phase consists of a paraM loop 
for statement s3 and a sequential Ioop for statements 
sl, s2, and s4. */ 

doall i := imin, imax 
&X;[h(i), i] := rhs(i) 

do i := imin I imax 
sl: /* Set temp:=Xl[g(i)] */ 

j := g(i) 
if (@X&] > 0) then 

temp := X2 b, @X2 [jl] 
else 

temp := X&j] 
end if 

s2: if f(temp) then 
s4: @X2fh{i>] := i 

endif 
enddo 

3. /* FINALIZATION. Compute final value in X5 */ 

doall j := I, m 
if (OX&j] > 0) then 

X5[jl:=Xz[j,@X2~]] 
else 

x5[jl:=xo[jl 
end if 

end doall 

4. free X2[1 : m, 1 : n], @X&l : m, 1 : n], X5fl : m] 

Figure 19: Abstract parallelization for loop P 

. 

t 

. 

i 

, . 

. 



that is obtained when we decide to execute statement s3 
SpecuIatively. Statement s3 is no longer control dependent 
on statement sl. This reduces the dependence cycle for loop 
P to only contain statements i>, s2 and s4. Assuming that 
there was significant work in comfiuting &s(i)-in statement 
s3, this makes the critical cy$e significantly shorter than 
before. In fact, array Xe can be speculatively precompnted 
in parallel as we will now see. 

Figure 19 shows the abstract parallelization of the opti- 
mized Array SSA form in figure 18, using speculative execu- 
tion of statement s3. Analogous to the abstract paralleliza- 
tion transformation in section 3.1.1, the transformed code 
in figure 19 consists of an initialization phase, an execution 
phase, and a finalization phase. The initialization phase 
allocates arrays Xz, @X2, and, Xs, of which only array 
X2 is expanded. Since this an abstract parallelization, the 
expansion factor for array X2 equals the number of iterations 
in the loop (as in section 3.1-l). As before, a concrete 
parallelization will instead Iimit the expansion factor to be 
5 P, the number of processors. The execution phase in 
figure 19 consists of a para.lIeI loop and a sequential loop. 
The parallel loop speculatively precomputes expanded may 
X2, and the sequential loop executes the dependence cycle 
consisting of statements sl, s2 and s4. ‘No expansion is 
required for QXz because it is computed in the sequential 
loop. The following conditional expression for 56(X2.,X0) 
is used as the basis for computing Xl end Xs at different 
points in figure 19: 

if OX,@ > 0 then Xsb,@Xab]] 
&[jl=-&[jl = ~~l-&x.?l 

For X1, statement si in the sequential loop in the execution 
phase simply computes tenzp = Xr b(i)] to obtain the value 
of the single element of array Xr that is used.by statement 
s2 in iteration i. Array X5 is computed in the finalization 
phase, analogous to the fmalization, phase in section 3.1.1. 

Though the parahel loop in figure 19 is written as a doall, 
a full barrier is not required between the parallel loop and 
the sequential loop in the execution phase. The parallel 
loop has to simply stay ahead of the sequential loop so that 
iteration i of the parallel loop is completed before iteration i 
of the sequential loop begins. How this is best accomplished 
depends on the target architecture. One possible concrete 
parallelization is shown in figure 20. It is based on pipehning 
chunks of iterations of the paraM and sequential loops. For 
a chunk size of n iterations, a single pipeline cycle consists of 
executing chunk k + 1 of the the parallel loop in conjunction 
with chunk k of the sequential loop. Thus, the degree of 
paralleliim in a single pipeline cycle is (n -I- 1) The array 
expansion factor for Xa only needs to be n for this concrete 
parallelization. For convenience, figure 20 only shows the 
concrete parallelization for a single pipeline cycle of the 
execution phase, and excludes the Prolog and epiiog for this 
software pipeline. The chunk size n establishes the granu- 
larity of synchronization. Figure 20 does not address the 
mapping of the work in a single pipeline cycle to processors; 
the granularity of the processor mapping will depend on the 
amount of work in the parallel and sequential loops and on 
the target machine. 

3.3 Parallelism Across Regions 

The array renaming provided by Array SSA form can also 
be used to break loop-independent output and anti data 

118 

/* Execute the (k + I)th chunk of the parallel loop. */ 

doall i:= n*(k+l), n*(k+2)-1 
Xz[h(i), i mod rt] := &s(i) 

enddo 

/* Execute the kth chunk of the sequential loop. */ 

do i := n*k, n*(Ic+l)-1 
si: /* Set temp:= X119(i)] */ 

j := g[i) 
if (@L%~]>U) then 

temp := X&5 @X&i] mod n] 
else 

t.emp := X&j] 
end if 

s2: if f(temp) then 
s4: QX2[h(i)] := i 

endif 
enddo 

Figure 20: Concrete parallelization for loop P: one pip&o 
cycle 

(X initialized here.} 

/* Region 1 */ 
do i := . . . 

X[f(i)] := .,. . 
enddo 

/* Region 2 */ 
do i:= . . . 

if (co&(i)) then 
X{g(i)j := . . . 

endif 
enddo 

Figure 21: Example code fragment with regions 

dependences to enable parallel execution of distinct regions 
in a program. 

As an example, consider the code fragment in figure 21. 
Its Array SSA form after optimizing the 4 functions is shown 
in figure 22. We will consider three regions in figure 22: the 
two original loops that computexr and X2 respectively, and 
the finalization 4 that computes X3. If region 2 does not 
use values computed by region 1, regions 1 and 2 can bo 
executed concurrently. Region 3 uses the 4 function, 

x3:=~~x2,~x2~xl,~xl,xo) 

to combine the results of regions 1 and 2 as follows: 

if @X&j] # I then X21<] 
x31jj = 4s~ if OX&j] #I then XI~J] 

-w.d 
end if 

In this example, renaming,removed an output dopon- 
dence which enabled parallel execution. If the refcrcnco to 
array X in region 1 in figure 21 were a USC rather than a 
definition, renaming would have broken an anti-dependence 
and would also have enabled parallel execution. In that case, 
the final 4 would only need to combine values Xz and X0. 



Xo[...] := 
@Xo[, . *] := () 

/* Region 1 */ 
do i.- .- . . . 

Xl[f(i)l := . . . 
OXl[f(i)] := (i) 

enddo 

/* Region 2 */ 
do i := . . . 

if cond(i) then 
Xz[g(i)] := . . . 
@lXz[s(i)] := (i) 

endif 
enddo 

/* Region 3 */ 
x3 := ~(X2,@&,X1,@-&,X0) 

Figure 22: SSA form for region parallelism 

We only discussed abstract parallelization in this section. 
The appropriate strategy for concrete parallelization will 
depend on the level of parallelism to be exploited e-g., task 
parallelism, multi-threading, parallel sections, or instruction 
level parallelism. 

4 Related Work 

There are currently several important approaches to pro- 
gram analysis, We discuss three below, scalar SSA, data. 
dependence analysis and array data flow analysis. They 
attack the problem in three quite distinct ways and have 
distinct strengths and weaknesses. In brief, scalar SSA cap- 
tures control flow and does renaming but lacks array index 
information and so is not useful for arrays. Dependence 
analysis has historically been very useful for arrays because 
it performs sophisticated index analysis, but it does not 
capture control flow or perform any renaming. Array data 
flow analysis captures both control flow and index analysis 
but does not include any renaming other than array pri- 
vatization. The array SSA form presented in this paper 
incorporates control flow analysis, index analysis and array 
renaming more generally than in past approaches. 

Static single assignment (SSA) form for scalar variables 
has been a significant advance. It has simplified the design 
of some optimizations and has made other optimizations 
more effective. Some of the earliest applications of SSA form 
were in the design of new algorithms for global constant 
propagation [17] and global value numbering [2, 121. The 
popularity of SSA form surged after an efficient algorithm 
for computing SSA form was made available [5]. SSA form 
is now a standard representation used in modern optimizing 
compilers in both industry and academia. 

However, it has been widely recognized that SSA form is 
much less effective for array variables than for scalar vari- 
ables. The approach recommended in [5] is to treat an entire 
array like a single scalar variable in SSA form. For example, 
in this approach an assignment to a single array element 
A[j] := w gets translated to an operation on the entire 
array A := Update(A, j, u) which after SSA renaming would 
become A2 := Update(A1, j, w). The most serious limitation 

119 

of this approach is that it lacks precise data flow information 
on a per-element basis. Array SSA form addresses this 
limitation by providing 4 functions that can combine array 
values on a per-element basis. 

Data dependence analysis [18] has historically been the 
analysis of choice in the parallel community. It performs 
detailed analysis of subscripts to determine if two references 
to the same array within common loops can ever touch the 
same element. However, as has been observed in the past, 
dependence analysis is location based and is thus insufficient 
for array data flow analysis. 

Array data-flow analysis has received an increasing amount 
of attention recently (e.g., see [9, 4, 31). Of the approaches 
suggested in past work, the last write tree (LWT) in [9] is the 
most closely related to Array SSA form. The LWT identifies 
the instance of the last write operation that provides the 
array element value for a given instance of a read operation, 
where instances of read/write operations are defined with re- 
spect to common surrounding loops. Several restrictions are 
placed on a program region to enable construction of LiVT’s. 
It is assumed that the only control flow in the region consists 
of structured counted loops (i.e., like Fortran DO loops). 
It is also assumed that all array subscripts contain afhne 
functions of the index variables of surrounding loops. Array 
SSA form is far more general in scope than LWT’s. As dis- 
cussed earlier in the paper, Array SSA form supports general 
reducible control flow and places no restrictions whatsoever 
on array subscript expressions. The network of 4 functions 
connecting a use to its defs in Array SSA form can be viewed 
as a generalization of the LWT. The combining rules for the 
# functions identify which def to follow in each case. Even 
for the special csses in which LWT’S’ can be created, the 
C$ functions represent the same information more efficiently 
because a separate LWT structure need not be created for 
each read operation. 

In summary, Array SSA form is more precise than clss- 
sical SSA form for array variables because it is an element 
level approach. It is more precise than dependence analysis 
because it takes control flow into account. It is more general 
in scope than the last write tree representation because it 
allows arbitrary control flow and arbitrary index expressions 
and provides inherent support for array renaming. 

There has been some past experience with runtime struc- 
tures similar to Q arrays. A notable example is the use of the 
inspector/executor model to enable runtime parallelization 
of loops containing unanalyzabIe array references [13]. The 
focus of that work is on runtime scheduling and commu- 
nication optimization on codes that operate on irregular 
grids. In contrast, our focus is on exposing @ arrays and 
C#J functions in Array SSA form so as to increase the scope 
of compiler analysis and transformation. 

5 Conclusions and Future Work 

In this paper, we introduced au Array SSA form that cap- 
tures precise element-level data flow information for array 
variables. It is general and simple, and coincides with stan- 
dard SSA form when applied to scalar variables. Its power 
lies in a very simple mechanism that combines control flow 
analysis, array index analysis and renaming. 

One important application of our Array SSA form is 
in automatic parallelization. We showed that Array SSA 
form can enable paralleliiation of any loop that is free of 
loop-carried true data dependences. This includes loops 
with loop-carried anti and output dependences, arbitrary 
conditionals, unanalyzable loop bounds and strides, and un- 

* 

i 

. 

. 

. 



analyzable subscript expressions. We validated this use of 
Array SSA form on a rasterization code which showed good 
speedups indicating that the overhead of the technique is 
minimal. 

For future work, we plan to pursue other applications of 
Array SSA form including its use in representing data flow 
information for pointer accesses and other forms of aiiasing. 
In thii way, Array SSA form can be extended to serve as a 
universai SSA form for aii classes of variables. We also plan 
to study the improvements that can be obtained in register 
allocation and instruction scheduling by using Array SSA 
information. We plan on investigating its use in supporting 
compilation problems requiring summaries of array accesses 
using systems of linear inequalities. 

Acknowledgments 

We would like to thank Rishiyur Nikhil, Bert Halstead, Matt 
Frank, Norm Rubin, Leonidas Kontothanassis, Roy Ju and 
especially Carl Ofier and Saman Amarasinghe for technicai 
discussions contributing to the ideas presented here. In ad- 
dition, we would like to thank Bert Halstead for suggesting 
the graphics algorithm, Satyan Coorg for help in accessing 
and understanding the graphics code. 

References 

[I] A.V. Aho, R. Sethi, and J.D. Ullman. CompiIe~s: 
Principles, Techniques, and Tools. Addison-Wesley, 
1986. 

[2] Bowen Alpern, *Mark N. Wegman, and F. Kenneth 
&deck. Detecting Equaiity of Variabies in Programs. 
Fifteenth ACM Principies of Programming Languages 
Symposium, pages 1-11, January 1988. San Diego, CA. 

[3] S. P. Amarssinghe. PureIleliting Compiler Techniques 
Bused on Linear Inequalities. PhD thesis, Com- 
puter Systems Laboratory, Stanford University, Jan- 
uary 1997. 

[4] R. Bodik and R. Gupta. Array Data-Flow Analysis for 
Load-Store Optimizations in Superscalar Architectures. 
Lectwe Notes in Computer Science, (1033):1-15. Pro- 
ceedings of Eighth Annual Workshop on Languages and 
Compilers for Parallel Computing, Columbus, Ohio, 
August 1995. 

[5J Ron Cytron, Jeanne Fenante, Barry K. Rosen, Mark N. 
Wegman, and F. Kenneth Zadeck. Efficiently Comput- 
ing Static Single Assignment Form and the Control De- 
pendence Graph. AGM !Ransactions on Programming 
Languages and Systems, 13(4):451-490, October 1991. 

[6] James Foley, Andries van Dam, Steven Feiner, and John 
Hughes. Computer Graphics: Principles and Practice. 
Addison-Wesley Publishing Company, 1990. 

[7] Andrew S. Glassner. Graphics Gems. Academic Press, 
1993. 

[S] Matthew S. Hecht. Flow Analysis of Computer Pro- 
grams. Elsevier North-Holland, Inc., 1977. 

[9] Dror E. Maydan, Saman P. Amarasinghe, and Mon- 
ica S. Lam. Array Data-Flow Analysis and its Use 
in Array Privatization. conf. Rec. Tzuentieth ACM 
Symposium on Principles of Programming Languages, 
January 1993. 

120 

[lo] Jeffery Opiinger, David Heine, Shih-Wci Liao, _ _ 
Basem A. Nay&h, Monica S. Lam; and Kunlc Oh&o: 
tun. Software and hardware for exploiting speculative 
parailehim with a multiprocessor, Technical Report 
CSL-TR-97-715, Stanford University Computer Sys- 
tems Lab, February 1997. 

fll] Lawrence Rauchwerger and David Padua. The LRPD 
Test: Speculative Run-Time Paralleiization of Loops 
with Privatization and Reduction Parallelization. Pro- 
ceedings of the ACM SIGPLAN ‘95 Conference on 
Programming Language Design and Implementntion, 
June 1995. 

[12] Barry K. Rosen, Mark N. Wegman, and F, Kenneth 
Zadeck. Gtobai Value Numbers and Redundant Com- 
putations. Fifteentfi ACM Principles of Programming 
Languages Symposium, pages 12-27, January 1988. San 
Diego, CA. 

[13] J. Saitz, K. Crowley, R. Mirchandaney, and H. Berry- 
man. Run-time scheduling and execution of loops on 
message passing machines. Journal of ParelIef and 
Distributed Computing, 8[4), April 1990, 

[14] R. M. Shapiro and H. Saint. The Representation of 
Algorithms. Technical report, Massachusetts Computer 
Associates5 February 1970. Technical Report CA-700% 
1432. 

[15] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multi- 
scalp. Processors. Proceedings of the 22nd Internalional 
symposium on Computer Architecture, 1995. 

[IS] J. Gregory StefIan and Todd C. Mowry. The Potential 
for Thread-Level Data Speculation in Tightly-Coupled 
Multiprocessors. Technical Report CSRI-TR-360, Dc- 
partment of Electrical and Computer Engineering, Uni- 
versity of Toronto, February 1997. 

j17j Mark Wegman and Ken Zadeck. Constant Propagation 
with Conditiond Branches. Conf. Rec. Twelfth ACM 
Symposium on P&&pies of Programm&rg Languages, 
pages 291-299, January 1985. 

[18] Michael J. Woife. Optimizing Supercompilers for Super- 
computers. Pitman, London and The MIT Press, Cam- 
bridge, Massachusetts, 1989. In the series, Re~oarch 
Monographs in Parallel and Distributed Computing, 


