
W i l l i a m  P u g h  

A PRACTICAL 
ALGORITHM 

f o r  E x a c t  A r r a y  
D e p e n d e n c e  A n a l y s i s  

ndamental  anal- 
is step in an ad- 
',nced optimizing 
compiler (as 

well as many 
other software 

tools) is data dependence 
analysis f o r  arrays. This 
means deciding i f  two refer- 
ences to an array can refer to 
the same  e lement  and  i f  so, 
under what  conditions. This 

information is used to deter- 

mine allowable program 

transformations and  opti- 

mizations. For example, we 

can determine that  in the 

fo l lowing  code fragment ,  no 

location o f  the array is both 

read and written. Once we 

also verify that  no location is 

writ ten more than once, we 

know that the writes can be 

done in any order. 

for i =  1 to 100 do 
f o r j  -- i to 100 do 

A[i, j +  11 = A[100,j] 

There  has been extensive study 
of  decision methods for array data 
dependences [1, 2, 5, 6, 8, 15, 18, 
25]. Much of  this work has focused 
on approximate methods that are 
guaranteed to be fast but only com- 
pute exact results in (commonly 
occurring) special cases. In other 
situations, approximate methods 
are conservative. They accurately 
report  all actual dependences, but 
may also report  spurious depen- 
dences. 

Data dependency problems are 
equivalent to deciding whether 
there exists an integer solution to a 
set of  linear equalities and inequali- 
ties, a form of  integer program- 
ming. The  problem as just shown 
would be formulated as an integer 
programming problem in the next 
example. In this example, iw andjw 
refer to the values o f  the loop vari- 
ables at the time the write is per- 
formed and iT and jr refer to the val- 
ues of  the loop variables at the time 
the  read is performed. 

1 <--iw<--jw < _ I00 
1 <-ir<jr < - 100 

iw = 100 
j ~ + I = L  

Convention holds that integer 
programming techniques are far 
too expensive to be used for de- 
pendence analysis, except as a 
method of  last resort for situations 
that cannot be decided by simpler, 
special-case methods. We present 
evidence that suggests this argu- 
ment is wrong. We will describe the 
Omega test, which determines 
whether there is an integer solution 
to an arbitrary set of  linear equali- 
ties and inequalities. Our  experi- 
ments that suggest that, for almost 
all programs, the average time re- 
quired by the Omega test to deter- 
mine the direction vectors for an 
array pair is less than 500 ~secs on 
a 12-MIPS workstation. We also 
found that the time required by the 
Omega test to analyze a problem is 
rarely more than twice the time 
required to scan the array sub- 
scripts and loop bounds. This 
would indicate that the Omega test 
is suitable for use in production 
compilers. 

Conceptually, the Omega test 
combines new methods for elimi- 
nating equality constraints with an 
extension of  Fourier-Motzkin vari- 
able elimination to integer pro- 
gramming. At a more detailed 
level, the Omega test also incorpo- 
rates several implementation details 
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(described later in this article) that 
produce  substantial speed improve- 
ments in practice. 

In teger  p rogramming  is a NP- 
Complete problem, and the Omega  
test has exponential  worst-case time 
complexity. We will show that in 
many situations in which other  
(polynomial) methods are accurate, 
the Omega  test has low-order  poly- 
nomial worst-case time complexity. 

Dependence  analysis is often 
s t ructured as a decision problem: 
tests simply answer yes or  no. Com- 
pilers and other  p rogram restruc- 
tur ing tools need to know the data 
dependence  direction vector [24] 
and data dependence  distance vec- 
tor [13, 19] that describe the rela- 
tion between the iterations in which 
reads and writes of  a part icular  
array e lement  occur. The  data de- 
pendence distance vector describes 
the differences between the values 
of  the common loop variables be- 
tween the first and second access to 
the same array element. For exam- 
ple, in the following code fragment,  
the dependence  distance of  the 
flow dependence  is (1,2): 

f o r i : =  1 t o n d o  
for j : =  1 t o m d o  

a( i ,  j ) : =  A ( i - 1 ,  j - 2 )  

Sometimes, dependence  distance is 
not constant. In  these cases, the 
dependence  direction vector de- 
scribes the possible combinations of  
signs of  dependence  distances. 

Determining dependence  direc- 
tion vectors may require  an expo- 
nential number  call to a depen-  
dence testing algori thm that only 
re turns  yes/no. To be competitive, a 
dependence  analysis method must 
be able to short-cut this enumera-  
tion process (e.g., [6, 8]). Later  we 
will show how the Omega  test can 
be modif ied to project integer pro-  
g ramming  problems onto a subset 
of  the variables, ra ther  than jus t  de- 
ciding them. With this knowledge, 
we can efficiently produce  a set of  
constraints that precisely and con- 
cisely describes all possible depen-  
dency distance vectors. This infor- 
mation can be used directly in 
deciding the validity of  p rogram 

transformations,  or s tandard  direc- 
tion and distance vectors can be 
quickly computed  from it. These  
techniques are described in the sec- 
tion on dependence  direction and 
distance vectors. 

The Omega Test 
The  Omega  test determines  
whether  there  is an integer solution 
to an arbi t rary set of  l inear equali- 
ties and inequalities, re fer red  to as 
a problem. The  input  to the Omega 
test is a set of  linear equalities 
(~'q~_i~_n a i x  i = c) and inequalities 
(Zl~_i_~, aixi >-- c). To simplify our  
presentat ion (and our  algorithms), 
we define x0 = 1 and use 
~'~O~_i<_n a ix i  = 0 and E0_~i_~n aixi  ~-- 0 

as our  s tandard  representations,  
and we use V to denote  the set of  
indices of  the variables being ma- 
nipulated (i.e., V = {il0 -< i -< n}). 

Normalizing (and Tightening) 
Constraints 
T h r o u g h o u t  this article, we assume 
that any constraint  we are manipu-  
lating has been normalized. A nor- 
malized constraint  is one in which 
all the coefficients are integers and 
the greatest common divisor of  the 
coefficients (not including a0) is 1. 

I f  the initial constraints involve 
rational coefficients, they can be 
scaled to obtain integer coefficients 
(the algori thms described here do 
not produce  any noninteger  coeffi- 
cients). 

To normalize a constraint,  we 
compute  the greatest  common divi- 
sor g of  the coefficients al . . . . .  an. 
We then divide all the coefficients 
by g. I f  the constraint  is an equality 
constraint  and g does not  evenly 
divide a0, the constraint  is unsatisfi- 
able. I f  the constraint  is an inequal- 
ity constraint,  we take the floor 
when dividing a0 by g (i.e., we re- 
place a0 with Lao/g_]). 

Taking floors in the constant 
term tightens the inequalities. I f  a 
problem P has rational but  not inte- 
ger  solutions, t ightening P may 
produce  a problem without rational 
solutions, thus making it easier to 
de te rmine  that P has no integer so- 
lutions. 

Equality Constraints 
Given a problem involving equality 
and inequality constraints, we first 
eliminate all the equality con- 
straints, p roducing  a new problem 
of  inequality constraints that has 
integer solutions if  and only if the 
original problem had integer solu- 
tions. Of  course, in the process we 
might  decide that the problem has 
no integer  solutions regardless of  
the inequality constraints. 

Banerjee's General ized Greatest  
Common Divisor (GCD) test [5] can 
be used to eliminate integer equal- 
ity constraints. We found,  however, 
the following approach better  
suited to our  needs, since it is some- 
what s impler  and more appropr ia te  
for situations in which addit ional  
equalities may be added  later. 

To eliminate the equality 
~ i ~ V  aixi = O, we first check if  there  
exists a j  # 0 such that [ajl = 1. I f  so, 
we eliminate the constraint  by solv- 
ing for xj and substitute the result 
into all o ther  constraints. 

Otherwise, let k be the index of  
the variable with the coefficient that 
has the smallest absolute value (k 
0)..~nd let m = [ak[ + 1. We define 
mod as follows: 

a m o d b = a - b L a / b +  1/2_] 

We create a new variable ~r and 
produce  the constraint:  

A 
mo" = ~ (ai mod m)xi 

i ~ V  

Note that ak mod m = --sign(ak). We 
then solve this constraint  for Xk 

X k = --sign(ak)mo" 

+ ~'~ sign(ak)(ai mod m)xi 
i~V-{k}  

and substitute the result in all con- 
straints. In the original constraint, 
this substitution produces:  

-laklm  + Z (ai 
iEV-{k}  

+ lakl(aimodm))xi = 0 

Since lakl = m -  l ,  this is equal to 
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A 

--laklmo" + ~ ((ai - (aimodm)) 
i~v-{k} / . ~  

+ m(aimodm))xl = 0 

Since all terms are now divisible by 
m, normalizing the constraint  pro-  
duces: 

-Io,l  + ( o,,m + 
iEV-{k} "L  ~ J 

+ (aimodm))'xi = 0 

In  the original constraint,  the 
absolute value o f  the coefficient of  
tr is the same as the absolute value 
of  the original coefficient of  Xk. For  
all o ther  variables, the absolute 
value of  coefficients are reduced  to 
at most two-thirds o f  their  previous 
value. Therefore ,  repea ted  applica- 
tions of  this rule will eventually 
force a unit  coefficient to appea r  
and allow us to el iminate the con- 
straint. An application of  these 
methods is shown in Figure I. 

F i g u r e  ! .  Example of elimination of 
equality constraints 

I n e q u a l i t y  C o n s t r a i n t s  
The  following process is used once 
all equality constraints have been 
eliminated. We first check to see if 
any two inequality constraints di- 
recdy contradict  one another  (e.g., 
the constraints 3x + 5y-> 2 and 
3x + 5y -< 0). I f  we find a contradic- 
tion, we repor t  that the problem 
has no solutions. We can deal  with 
equality constraints more  efficiently 
than inequality constraints. There-  
fore, if we find a pair  o f  tight in- 
equalities (such as 6 -< 3x + 2y and 
3x + 2y -< 6), we replace them with 
the appropr ia te  equality constraint  
and  revert  to our  methods  for  deal- 
ing with equality constraints. While 
checking for contradictory pairs of  
constraints, we also el iminate con- 
straints that are made r e d u n d a n t  by 
a single other  constraint  (e.g., x + 
2y-> 0 is made  r edundan t  by x + 
2y > - 5). 

I f  the problem involves at most 
one variable and has passed the 
above tests, we repor t  that it has in- 
teger  solutions. Otherwise,  we re- 
duce the problem to one or  more  
integer  p rog ramming  problems in 

subst i tu t ion  resu l t ing  c o n s t r a i n t s  

Original problem 

X =  - 8 o "  - 4 y -  z - 1 

y =  o. + 31. 

7 x +  1 2 y + 3 1 z =  17 

3 x +  5 y +  1 4 z = 7  
1 ~ < x ~ < 4 0  
- 5 0  ~< y~< 50 

-7(7 - 2 y +  3 z =  3 
- 2 4 o . -  7 y +  1 1 z =  10 
1 ~ < - 8 o ' - 4 y - z - 1  ~< 40 
- 5 0  ~<.y~< 50 

-3o"  - 21" + z = 1 
- 3 1 o ' - 2 1 T  + 1 1 z =  10 
1 ~ < -  1 - 12o" - 1 2 1 . - z ~  < 40 
- 5 0 ~ < o . + 3 T ~ <  50 

z = 3 o .  + 2 T +  1 2 o ' + I " +  = - 1  
1 ~< - 2 -  1 5 ( r - 1 4 T  ~< 40 
- 5 0  ~< o" + 3T ~< 50 

1 . = - 2 o ' - 1  1 ~ < 1 2 + 1 3 o ' ~ < 4 0  
- 5 0 ~ < - 3 - 5 o ' ~ <  50 

after normalization 0 ~< o" ~< 2 

fewer dimensions and repeat  the 
above process, eventually getting to 
problems in one dimension.  

Detecting real solutions using 
Fourier-Motzkin variable elimina- 
tion. Fourier-Motzkin variable 
elimination [7] eliminates a variable 
f rom a l inear p rog ramming  prob-  
lem. Intuitively, Fourier-Motzkin 
variable el imination finds the n - 1 
dimensional  shadow cast by an n di- 
mensional  object. 

Consider  the dodecahedron  in 
Figure 2a. We want to calculate the 
shadow of  the dodecahedron  when 
it is projected along the z dimension 
onto the xy plane (as shown). This  
dodecahedron  and its shadow can 
each be specified by a set o f  12 con- 
straints (Figure 2b). 

Consider  two constraints on z: a 
lower b o u n d / 3  -< bz and an u p p e r  
bound  az <-a (where a and b are 
positive integers). We can combine 
these constraints to get a/3 <- abz <- 
bc~. The  constraint  a/3-< bce is the 
shadow of  the intersection o f  these 
two constraints (shown visually in 
Figure 2c). By combining the 
shadow of  the intersection o f  each 
pair  o f  u p p e r  and lower bounds  on 
z (Figures 2d and 2e) ,  we obtain a 
set of  constraints that  defines the 
shadow of  the original object. 

Since the shadow obtained this 
way describes real solutions, we 
refer  to it as the real shadow of  a set 
o f  constraints. I f  there  are no inte- 
ger  points in the r ea l  shadow of  a 
set of  constraints, we know that  
there  are no integer  solutions to the 
set of  constraints. 

Note that the set o f  constraints 
we obtained includes many redun-  
dant  constraints. Per forming  Fou- 
r ier-Motzkin variable el imination 
can square the number  of  con- 
straints and produce  many redun-  
dant  constraints. Few loop nests, 
however,  have dodecahedrons  for 
i terat ion spaces, and in practice the 
number  o f  constraints does not  
grow substantially. At tempt ing  to 
de te rmine  which constraints are 
r e d u n d a n t  so as to remove them 
from considerat ion is usually not 
cost-effective. 
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Detecting integer solutions using 
Fourier-Motzkin variable elimina- 
tion. There  may be integer grid 
points in the shadow of  an object, 
even if the object itself contains no 
integer points (consider the shadow 
of  a very thin object). Ideally, we 
would like to calculate the integer 
shadow of  an object: a shadow such 
that for every integer point  in the 
shadow, there is at least one corre- 
sponding integer point  in the object 
above it, and vise-versa. Unfortu-  
nately, we cannot always do this. 
The  i n t ege r  shadow of  a convex 
region may not even be a convex 
region. We have, however, devel- 
oped new methods that work well 
in practice. Our  approach can be 
(informally) visualized as f inding 
the shadow of  a t ranslucent  object: 
thicker parts o f  the object cast a 
da rker  shadow. I f  we define dark 
shadows appropria te ly ,  we can guar- 
antee that for every integer point  in 
the d a r k  shadow, there is an inte- 
ger  point  in the object above it. 

As an example,  we reconsider  
our  previous example of  the do- 
decahedron,  a l though we flatten 
the dodecahedron  to illustrate the 
difficulty of  f inding integer shad- 
ows. The  flattened dodecahedron  is 
shown in Figure 3a, and the integer 
points in the dodecahedron  and its 
shadow are shown in Figures 3b 
and 3c. The re  are integer points in 
the r ea l  shadow that have no inte- 
ger  point  in the object above them. 
For  every integer point  in the d a r k  
shadow, however, there is an inte- 
ger  point  in the object above it. 

The  shadow is clearly dark  below 
any part  of  the object that is at least 
one unit  thick. Since the coeffi- 
cients o f  the constraints are inte- 
gers, however, we can de te rmine  a 

I = lgure  2.  A visual depiction of Fou- 
rler-Motzkln variable elimination (a) A 
dodecahedron and its shadow (b) The 
constraints that specify a dodecahe- 
dron and its shadow (c) Finding the 
shadow of the intersection of two con- 
straints (d) Finding the shadow of the 
Intersection of two more constraints 
(e) Constraints resulting from the com- 
bination of all pairs of upper and lower 
bounds (most are redundant) 

D 
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looser  def in i t ion  o f  da rk  that  will 
still gua ran t ee  that  any in tege r  
po in t  in the  d a r k  shadow has an 
in teger  po in t  above it. 

To  d e t e r m i n e  the d a r k  shadow,  
cons ider  the  case in which the re  is 
an in t ege r  solut ion to a[3 <- ba,  but  
the re  is no in tege r  solut ion to a[3 -< 
abz <- ba  (i.e., the re  is no mul t ip le  o f  
ab be tween  a[3 and  ba).  Note  that  a 
and  b are  posit ive integers .  In  this 
case, let i =  L[3/bJ. T h e n  

a b i < a [ 3 < b a < a b ( i +  l )  

Since a b ( i +  1 ) - b a > b ,  a [ 3 -  
abi > a and  ab(i  + 1 ) - a b i = a b ,  
be~ - a[3 <- ab - a - b. I f b a - a [ 3 >  
ab - a - b + 1 = (a - 1 ) ( b -  1), we 
know that  the re  mus t  be an  integer 

solut ion to z. T h e r e f o r e ,  the  da rk  
shadow o f  a -> az  and  bz >>-/3 is: 

bc~ - a[3 > (a - 1)(b - 1) 

No te  that  i f  a = 1 o r  b = 1, the 
d a r k  shadow and  the  r e a l  shadow 
are  identical.  I f  the d a r k  and  r e a l  
shadow are  identical,  the  pro jec t ion  
is cal led an  exact project ion.  Th is  
will happen ,  for  example ,  i f  all o f  
the coeff ic ients  o f  z in lower  bounds  
on  z are  1, o r  i f  all o f  the  coeff i-  
cients o f  z in u p p e r  b o u n d s  on  z are  
1. For  the p rob lems  that  arise in 
d e p e n d e n c e  analysis, we can a lmost  
always f ind an exact  project ion.  

We now have  a m e t h o d  for  
check ing  for  the  exis tence o f  inte- 
ge r  solutions to a set o f  constraints:  

1. We first dec ide  which variable  to 
e l iminate .  We choose  this variable 
to p e r f o r m  an exact  pro jec t ion  if  
possible, and  to min imize  the n u m -  
ber  o f  constraints  that  resul t  f r o m  
the  combina t ion  o f  u p p e r  and  

F i g u r e  3.  Checking for integer points 
in the dark shadow (a) The shadow cast 
by a translucent, flattened dodecahe- 
dron (b) View of the integer points in- 
side a flattened dodecahedron, and 
inside its shadow (c) Overhead view of 
Figure 3b, showing that there are inte- 
ger points within the flattened do- 
decahedron above every integer point 
in the dark shadow, but that there is 
not necessarily an integer point in the 
flattened dodecahedron above every 
integer point in the entire shadow (the 
real shadow). 
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lower bounds. If  we are forced to 
perform nonexact reductions, we 
choose a variable with coefficients 
as close to zero as possible. 
2. Calculate the rea l  and dark  
shadows of the set of constraints 
along that dimension. 
3. If  the rea l  and dark  shadows are 
identical, there are integer solu- 
tions to the original set of con- 
straints if there are integer solu- 
tions to the shadow. 
4. Otherwise: 

(a) If  there are no integers to 
the real  shadow, we know there 
are no integer solutions to the 
original set of constraints. 
(b) If  there are integer solutions 
to the dark  shadow, we know 
there are integer solutions to the 
original constraints. 
(c) Otherwise, we know if an in- 
teger solution exists, it must be 
closely nestled between an upper  
bound and a lower bound.  
Therefore we consider a set of 
planes that are parallel to a 
lower bound and close to a lower 
bound.  Any integer solution 
closely nestled between an upper  
bound and a lower bound must 
lie on one of these planes. Com- 
putationally, we analyze the 
problem as follows: We know 
that if there exists an integer so- 
lution to the original set of con- 
straints, there must exist a pair 
of constraints a -> az  and bz >- [3 

on z such that 

ab - a - b + a[3 >- ba  >- abz >- a[3 

We check this by determining 
the largest coefficient a of z in 
any upper  bound on z, and, for 
each lower bound  bz >-[3 on z, 
testing if there are integer solu- 
tions to the original problem 
combined with bz = [3 + i for 
each i such that (ab - a - b)/a >- 

i -> 0. While these steps are ex- 
pensive and complicated, they 
rarely, if ever, need to be used in 
practice. 

An O m e g a  t e s t  n i g h t m a r e .  To 
demonstrate (and show the limita- 
tions of) the techniques used, we il- 
lustrate the steps performed by the 

Omega test on an example de- 
signed to force the Omega test to 
work very hard for a small prob- 
lem. Consider the inequalities P: 

27 < -- l l x +  13y <-45 
- 1 0 < -  7x  - 9y < - 4  

There  are no exact projections 
we can perform, and we would de- 
cide to eliminate x since the coeffi- 
cients ofx are (slightly) smaller. Fig- 
ure 4a shows the constraints in the 
original problem, and the unnor-  
malized constraints in the rea l  and 
dark  shadows. Since the rea l  
shadow has integer solutions but 
the dark  shadow does not, we check 
if there are any integer solutions 
close to a lower bound.  We do this 
by checking if the intersection of 
the original set of constraints and 
any one of the following constraints 
contains an integer point (this is 
shown graphically in Figure 4b). 
Since there are no such solutions, 
we know that no integer solutions 
exist. 

7x = 9 y -  l O + j  

L77 - 11  - 7 /  
O-<J-< 1-1 ] = 5  

l l x  = 27 - 13y + j  

O - - J < - [  121-1111-  1 1 ] =  9 

The  steps performed in this ex- 
ample appear complicated and 
expensive. This example, however, 
was designed to be expensive to re- 
solve. We do not expect situations 
this difficult to arise frequently in 
practice. Also, although many steps 
are performed in this process, our  
implementation of the Omega test 
takes only 4.5 milliseconds on a 12- 
MIPS workstation to perform them 
all. 

Worse nightmares are possible: 
on problems with only two variables 
and three constraints, the Omega 
test can take time proportional to 
the absolute value of the coeffi- 
cients. While this is a fr ightening 
possibility, we do not expect these 
situations to arise frequently in 
practice. 

A decision on better methods for 
dealing with Omega test night- 

mares will have to wait until  more 
experience is gained about the type 
of nightmares that occur in prac- 
tice. 

Implementation Details 
In implement ing the Omega test we 
used several algorithmic ideas and 
tricks that substantially improved 
our r unn i ng  time. We report some 
of those ideas here. 

Equalities and inequalities are 
represented as vectors of coeffi- 
cients. The  Omega test is crafted so 
t h a t  the algorithms only need to 
deal with integers; no rational 
number  representation scheme 
needs to be used. 

Once we have eliminated all the 
equality constraints from a prob- 
lem, we check for any variables that 
have no lower bounds or have no 
upper  bounds. We refer to such 
variables as unbounded  variables. 
Performing Fourier-Motzkin elimi- 
nation on an unbounded  variable 
simply deletes all the constraints 
involving it. We delete all con- 
straints involving unbounded  vari- 
ables. It is then checked to see if 
that has produced additional un- 
bounded  variables. We repeat this 
process until no unbounded  vari- 
ables remain. 

Next, we normalize all the con- 
straints and then assign hash keys 
and constraint keys to them. We 
only do this to constraints that have 
been modified since the last time 
they were normalized. The  con- 
straint key of a constraint is a 
unique tag based on the coefficients 
of the variables in the constraint; 
two constraints have equal con- 
straint keys if and only if they differ 
only in their constant term. Con- 
straint keys are both negative and 
positive, and the key of a constraint 
el is the negation of the key of a 
constraint e2 if and only if the coef- 
ficients of the variables in el are the 
negation of the coefficients of the 
variables in e2. We refer to this as 
opposing keys and opposing con- 
straints. Constraint keys are as- 
signed to constraints in constant 
expected time by recording, in a 
hash table, constraint keys previ- 
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ously assigned. We compute a hash 
key based on the coefficients of the 
constraint as an index into the hash 
table (hash keys are not guaranteed 
to be unique). Our  method for 
computing hash keys is designed so 
that opposing constraints have op- 
posing hash keys, which makes it 
easy to assign them opposing con- 
straint keys. As constraints are nor- 
malized, we enter them into a table 
based on their constraint key. This 
allows us to check for redundant ,  
contradictory or tight constraint 

F igure  4. (a) Finding the real and 
dark shadow of an Omega test night- 
mare (b) Checking Figure 4a for solu- 
tions tightly nestled between an upper 
and lower bound 

2.5  

2 .0  

1.5 

1.0 

0 .5  

0 
0 

pairs in constant time per con- 
straint. 

In  the process of normalizing 
constraints, we check to see if any 
constraints involve more than one 
variable. After normalization, if we 
found no multivariable constraints, 
we know the system must have solu- 
tions, and we re turn  immediately. 

Next, we examine the variables 
to decide which variable to elimi- 
nate. I f  we can perform an exact 
projection, we perform the elimina- 
tion in place (adding and deleting 
constraints from the current  prob- 
lem). Otherwise, we copy the con- 
straints with zero coefficients for 
the eliminated variable into two 
new problem data structures (for 
the rea l  shadow and for the dark) 
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and then add the constraints pro- 
duced for Fourier-Motzkin elimi- 
nation. Since the constraints gener- 
ated for the real  and dark  shadow 
differ only in their constant terms, 
we can share much of the work in 
adding these constraints. 

N o n l i n e a r  Subscr ip ts  
Integer programming dependence 
analysis methods allow us to prop- 
erly handle symbolic constants [9, 
16] and some types of m i n  and 
m a x  functions in loop bounds [27] 
and conditional assignments [17]. 

For example, even if we had no 
information about the value of n, 
we would like to be able to decide 
that there are no flow dependences 
in the following program: 

f o r i =  1 t o n d o  
a[i+n] = a[i] 

As previous authors have sug- 
gested, we can handle loop-invari- 
ant symbolic constants by adding 
them as additional variables to the 
integer programming problem. For 
example, the above problem would 
generate the following integer pro- 
gramming program (involving the 
variables i_w, i_r and n): 

1 <-i_w,  i _ r < - n  

i_w + n = i_r 

We also can accommodate inte- 
ger division and integer remainder  
operations, something that does not 
appear to have been previously rec- 
ognized. Assume an expression e 
appears in a program that can be 
expressed as e = a ~ v  m where m is 
a positive integer. To handle this, 
we define a new variable or, add the 
inequality constraints 0 -< a - 
m,7 -< m - 1 and use ,T as the value 
of e. Similarly, if e = c~ mod m we 
would add the same inequality con- 
straint but use a - m~ as the value 
of e. 

P r o j e c t i o n  o f  I n t e g e r  
P r o g r a m m i n g  P r o b l e m s  
As described earlier, the Omega 
test simply decides if there is a solu- 
tion to an integer programming 
problem. In  this section, we de- 
scribe how to adapt the Omega test 
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to allow it to be used for symbolic 
projection. When used this way, the 
Omega  test is given as input  an in- 
teger p rogramming  program P and 
a designation of  a set of  protected 
variables I~ C V. The  Omega  test 
projects P into one or  more  prob- 
lems involving only variables in 17 
that describe all the possible values 
of  the variables in 9 such that there  
is an integer solution to P with 
those values. For example,  project- 
ing the integer p rogramming  prob- 
lem { 0 - < a - < 5 ;  b -<a -<5b}  onto a 
produces  the problem {2 -< a --- 5}. 

Actually, results of  the projection 
process can be slightly more  com- 
plicated than jus t  described.  The  
results may not  be in terms of  the 
variables in ~'. Instead, the results 
are given in terms of  a set V' of  not 
more than 191 variables (possibly 
including new variables), along with 
methods for calculating the appro-  
priate values for the values of  9 
from the values of  9 ' .  For example,  
if asked to project  the integer pro-  
g ramming  problem {a = 10b + 25c; 
a -> 13} onto a, the Omega test will 
produce  {or-> 3; a = 5w}. 

The  projection process may pro-  
duce mult iple problems. For exam- 
ple, project ing the problem {5b-< 
a -< 6b} onto a produces:  

{20 -< a} 
{0 -< or; a = 6~} 

{ 1 - < ( 7 ; a = 6 c r -  1} 
{2 -< (7; a = 6or - 2} 
{3 -< o~; a = 6or - 3} 

Changes to the Omega Test 
Three  of  the changes required are 
simple, the other  is not as simple. 
The  quick changes are: 

• I f  the current  problem P involves 
only protected variables, check to 
see if  there  are integer solutions of  
P and if so, r epor t  P as one projec- 
tion. 
• When per fo rming  an inexact 
Fourier-Motzkin elimination, pro-  
ject  the d~vk shadow and the inter- 
section of  the original constraints 
with all of  the equality checks near  
the lower bounds.  In o ther  words, 
we must  project  all of  the subprob- 
lems where we would look for an 

integer solution, not  s topping when 
an integer  solution is first verified. 
This might  be expensive if project- 
ing a system involved many inexact 
projections. We do not believe this 
will occur in practice for the prob- 
lems arising from dependency  
analysis. 

• We never pe r fo rm Fourier-  
Motzkin variable elimination on a 
protected variable. This could re- 
quire us to pe r fo rm an inexact pro- 
ject ion in a situation where we 
could have pe r fo rmed  an exact 
projection if  we were not protect ing 
certain variables. 

The  not  so simple change in- 
volves equalities. Given an equality 
constraint  Zicv aixi = 0, let g be the 
GCD of  the coefficients of  the 
nonprotec ted  variables (we always 
assume that the constraint  is nor-  
malized). 

• I f  g = 0, the constraint  involves 
only protected variables. We use 
our  s tandard  methods to eliminate 
the constraint.  This will result  in 
the el imination of  a protected vari- 
able. All substitutions pe r fo rmed  in 
this process are  recorded in a sub- 
stitution log. These  substitutions 
involve only protected variables. 
• I f  g =  1, we use our  s tandard 
techniques (outlined in the section 
on equality constraints) to f ind a 
substitution involving only unpro-  
tected variables that simplifies or  
eliminates the constraint. 
• I f  g >  1, we create a new pro-  
tected variable or, add  the con- 
straint: 

go" = ~ (ai mo"~ g)xi 
i ~ V  

Eliminating this new constraint  will 
t ransform the original constraint  so 
that the GCD of  the nonprotec ted  
variables is 1 (after normalization).  

When  we repor t  a projection, 
any substitutions involving pro- 
tected variables are translated back 
into equality constraints. 

Projection with Wildcards 
As a modification of  the approach  

jus t  described,  we could refuse to 
pe r fo rm inexact reductions while 
pe r fo rming  projection. The  advan- 
tage of  this is that we only repor t  
one projected problem as our  re- 
sult. The  disadvantage is that  the 
projected problem has addit ional  
variables (that should be t reated as 
wildcards). 

In  the applications we have 
found for projection, we have 
found projection with wildcards to 
be more  useful than producing  
mult iple results. 

Using Projection 
This projection technique can be 
used for several purposes.  We de- 
scribe some that  have occurred to 
U S .  

Dependence direction and 
distance vectors 
One problem with some depen- 
dence analysis methods is that they 
are only "yes/no" decision methods. 
In compilers and o ther  p rogram-  
structuring tools, we need to know 
the data  dependence  direction vec- 
tor  [24] and data dependence  dis- 
tance vector [13, 19] that describe 
the relation between the iterations 
in which the conflicting reads/  
writes occur. One way to de te rmine  
dependence  direction vectors is to 
make 3 L calls to a decision proce- 
dure  (where L is the number  of  
loops su r rounding  both refer-  
ences). In  o rde r  to be competitive, a 
dependence  analysis method must 
be able to short-cut this enumera-  
tion (e.g., [6, 8]). 

In our  method,  we take the inte- 
ger  p rogramming  problem for de- 
termining if  any dependence  exists 
between two references,  and intro- 
duce a new variable for the de- 
pendence distance in each shared 
loop (along with the appropr ia te  
equality constraints to define the 
value of  the variable). We then 
project  the problem onto the de- 
pendence distance variables. The  
projected system may be a bet ter  
way to describe dependence  condi- 
tions than dependence  directions 
and distances; it accurately de- 
scribes more  informat ion than is 
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typically contained in dependence  
direction vectors (such as when a 
dependence  distance is always 
greater  than 5). 

Alternatively, we can use the 
projected set of  constraints to de- 
termine efficiently the dependence  
direction and distance vectors. We 
scan the dependences ,  and infer as 
much informat ion as possible from 
constraints involving a single de- 
pendence  distance variable. We 
next unprotec t  any dependence  
distance variable that  is uncoupled  
or  with a sign that is completely de- 
termined.  I f  coupled variables were 
unprotected,  we project  the' prob- 
lem onto the protected variables 
and repeat  this process• Otherwise,  
we choose one protected variable 
and generate  the subproblems for 
two or  three possible signs for the 
variable (negative, zero or  positive), 
and recursively explore  those. 

For  example,  the dependence  
distances for the following array 
pair  

f o r j  = 0 to 20 do 
for i = m a x ( - j ,  - 1 0 )  to 0 do 
for k = m a x ( - j ,  - 1 0 ) - i  to - 1  do 
for 1 = 0 t o 5 d o  
a(l,i,j) -- . . . 
• . .  = a(l,k,i+j) 

simplify to: 

0_<Aj_< 10 
Ai + Aj_< 10 
Ai + 2Aj _< 10 
3 A j + 2 A i + A k _ < 2 0  
2Aj + 2Ai + Ak <-- 10 
l < - - A j + A i + k  

I - - < A j + ~ i  
Al = 0 

We first unprotec t  Al, and then 
consider  s ign(Aj)= 0 and sign(Aj) 
= 1. Consider ing sign(Aj) = 0 
g i v e s :  

................... iiiiiiJiii~ 

I _ < A i _  10 
1 --< Ak + Ai 
Ak + 2Ai --< 10 

We would then unprotec t  Ai 

(since we know sign(A/)= 1) and 
project the problem, obtaining 
- 8  - Ak _< 8, which gives a direc- 
tion vector o f  (=,<,%--) .  

Returning to considerat ion of  
sign(Aj) = 1 produces:  

- 8 _ < A i _ < 8  
- 8 _ < A k _ < 8  
- 8  --< 2Ak + Ai 
- 9  <-- Ak + Ai 

Ak + 2Ai <-- 8 
Ak - Ai <-- 17 

Recursively analyzing the possibili- 
ties for the sign of  Ai produces  di- 
rection vectors o f  (< ,> ,* ,=) ,  
(< ,= ,* ,= )  and (< ,< ,* ,=) .  This  ex- 
ample  is the most difficult example  
seen in our  testing, requir ing 2,492 
/xsecs to analyze. 

Run-time Checks and 
Compile-time Assertions 
By project ing a problem onto the 
variables cor responding  to symbolic 
constants that cannot  be deter-  
mined at compile-time, we can pro-  
duce a predicate  that will allow us to 
de te rmine  at run-t ime if a particu- 
lar dependence  or  dependence  di- 
rection exists (as described by [12]). 
Alternatively, at compile time we 
could ask the user  if the predicate is 
true. 

Summarizing Array References 
In in te rprocedura l  analysis, we 
need to characterize the port ions of  
an array that may be affected by a 
p rocedure  call [4, 10, 11, 22]. We 
can use the Omega  test to obtain an 
accurate summary  of  the locations 
of  an array that might  be affected 

Table  1. 
Execution t imes for  programs In the  NASA NAS benchmark suite 

Program Average Time 95%-Tlle Time 

#1: MXM 275 ~secs 316 ~secs 
#3: CHOLSKY 504/~secs 1024/~secs 
#4: BTRIX 250 #secs 367 #secs 
#5: GMTRY 191 #secs 534 Fsecs 
#7: VPENTA 129/~secs 204/~secs 

by a single assignment  statement. 
We do this by setting up  an integer 
p rog ramming  problem involving 
variables for each array index and 
all loop variables and symbolic con- 
stants, and adding  appropr ia te  con- 
straints for the loop bounds,  sub- 
script expressions, and so on. 
Projecting this p roblem onto the 
variables for the array indexes and 
the symbolic constants gives an ac- 
curate  summary  of  the locations of  
the ar ray  affected by the assign- 
ment  statement.  The  summary  is 
not  limited to convex polyhedron.  
The  projected problem will have 
solutions only for those locations 
that can actually be changed.  De- 
tails such as strides are accurately 
represented .  

The  Omega  test can easily be 
used to de te rmine  when two re- 
gions intersect. With more  work, 
the Omega  test can be used to check 
if one region is a subset of  another .  
It is unclear  how to use the Omega  
test to merge  affected regions; 
however, the Omega  test could be 
used to convert  exact affected re- 
gions into approx imate  affected 
regions (such as described by [4, 
10]) and then those regions could 
be merged.  

Determining Loop Bounds 
The  Omega  test can be used to de- 
termine appropr ia t e  loop bounds  
when interchanging nonrectangu-  
lar loops. The  use of  integer pro- 
g ramming  and project ion to per- 
form this is described by [3]. 

P e r f o r m a n c e  
We have implemented  the Omega  
test in Wolfe's tA_ny tool [26]. We 
handle  r a in  and m a x  expressions 
in loop bounds  and symbolic con- 
stants, and compute  exact sets o f  
direction vectors (as opposed  to the 
compressed direct ion vectors nor-  
mally genera ted  by t iny) .  We ap- 
plied this tool to the p rograms  1, 3, 
4, 5 and 7 of  the NASA NAS 
benchmark  suite and to all the t i n y  
source files dis t r ibuted with t iny ,  
(which include Cholesky decompo-  
sition, LU decomposit ion,  several 
versions of  wavefront  algori thms, 
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and several more contrived exam- 
ples), as well as several of  our  own 
test programs.  Programs 2 and 6 of  
the NAS benchmark  make exten- 
sive use of  index arrays. Since we 
do not provide special t rea tment  
for index arrays, we decided that it 
would be misleading to include 
them. The  analysis of  array pairs 
that have different  constant sub- 
scripts (e.g., a(4) and a(5)) are n o t  

included in the figures repor ted  
here; those cases are detected while 
scanning the subscripts (thus both 
avoiding the analysis time and the 
time required to scan the loop 
bounds). S tandard  optimizations 
such as induction variable recogni- 
tion and forward substitution were 
pe r fo rmed  by hand. We did not 
compute  input  dependences  (an 
input  dependence  is a dependence  
between two reads of  the same loca- 
tion of  an array) or  dependences  
between array pairs that did  not 
share at least one common loop. 

We t imed the Omega test on a 
Decstation 3,100, a 12-MIPS work- 
station based on a MIPS R2000 
CPU. Shown in Table 1 are our  re- 
sults on the time per  ar ray pair  re- 
quired to analyze programs in the 
NASA NAS benchmark:  

The  third p rogram of  the NAS 
benchmark  (CHOLSKY) is sub- 
stantially more complicated that 
almost all real-world For t ran  code, 
involving loops nested four deep,  
triplely subscripted arrays and 
groups of  3 coupled-loop indices. 
We feel confident  that it represents  
a good "worst-case example" for 
analyzing dusty deck For t ran  code 
(excluding t rea tment  of  index ar- 
rays). 

Our  results on individual array 
pairs from all programs tested are 
shown in Figure 5. Each point  is the 
t iming result for a single array pair. 
To present  the results in a some- 
what machine independen t  fash- 
ion, the results are plotted on a log/ 
log graph of  analysis t ime vs. copy- 
ing time (the time required jus t  to 
copy the problem). All times were 
randomly per tu rbed  by -+l/2/zsec 
to spread out  over lapping points. 
The  diagonal  lines are drawn at 
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P l g u r e  5.  Omega Test Performance 

analysis time = 8 × copying time, 
4 x copying time and 2 x copying 
time. 

The  analysis time is the total time 
required to analyze the array pair, 
calculate the appropr ia te  direction 
vectors and add the dependences  to 
dependence  graph.  This is exclud- 
ing the time required to scan the 
array subscripts and loop bounds  
and build the constraints that de- 
scribe the dependence  between the 
array pairs. 

Across a range of  test programs,  
we found the following break-down 
for how time was spent  by the 
Omega  test: about  one-half  the 
time was spent  deal ing with in- 
equality constraints, about  one- 
fourth of  the time was spent  on 
dealing with equality constraints, 
and one-four th  of  the time was 
spent examining projected con- 
straints to construct direction vec- 
tors. None of  our  test cases re- 
quired inexact Fourier-Motzkin 
variable elimination. 

To analyze our  results, the set of  
constraints describing the depend-  

ence distances for each array pair  
were analyzed to remove any re- 
dunda n t  constraints (this is not 
cost-effective normally). Based on 
the simplified constraints, each 
array pair  was classified as follows: 

• s i m p l e - - A n y  case that does not 
involve coupled dependence  dis- 
tances. 
• r e g u l a r - - A  case where depen-  
dence distances are coupled,  but  all 
inequality constraints have unit  
coefficients (for example,  {Ai _> O; 
hi + Aj > 0}). 
• c o n v e x - - A  case where the in- 
equality constraints define a convex 
region but  at least one constraint  
has a nonuni t  coefficient (for exam- 
ple, {0- -<Aj- -10;  O <-- A i  + A j  < - -  

10; Ai + 2Aj- -  10} -- the last con- 
straint makes this nonregular) .  

• c o m p l e x - - A  case where the in- 
equality constraints define a 
nonconvex region. We only en- 
countered  two such cases, one 
shown here and another  one identi- 
cal except that the lower bound  of  
the i loop is 2. 

f o r i =  1 to 1 0 d o  
f o r j  = 0 to 4 do 

a ( i - j )  = a(j) 
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end for 
endfor 

The flow/anti dependence dis- 
tances for the last example are all 
the distances that satisfy {-4-< 
Aj _< 4; --7 <-- Ai -- Aj, Ai + Aj <-- 10; 
Ai ~ 9} except for {Ai = 9; ~ = 0}. 

Maydan, Hennessy and Lam [18] 
use memoization to obtain better 
performance. Memoization could 
be added to the Omega test. The 
cost of computing a hash key and 
verifying a cache hit, however, 
would be about 2 to 4 times the 
copying cost for a problem, and 
therefore adding caching to the 
Omega test would not produce sig- 
nificant savings for typical, simple 
cases and may produce little or no 
overall speed improvement. 

We found that the cost of scan- 
ning array-subscripts and loop 
bounds to build a dependence 
problem was typically 2 to 4 times 
the copying cost for the problem. 
Thus, for many array pairs the cost 
of building the dependence prob- 
lem was nearly as large or even 
larger than the time spent analyz- 
ing the resulting problem. We have 
not spent much effort trying to 
improve the performance of the 
code that builds dependence prob- 
lems. It is difficult, however, to 
imagine building a dependence 
problem in much less than twice the 
time required to copy the problem. 
This suggests that for the majority 
of array pairs, using a dependence 
analysis algorithm significantly 
faster than the Omega test would 
not lead to significant overall speed 
improvements. 

Polynomial Time Bounds 
Described here are some general 
time bounds on parts of the Omega 
test, and then we describe polyno- 
mial time bounds for cases where 
other polynomial time algorithms 
are accurate. We will use m to de- 
note the number of constraints and 
n to denote the number Of vari- 
ables. 

The time taken by the methods 
in the section on equality con- 
straints to eliminate one equality 

constraint is O(mn log ICI) worst- 
case time, where C is coefficient 
with the largest absolute value in 
the constraint. This cost arises be- 
cause we might apply the perform 
log ]CI substitutions before we can 
eliminate the constraint, and per- 
forming a substitution takes O(nm) 
time. 

Eliminating unbound variables 
takes O(mnp) worst-case time, where 
p is the number of passes required 
to eliminate all the variables that 
become unbound. At least one vari- 
able is eliminated in each pass ex- 
cept the last. 

Normalizing the constraints and 
checking for directly contradictory 
or redundant constraints requires 
O(mn) expected time (the time 
bound is only expected, not worst- 
case, because hashing is used). 

Producing the subproblems that 
result from Fourier-Motzkin vari- 
able elimination takes time propor- 
tional to the size of the subproblems 
produced. 

Special Cases 
During normalization, the Omega 
test checks to see if any variables are 
involved in constraints with other 
variables. If  not, and if checking for 
contradictory constraint pairs has 
not produced a contradiction, we 
know the problem has solutions 
and we do not need to perform any 
additional computation. This ap- 
plies if and only if the Single Vari- 
able Per Constraint (SVPC) test can 
be applied, which was found to be 
applicable in one-third of the 
unique cases found in the Perfect 
Club Benchmark (a higher percent- 
age if duplicate cases were consid- 
ered separately) [18]. 

The Acyclic Test can be applied 
in exactly those cases that the 
Omega test can resolve just by elim- 
inating unbound variables and per- 
forming exact projections that do 
not increase the number of con- 
straints, a process that takes O(mn 2) 
worst-case time. They found that 
this test could be applied in over 
one fourth of the unique cases en- 
countered [18]. 

The Loop Residue test [21] can 

be applied in just those cases where 
each constraint is of the form xi 
x j + c ,  xi>-c, or c>-xi. In a set of 
constraints with this property, Fou- 
rier-Motzkin variable elimination is 
exact and preserves this property. 
On n variables, there can be at most 
n 2 + n constraints of this form after 
eliminating redundant pairs. Thus, 
the Omega test will take O(n ~) time 
to resolve a set of constraints that 
can be solved by the Loop Residue 
algorithm. Maydan, Hennessy and 
Lam [18] found that the Loop Resi- 
due algorithm could be applied in 
one-fourth of the unique cases en- 
countered in their study of the Per- 
fect Club benchmark. 

Maydan, Hennessy and Lain 
found that 91% of the cases they 
encountered could be determined 
by constant tests and Banerjee's 
Generalized GCD tests. Of the re- 
maining 9% of the cases, they 
found that their SVPC, Acyclic or 
Loop Residue tests could be applied 
in 86% of the unique cases. 

The Delta test [8] works by 
searching for dependence distances 
that can be easily determined, and 
then propagating that information 
with the intent of making it possible 
to easily determine other depend- 
ence distances precisely, in the 
cases where their algorithm can 
determine a dependence distance 
without the use of Multiple Induc- 
tion Variable (MIV) tests, the 
Omega test also will determine it 
efficiently (and in polynomial time) 
by a combination of solving equality 
constraints, tightening inequality 
constraints and converting tight 
inequality constraints into equality 
constraints. Since the Omega test 
treats the dependence analysis 
problem as a single integer pro- 
gramming problem, it automati- 
cally achieves the propagation ef- 
fects of the Delta test. Therefore, 
any dependence analysis problem 
that can be solved by the Delta test 
without resorting to exponential 
algorithms or approximate meth- 
ods (i.e., resorting to what they 
refer to as MIV tests) can be solved 
in polynomial time by the Omega 
test. 
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In their study of  the RiCEPS, 
Perfect, SPEC benchmarks and 
LINPACK and EISPACK, they 
found that 97% percent of  the cases 
could be solved without requiring 
the use of  MIV tests. 

The Omega test can solve, in ef- 
fective polynomial time, any prob- 
lem that can be solved by any com- 
bination of  the Single Variable Per 
Constraint test, the Acyclic test, the 
Loop Residue test and the Delta 
test, effectively. Thus, we expect 
that it should be able to solve more 
problems exactly and efficiently 
than any one of  them alone. 

Related Work on Exact 
Dependence Analysis 
The Constraint-Matrix test [23] 
makes use of  the simplex algorithm 
modified for integer programming. 
The  Constraint-Matrix test can fail 
to terminate and it is not clear how 
efficiently it works in practice. 

Lu and Chen describe [17] an 
integer programming algorithm 
for dependence analysis. Their  
method, however, appears prohibi- 
tively expensive for use in a pro- 
duction compiler. 

Triolet [22] used Fourier- 
Motzkin techniques for represent- 
ing affected array regions in inter- 
procedural analysis. Triolet found 
Fourier-Motzkin techniques to be 
expensive (22 to 28 times longer 
than using simpler methods for 
representing affected array re- 
gions). 

Several implementations of  Fou- 
rier-Motzkin variable elimination 
have been described for use in de- 
pendence analysis. The  Power test 
described by Wolfe and Tseng [27] 
combines Banerjee's Generalized 
GCD test, constraint tightening, 
and Fourier-Motzkin variable elim- 
ination. They take no special action 
when performing an inexact pro- 
jection except to flag the result as 
possibly being conservative. Fou- 
rier-Motzkin elimination is used 
[18] if none of  the other methods 
they use give an exact answer. They 
use back substitution to determine a 
sample solution. I f  the sample solu- 
tion is not integral, they suggest the 

use of  branch and bound methods 
to verify or disprove the existence 
of  integer solutions (they have not 
found the need to implement these 
methods as yet). It has been sug- 
gested that due to the expense of  
Fourier-Motzkin variable elimina- 
tion, simpler tests should be used in 
situations where they are known to 
be accurate [18, 27]. 

Ancourt  and Irigoin [3] describe 
the use of  Fourier-Motzkin variable 
elimination to determine loop 
bounds for iterating over an itera- 
tion space described by a set of  lin- 
ear inequalities (using projection as 
described in the section on integer 
programming problems). Their  
work significantly overlaps with 
o u r s .  

When performing what is appar- 
ently an inexact projection, they 
first perform a more elaborate pro- 
cess to check if the projection is in- 
exact. They consider a concept sim- 
ilar to our  dark  shadow, except 
they force the difference between 
the upper  and lower bounds to be 
at least (a - 1)b, as opposed to (a - 
1 ) (b-  1). Since our  definition is 
safe and makes the d~rk shadow 
larger, it is the preferred choice. 

They do not actually generate 
the dark  shadow as a separate 
problem. Rather, they check to see 
if the constraints in the dark  
shadow are redundant  with respect 
to the real  shadow. I f  they are, then 
the dark  shadow and real  shadow 
are identical, and the elimination is 
exact. 

I f  the projection is not exact, 
then they add pseudo-linear con- 
straints to the real  shadow to obtain 
the in teger  shadow. These pseudo- 
linear constraints appear useful 
and appropriate for determining 
loop hounds. They are, however, 
difficult to use for determining the 
existence of  integer solutions. 

They do not provide any perfor- 
mance data for their algorithm. 

A recent report  [11] on the PIPS 
project mentions that Fourier- 
Motzkin variable elimination is 
used to analyze dependences (based 
on the work described in [3]). The  
methods used are not fully de- 

scribed, but the basic framework 
appears similar to that described in 
the section on dependence direc- 
tion and distance vector. It is not 
clear how the pseudo-linear con- 
straints of  the latter are handled. 
They point out that in many simple 
cases, Fourier-Motzkin variable 
elimination is fast and efficient. 
They state that using integer pro- 
gramming techniques for depen- 
dence analysis incurs a very high 
cost (that is acceptable since PIPS is 
not a production system). They also 
state that in their implementation, 
dependence testing does not take a 
noticeable amount  of  time com- 
pared with the wholly paralleliza- 
tion process. 

Source Code Availability 
A C language implementation of  
the Omega test is freely available 
for anonymous f~p from t~p.cs. 
umd.edu in directly pub/omega.  
Files available include a stand-alone 
version of  the Omega test and a 
version of  Wolfe's t iny  tool [26] 
extended to use the Omega test. 

Conclusions 
Conservative dependence analysis 
methods may be efficacious for the 
demands of  vectorizing compilers. 
Transforming programs so as to 
make efficient use of  massively par- 
allel SIMD computers is a much 
more demanding task. Also, pro- 
grams that have undergone trans- 
formations such as loop skewing 
and loop interchange present anal- 
ysis problems substantially more 
difficult than encountered in typi- 
cal dusty-deck Fortran. 

Our  studies have convinced us 
that the Omega test is a fast and 
practical method for performing 
data dependence analysis that is not 
only adequate for problems en- 
countered in vectorizing Fortran 
code, but also for the demands of  
more sophisticated program trans- 
formation tools. 

Performing projection of  integer 
programming problems is an excit- 
ing concept. We have discussed how 
it can be used to determine effi- 
ciently information about depend- 
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ence direction and distance vectors, 
as well for several other uses. It can 
make it much easier to describe and 
build program analysis and trans- 
formation tools. For example:, it can 
be used for determining loop 
bounds after loop interchange, and 
we have made extensive use of it in 
work that considers loop transfor- 
mations in a uniform manner  [3, 
2O]. 
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