
452 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 4, OCTOBER 1991

A Loop T ransforma tion Theory and
an Algorithm to Max imize Paralle lism

Michael E. Wolf and Monica S. Lam, Member, IEEE

Abstruct- This paper proposes a new approach to trans-
formations for general loop nests. In this approach, we unify
all combinations of loop interchange, skewing and reversal as
unimodular transformations. The use of matrices to model trans-
formations has previously been applied only to those loop nests
whose dependences can be summarized by distance vectors.
Our technique is applicable to general loop nests where the
dependences include both distances and directions.

This theory provides the foundation for solving an open ques-
tion in compilation for parallel machines: which loop transforma-
tions, and in what order, should be applied to achieve a particular
goal, such as maximizing parallelism or data locality. This paper
presents an efficient loop transformation algorithm based on this
theory to maximize the degree of parallelism in a loop nest.

I. INTK~DUCTI~N

L OOP transformations, such as loop interchange, reversal,
skewing, and tiling (or blocking) [l], [4], [26] have been

shown to be useful for two important goals: parallelism and
efficient use of the memory hierarchy. Existing vectorizing and
parallelizing compilers focused on the application of individual
transformations on pairs of loops: when it is legal to apply a
transformation, and if the transformation directly contributes to
a particular goal. However, the more chal lenging problems of
generat ing code for massively parallel machines, or improving
data locality, require the application of compound transforma-
tions. It remains an open quest ion as to how to combine these
transformations to optimize general loop nests for a particular
goal. This paper introduces a theory of loop transformations
that offers an answer to this question. W e will demonstrate the
use of this theory with an efficient algorithm that maximizes
the degrees of both fine- and coarse-grain parallelism in a set
of loop nests via compound transformations.

Existing vectorizing and parallelizing compilers implement
compound transformations as a series of pairwise transforma-
tions; for each step, the compiler must choose a transform
that is legal and desirable to apply. A technique commonly
used in today’s parallelizing compilers is to decide a priori
the order in which the compiler should attempt to apply
transformations. This technique is inadequate because the
choice and ordering of optimizations are highly program de-
pendent , and the desirability of a transform cannot be evaluated

Manuscript received October 9, 1990; revised March 19, 1991. This
work was supported in part by DARPA under Contract NOOO14-87-K-0828.
A preliminary version of this paper appeared in The 3rd Workshop on
Programming Languages and Compilers for Parallel Computing, Irvine, CA,
August 1990.

The authors are with the Computer Systems Laboratory, Stanford Univer-
sity, Stanford, CA 94305.

IEEE Log Number 9100393.

locally, one step at a time. Another proposed technique is to
“generate and test,” that is, to explore all different possible
combinat ions of transformations. This “generate and test”
approach is expensive. Differently transformed versions of
the same program may trivially have the same behavior and
so need not be explored. For example, when vectorizing, the
order of the outer loops is not significant. More importantly,
generate and test approaches cannot search the entire space
of transformations that have potentially infinite instantiations.
Including loop skewing in a “generate and test” framework is
thus problematic, because a wavefront can travel in an infinite
number of different directions.

An alternative approach, based on matrix transformations,
has been proposed and used for an important subset of loop
nests. This class includes many important linear algebra codes
on dense matrices; all systolic array algorithms belong to
this class. They have the characteristic that their dependences
can be represented by a set of integer vectors, known as
distance vectors. Loop interchange, reversal, and skewing
transformations are modeled as linear transformations in the
iteration space [7], [8], [12], [13], [19], [21]. A compound
transformation is just another linear transformation, being a
product of several elementary transformations. This model
makes it possible to determine the compound transformation
directly in maximizing some objective function. Loop nests
whose dependences can be represented as distance vectors
have the property that an n-deep loop nest has at least n - 1
degrees of parallelism [13], and can exploit data locality in
all possible loop dimensions [24]. Distance vectors cannot
represent the dependences of general loop nests, where two
or more loops must execute sequentially. A commonly used
notation for represent ing general dependences is direction
vectors [2], [26].

This research combines the advantages of both approaches.
W e combine the mathematical rigor in the matrix transfor-
mation model with the generality of the vectorizing and
concurrentizing compiler approach. W e unify the various trans-
formations, interchange or permutation, reversal and skewing
as unimodular transformations, and our dependence vectors
incorporate both distance and direction information. This uni-
fication provides a general condit ion to determine if the code
obtained via a compound transformation is legal, as opposed
to a specific legality test for each individual elementary
transformation. Thus, the loop transformation problem can be
formulated as directly solving for the unimodular transforma-
tion that maximizes some objective function, while satisfying a
set of constraints. One important consequence of this approach

1045-9219/91$OlOO 0 1991 IEEE

WOLF AND LAM:LOOPTRANSFORMATIONAND ALGORITHM TO MAXIMIZE PARALLELISM 453

is that code and loop bounds can be transformed once and for
all, given the compound transformation.

Using this theory, we have developed algorithms for im-
proving the parallelism and locality of a loop nest via loop
transformations. Our parallelizing algorithm maximizes the
degree of parallelism, the number of parallel loops, within a
loop nest. By finding the maximum number of parallel loops,
multiple consecutive loops can be coalesced to form a single
loop with all the iterations; this facilitates load balancing and
reduces synchronization overhead. Especially for loops with a
small number of loop iterations, parallelizing only one loop
may not fully exploit all the parallelism in the machine. The
algorithm can generate coarse-grain and/or fine-grain paral-
lelism; the former is useful in multiprocessor organizations
and the latter is useful for vector machines and superscalar
machines, machines that can execute multiple instructions per
cycle. It can also generate code for machines that can use
multiple levels of parallelism, such as a multiprocessor with
vector nodes.

We have also applied our representation of transformations
successfully to the problem of data locality. All modern
machine organizations, including uniprocessors, employ a me-
mory hierarchy to speed up data accesses; the memory hierar-
chy typically consists of registers, caches, primary memory,
and secondary memory. As the processor speed improves
and the gap between processor and memory speeds widens,
data locality becomes more important. Even with very simple
machine models (for example, uniprocessors with data caches),
complex compound loop transformations may be necessary
[9], [lo], [17]. The consideration of data locality makes it more
important to be able to combine primitive loop transformations
in a systematic manner. Using the same theoretical framework
presented in this paper, we have developed a locality opti-
mization that applies compound unimodular loop transforms
and tiling to use the memory hierarchy efficiently [24].

This paper introduces our model of loop dependences and
transformations. We describe how the model facilitates the
application of a compound transformation, using parallelism as
our target. The model is important in that it enables the choice
of an optimal transformation without an exhaustive search. The
derivation of the optimal compound transformation consists
of two steps. The first step puts the loops into a canonical
form, and the second step tailors it to specific architectures.
While the first step can be expensive in the worst case, we
have developed an algorithm that is feasible in practice. We
apply a cheaper technique to handle as many loops as possible,
and use the more general and expensive technique only on
the remaining loops. For most loop nests, the algorithm finds
the optimal transformation in O(n3d) time, where n is the
depth of the loop nests and d is the number of dependence
vectors. The second step of specializing the code for different
granularities of parallelism is straightforward and efficient.
After deciding on the compound transformation to apply,
the code including the loop bounds is then modified. The
loop transformation algorithm has been implemented in our
SUIF (Stanford University Intermediate Format) parallelizing
compiler. As we will show in the paper, the algorithms are
simple, yet powerful.

This paper is organized as follows. We introduce the concept
of our loop transformation model by first discussing the
simpler program domain where all dependences are distance
vectors. We first describe the model and present the paralleliza-
tion algorithm. After extending the representation to directions,
we describe the overall algorithm and the specific heuristics
used. Finally we describe a method for rewriting the loop body
and bounds after a compound transformation.

II. LOOP TRANSFORMATIONS ON DISTANCE VECTORS

In this section, we introduce our basic approach to loop
transformations by first studying the narrower domain of loops
whose dependences can be represented as distance vectors. The
approach has been adopted by numerous researchers particu-
larly in the context of automatic systolic algorithm generation,
a survey of which can be found in Ribas’ dissertation [20].

A. Loop Nest Representation
In this model, a loop nest of depth n is represented as a

finite convex polyhedron in the iteration space 2” bounded
by the loop bounds. Each iteration in the loop corresponds to
a node in the polyhedron, and is identified by its index vector
p’= (Pl,P2,“.> p,);’ p; is the value of the ith loop index
in the nest, counting from the outermost to innermost loop.
In a sequential loop, the iterations are therefore executed in
lexicographic order of their index vectors.

The execution order of the iterations is constrained by their
data dependences. Scheduling constraints for many numerical
codes are regular and can be succinctly represented by de-
pendence vectors. A dep:ndence vector in an n-nested loop
is denoted by a vector d = (dl, d2, . + . , d,). The discussion
in this section is limited to distance vectors, that is, di E 2.
Techniques for extracting distance vectors are discussed in
[12], [16], and [22]. General loop dependences may not be
representable with a finite set of distance vectors; extensions
to include directions are necessary and will be discussed in
Section IV.

Each dependence vector defines a set of edges on pairs of
nodes in the iteration space. Iteration pi must execute before
p> if for some distance vector & p: = pi + dl The dependence
vectors define a partial order on the nodes in the iteration
space, and any topological ordering on the graph is a legal
execution order, as all dependences in the loop are satisfied. In
a sequential loop nest, the nodes are executed in lexicographic
order; thus, dependences extracted from such a source program
can always be represented as a set of lexicographicallypositive
vectors. A vector e?is lexicographically positive, written d’>- 5,

‘The vector r7 is a column vector. In this oaoer, we sometimes represent . .
column vectors as comma-separated tuples. That is,

(Pl,PZ,~.~ ,Pn) = Ipl P2 ... PrJT =

Pl

P2

-P?l

454 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 4, OCTOBER 1991

if 3i : (di > 0 and Vj < i : dj 2 0). (0’ denotes a zero vector,
that is, a vector with all components equal to 0.)

Fig. l(a) shows an example of a loop nest and its iteration
space representation. Each axis represents a loop; each node
represents an iteration that is executed within the loop nest.
The 42 iterations of the loop are represented as a 6 x 7
rectangle in the two-dimensional space. Finally, each arrow
represents a scheduling constraint. The access a[Iz] refers
to data generated by the previous iteration from the same
innermost loop, whereas the remaining two read accesses refer
to data from the previous iteration of the outer loop. The
dependence edges are all lexicographically positive: ((0, l),
(1, 01, (1, -1)).

B. Unimodular Transformations
It is well known that loop transformations such as inter-

change, reversal, and skewing are useful in parallelization
or improving the efficiency of the memory hierarchy. These
loop transformations can be modeled as elementary matrix
transformations; combinations of these transformations can
simply be represented as products of the elementary trans-
formation matrices. The optimization problem is thus to find
the unimodular transformation that maximizes an objective
function given a set of scheduling constraints.

We use the loop interchange transformation to illustrate
the unimodular transformation model. A loop interchange
transformation maps iteration (i, j) to iteration (j, i). In matrix
notation, we can write this as

-- --

0 1 The elementary permutation matrix I o thus performs the [1
loop interchange transformation on the iteration space.

Since a unimodular matrix performs a linear transformation
on the iteration space, T& - Tpi = T(p’2 - $1). Therefore, if
iis a distance vector in the original iteration space, then Td
is a distance vector in the transformed iteration space. Thus,
in loop interchange, the dependence vector (dl , d2) is mapped
into

[Y iI [::I = [Ii:]
in the transformed space.

There are three elementary transformations:
l Permutation: A permutation (T on a loop nest transforms

iteration (~1, . . + , p,) to (p,, , . . . , pm,). This transforma-
tion can be expressed in matrix form as I,, the n x n
identity matrix I with rows permuted by c. The loop
interchange above is an n = 2 example of the general
permutation transformation.

l Reversal: Reversal of the ith loop is represented by the
identity matrix, but with the ith diagonal element equal
to -1 rather than 1. For example, the matrix representing
loop reversal of the outermost loop of a two-deep loop

nest is -1 0 [1 0 1’

1 -

l Skewing: Skewing loop Ij by an integer factor f with
respect to loop & [26] maps iteration

(Ply... ,Pi-lrPi,Pi+l,“. ,Pj-1,Pj,Pj+1,.. *,PlJ

to

(PI,... ,Pi-1,Pi,Pi+1,**. ,Pj-1,Pj +fPi,Pj+l,YPn).

The transformation matrix T that produces skewing is the
identity matrix, but with the element t+ equal to f rather
than zero. Since i < j, T must be lower triangular. For
example, the transformation from Fig. l(a) to Fig. l(b) is
a skew of the inner loop with respect to the outer loo

by a factor of one, which can be represented as
[f

1 0 I I .

All these elementary transformation matrices are unimod-
ular matrices [3]. A unimodular matrix has three impor-
tant properties. First, it is square, meaning that it maps an
n-dimensional iteration space to an n-dimensional iteration
space. Second, it has all integral components, so it maps
integer vectors to integer vectors. Third, the absolute value of
its determinant is one. Because of these properties, the product
of two unimodular matrices is unimodular, and the inverse of
a unimodular matrix is unimodular, so that combinations of
unimodular loop transformations and inverses of unimodular
loop transformations are also unimodular loop transformations.

A compound transformation can be synthesized from a
sequence of primitive transformations, and the effect of the
transformation is represented by the products of the various
transformation matrices for each primitive transformation.

C. Legality of Unimodular Transformations
We say that it is legal to apply a transformation to a loop

nest if the transformed code can be executed sequentially, or
in lexicographic order of the iteration space. We observe that
if nodes in the transformed code are executed in lexicographic
order, all data dependences are satisfied if the transformed
dependence vectors are lexicographically positive. This obser-
vation leads to a general definition of a legal transformation
and a theorem for legality of a unimodular transformation.

Definition 2.1: A loop transformation is legal if the trans-
formed dependence vectors are all lexicographically positive.

Theorem 2.1: Let D be the set of distance vectors of a loop
nest. A unimodular transformation T is legal if and only if
V;E D: Tc?+ 6.

Using this theorem, we can evaluate if a compound trans-
formation is legal directly. Consider the following example:

forI := 1 toNdo
for12 := 1 toNdo

411, k!I := f (GA, 121, 01 + 1 I I2 - 11);

This code has the dependence (1, - 1). The loop interchange
transformation, represented by

T= ’ ’ [1 10’

WOLFANDLAM:LOOPTRANSFORh%ATIONANLIALGORITHMTO MAXIMIZEPARALLELISM 455

(a)
forI, :=OtoSdo

for I2 := Oto bdo
4I2 + 11 := l/3 * (4X11 + 4I2 + 11 + .¶[I, + 21);

D= t(O,l),(~,O),(l,-1)).

(b)
for I; := 010 5do

for I; := I,’ to 6+I; do
.¶[I; - I; + l] := l/3 * (.¶[I; -

alI; - I; + l] + a[$ - I;
- I;] +
+ 21);

D’=TD= {(O,l),(l,l),(l,O)} 1’2

Fig. 1. Iteration space and dependences of (a) a source loop nest, and the (b) skewed loop nest.

is illegal, since T(1, - 1) = (- 1,l) is lexicographically nega-
tive. However, compounding the interchange with a reversal,
represented by the transformation

T’= [;’ ;I[; ;] = [; ;‘]

is legal since T’(l, -1) = (1,l) is lexicographically positive.
Similarly, Theorem 2.1 also helps to deduce the set of

legal compound transformations. For example, if T is lower
triangular with unit diagonals (loop skewing) then a legal
loop nest will remain so after transformation. For another
example, consider the dependences of the loop nest in Fig.
l(b). All the components of the dependences are nonnegative.
This implies that any arbitrary loop permutation would render
the transformed dependences lexicographically positive and is
thus legal. We say such loop nests are fully permutable. Full
permutability is an important property both for parallelization,
discussed below, and for locality optimizations [24].

Theorem 2.2: Loops Ii through I? of a legal computation
with dependence vectors D are fully permutable if and only if

‘&ED : ((dl,- ,d,_l)~aor(Vi~kIj:dE~O)).

III. PARALLELIZING LOOPS WITH DISTANCE VE~ORS

We now study the application of the loop transformation
theory io the problem of parallelization. The problem is to
maximize the degree of parallelism, that is, the number of
parallelizable loops. We are interested in running the code on
machines sutjporting fine-grain parallelism, machines support-
ing coarse-grain parallelism and also machines supporting both
levels of parallelism. We will show that n-deep loops whose
dependences can be represented with distance vectors, have at
least n - 1 degrees of parallelism [13], exploitable at both fine
and coarse granularity.

The algorithm consists of two steps: it first transforms the
original loop nest into a canonical form, namely a fully per-
mutable loop nest. It then transforms the fully permutable loop

nest to exploit coarse and/or fine-grain parallelism according
to the target architecture.

A. Canonical Form: A Fully Permutable Loop Nest
Loops with distance vectors have a special property that

they can always be transformed into a fully permutable loop
nest via skewing. It is easy to determine how much to skew
an inner loop with respect to an outer to make those loops
fully permutable. For example, if a doubly nested loop has
dependences ((0, l), (1, -2), (1, -l)}, then skewing the inner
by a factor of two with respect to the outer produces ((0, l),
(1, 0), (1, 1)). The following theorem explains how a legal
loop nest can be made fully permutable.

Theorem 3.1: Let L = {II, . . . , I,} be ,a loop nest with
lexicographically positive distance vectors d E D. The loops
in the loop nest can be made fully permutable by skewing.

Proof: We prove that if loops II through Ii are fully
permutable and all the dependences are lexicographically
positive, then loop I;+1 can be skewed with respect to the outer
loops to make all its dependence components nonnegative.
Since skewing will not change the legality of the loop nest, this
will legally include loop Ii+1 in the fully permutable loop nest.
Repeated application of this for i = 1, . . . , n - 1 makes the
entire n-deep loop nest fully permutable, proving the theorem.

If Vo?E D d. , %+i 2 0, then loop Ii+1 is already permutable
with loop Ii. Otherwise, since all dependences are lexicograph-
ically positive, di+i < 0 implies one of dl, . . . , d;, say dj, is
positive. Therefore skewing loop Ii+1 with respect to Ij by
a factor

f2 14z~j+oj~-di+lldjl

makes the transformed i + 1st dependence component of the
dependence vector nonnegative. By performing these skews
until all i + 1st dependence components are nonnegative, loop
Ii+1 can be incorporated into the fully permutable nest. Cl

456 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 4, OCTOBER 1991

B. Parallelization
Iterations of a loop can execute in parallel if and only if there

are no dependences carried by that loop. This result is well
known; such a loop is called a DOALL loop. To maximize the
degree of parallelism is to transform the loop nest to maximize
the number of DOALL loops. The following theorem rephrases
the condit ion for parallelization in our notation:

Theorem 3.2: Let (II, . . . , In) be a loop nest with lexico-
graphically potitive dependences JE D. Ii is parallelizable if
and only if Vd E D,(dl,...,di-l) + 8or di = 0.

Once the loops are made fully permutable, the steps to
generate DOALL parallelism are simple. In the following,
we first show that the loops in the canonical format can be
trivially t ransformed to give the maximum degree of fine-
grain parallelism. W e then show how to generate the same
degree of parallelism with coarser granularity. W e then show
how to obtain the same degree of parallelism with a lower
synchronizat ion cost, and how to produce both fine- and
coarse-grain parallelism.

1) Finest Granularity of Parallelism: A nest of n fully
permutable loops can be transformed to code containing at
least n - 1 degrees of parallelism [13]. In the degenerate case
when no dependences are carried by these n loops, the degree
of parallelism is n. Otherwise, rz - 1 parallel loops can be
obtained by skewing the innermost loop in the fully permutable
nest by each of the other loops and moving the innermost loop
to the outermost position (Theorem B.2, see the Appendix).
This transformation, which we call the wavefront transform,
is represented by matrix I 0 1 1 0 1 1 0 0 1 0 0 1

1: . . ;, 0 ... 1 0

Fig. 2 shows the result of applying the wavefront trans-
formation to the code in Fig. 1. The code is a result of first
skewing the innermost loop to make the two-dimensional loop
nest fully permutable, and applying the wavefront transforma-
tion to create one degree of parallelism. The figure also shows
the transformed iteration space. W e observe that there are no
dependences between iterations within the innermost loop nest.
W e call this transform a wavefront transformation because it
causes iterations along the diagonal of the original loop nest
to execute in parallel. The wavefronts of the program in Fig.
l(b) are shown in Fig. 3.

This wavefront transformation automatically places the max-
imum DOALL loops in the innermost loops, maximizing fine-
grain parallelism. This is the appropriate transformation for
superscalar or VLIW (very long instruction word) machines.
Although these machines have a low degree of parallelism,
finding multiple parallelizable loops is still useful. Coalescing
multiple DOALL loops prevents the pitfall of parallelizing
only a loop with a small iteration count. It can reduce further
the overhead of starting and finishing a parallel loop if code
schedul ing techniques such as software pipelining [15] are
used.

2) Coarsest Granularity of Parallelism: For MIMD ma-
chines, having as many outermost DOALLs as possible re-
duces the synchronizat ion overhead. The wavefront transfor-
mation produces the maximal degree of parallelism, but makes
the outermost loop sequential if any are. For example, consider
the following loop nest:

forI :=l toNdo
forIz:=ItoNdo

a[Il,I2/ : = f(aPl - 1, I2 - 11);

This loop nest has the dependence (1, l), so the outermost
loop is sequential and the innermost loop is a doall. The

1 1 wavefront transformation 1 o [1 does not change this. In

contrast, the unimodular transformation 1 -1

[b
0 1 transforms

the dependence to (0, l), making the outer loop a OALL and
the inner loop sequential. In this example, the dimensionality
of the iteration space is two, but the dimensionality of the
space spanned by the dependence vectors is only one. When
the dependence vectors do not span the entire iteration space, it
is possible to perform a transformation that makes outermost
DOALL loops [141.

By choosing the transformation matrix T with first row
& such that 6 . d’ = 0 for all dependence vectors 4 the
transformation produces an outermost DOALL. In general,
if the loop nest depth is TZ and the dimensionality of the
space spanned by the dependences is nd, it is possible to
make the first n - nd rows of a transformation matrix T
span the orthogonal subspace 5’ of the space spanned by
the dependences. This will p roduce the maximal number of
outermost DOALL loops within the nest.

A vector s’ is in S if and only if Vd : s’. d’ = 0. S is
the nul lspace (kernel) of the matrix that has the dependences
vectors as rows. Theorem B.4 shows how to construct a legal
unimodular transformation T that makes the first IS] = n - nd
rows span S. Thus, the outer]S(loops after transformation
are DOALLs. The remaining loops can be skewed to be fully
permutable, and then wavefronted to get n - 1 degrees of
parallelism.

A practical though nonoptimal approach for making outer
loops DOALL is simply to identify loops I; such that all d;
are zero. Those loop can be made outermost DOALLs. The
remaining loops in the tile can be wavefronted to get the
remaining parallelism.

3) Tiling to Reduce Synchronization: It is possible to reduce
the synchronizat ion cost and improve the data locality of
parallelized loops via an optimization known as tiling [25],
[26]. Tiling is not a unimodular transformation. In general,
tiling maps an n-deep loop nest into a 2n-deep loop nest
where the inner n loops include only a small f ixed number
of iterations. Fig. 4 shows the code after tiling the example in
Fig. l(b), using a tile size of 2 x 2. The two innermost loops
execute the iterations within each tile, represented as 2 x 2
squares in the figure. The two outer loops, represented by the
two axes in the figure, execute the 3 x 4 tiles. As the outer
loops of the tiled code control the execut ion of the tiles, we
will refer to them as the controll ing loops.

WOLF AND LAM LOOP TRANSFORMATION AND ALGORITHM TO MAXIMIZE PARALLELISM 457

doall I; := mer(O,[(I,f - 6)/21) to min(S.[I{/2J) do
.¶[I{ - 214 + l] := l/3 * (all; - 212 + s(l; - 214 + 11

+a[Ii - 2Ii + 21);

D’=TD = {(1,0),(2,1),(1,1)1

Fig. 2. Iteration space and dependences of Fig. l(a) after skewing and applying the wavefront transformation.

4 Time 4

Fig. 3. Wavefronts of Fig. l(b).

The same property that supports parallelization, full per-
mutability, is also the key to tiling:

Theorem 3.3: Loops Ii through Ij of a legal computation
can be tiled if the loops Ii through Ij are fully permutable.

Thus, loops in the canonical format of the parallelization
algorithm can also be tiled. Moreover, the characteristics of the
controlling loops resemble those of the original set of loops.
An abstract view giving the dependences of the tiles in the
above example is shown in Fig. 5. These controlling loops
are themselves fully permutable and so easily parallelizable.
However, each iteration of the outer n loops is a tile of
iterations instead of an individual iteration. Tiling can therefore
increase the granularity of synchronization [25] and data are
often reused within a tile [24]. Without tiling, when a DOALL
loop is nested within a non-DOALL loop, all processors must
be synchronized at the end of each DOALL loop with a barrier.
Using tiling, we can reduce the synchronization cost in the
following two ways.

First, instead of applying the wavefront transformation to the
loops in canonical form, we first tile the loops then apply the
wavefront transformation to the controlling loops of the tiles.
In this way, the synchronization cost is reduced by the size
of the tile. An example of a wavefront of tiles is highlighted
in Fig. 5.

To further reduce the synchronization cost, we can apply

the concept of a DOACROSS loop to the tile level [25]. After
tiling, instead of skewing the loops statically to form DOALL
loops, the computation is allowed to skew dynamically by
explicit synchronization between data dependent tiles. In the
DOALL loop approach, tiles of each level must be completed
before the processors may go on to the next, requiring a
global barrier synchronization. In the DOACROSS model,
each tile can potentially execute as soon as it is legal to do
so. This ordering can be enforced by local synchronization.
Furthermore, different parts of the wavefront. may proceed
at different rates as determined dynamically by the execution
times of the different tiles. In contrast, the machine must wait
for the slowest processor at every level with the DOALL
method.

Tiling has two other advantages. First, within each tile, fine-
grain parallelism can easily be obtained by skewing the loops
within the tile and moving the DOALL loop innermost. In this
way, we can obtain both coarse- and fine-grain parallelism.
Second, tiling can improve data locality if there is data reuse
across several loops [lo], [24].

C. Summary
Using the loop transformation theory, we have shown a

simple algorithm in exploiting both coarse- and fine-grain
parallelism for loops with distance vectors. The algorithm
consists of two steps: the first is to transform the code into the
canonical form of a fully permutable loop nest. The second
tailors the code to specific architectures via wavefront and
tiling transformations.

IV. DIRECTION VECTORS

The dependences of general sequential loop nests cannot be
represented as distances. Consider the following code:

forI :=OtoNdo
for I2 := 0 to N do

b := g(b);

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 4, OCTOBER 1991

forII~:=OtoSbyZdo
torII;:=otollly2do

tar I{ := II{ to min(~II: + 1) do
tar Ii := max(Ii. II9 to mh(a+r:. II..+l) do

~~~~U:=I~‘(~~l+4I~~U+~~~21); 

Fig. 4. Iteration space and dependences of tiled code from Fig. l(b). 

11’2 

Fig. 5. Parallel execution of tiled loops. 

Iteration (i, j) must precede iteration (i, j +  l), giving rise to a  
distance vector (0,l). But also, iteration (i, N) must precede 
iteration (i +  1, 0), giving rise to a  (1, -N) vector where N 
may not be  known at compile time. 

While the loop above  does  not have  any  exploitable paral- 
lelism, loops such as  the following contain parallelism, but the 
dependences  cannot  be  represented as  distance vectors: 

forI :=OtoNdo 
for12 :=OtoNdo 

a[& ) 121 := alI1 + 1, w2/1; 

To represent this type of information, previous research on  
vectorizing and  parallelizing compilers introduced the concept  
of directions [2], [26]. The  dependence  vector for the first 
example above  would have  been  (‘*‘, ‘*‘), indicating that all the 
iterations are using the same data b, and  must be  serialized. In 
addition, the symbols ‘ < ’ and  ‘ > ’ are used  if the directions 
of the dependences  can be  determined: the second example 
would have  a  direction vector of (‘ < ‘, ‘ * ‘). 

W e  would like to extend the mathematical f ramework 
used  on  distance vectors to include directions. To  do  so, we 
make one  key modification to the existing convention: legal 
“direction vectors” must also be  “lexicographically positive.” 
This modification makes it possible to use  the same simple 
legality test for compound  transformations involving direction 
vectors. 

Each component  di of a  dependence  vector d’ is now a  
possibly infinite range of integers, represented by  [d,min , dyx], 
where 

dyin E 2  U {-oc}, dmax E 2  U {co} and  dyin 5  dy”. 

A single dependence  vector therefore represents a  set of 

distance vectors, called its distance vector set: 

E(2j =  {(el,... , e,)]e; E 2  and  dp  5  ei 5  d?“} 

The  dependence  vector zis also a  distance vector if each  of 
its components  is a  degenerate range containing a  singleton 
value, meaning dyin =  dy”. W e  use the notation ‘ + ’ as  
shor thand for [l, cc], ‘-’ as  shor thand for [-co, -11, and  ‘4~’ 
as shor thand for [-00, oo]. They correspond to the directions 
‘ < ‘, ‘ > ‘, and  ‘ *‘, respectively. 

All the propert ies discussed in Sections II and  III hold 
for the distance vector sets of the dependence  vect_ors. For 
example, a  unimodular transformation is legal if Vd : Ve’ E 
E(d : Tt? %  0’. Instead of handl ing infinite distance vector 
sets, we define an  arithmetic on  vectors with possibly infinite 
integer ranges, so  we can operate on  dependence  vectors 
directly. 

W e  say that a  component  d  is positive, written d  > 0, 
if its minimum dmin is positive; d  is nonnegat ive,  written 
d  2  0, if its minimum is nonnegat ive.  Likewise, d  is neg-  
ative or nonposit ive if its maximum dmax is negat ive or 
nonposit ive, respectively. Therefore, d  3  0  is not equivalent 
to d  5  0. W ith these definitions of component  comparison, 
the definition used  in lexicographically positive distance vec- 
tors also applies to general  dependence  vectors: d’ + G,+ if 
3i : (di >  0  and  Vj < i : dj 2  0). A dependence  vector d  is 
lexicographically nonnegat ive if it is lexicographically positive 
or all its components  have  dmin = 0. This definition implies 
that if a  dependence  vector is lexicographically positive, then 
all the distance vectors in its distance vector set also are. 

Since we require all dependences  to be  lexicographically 
positive, we do  not allow the dependences  (‘ f ‘, ‘ f ‘), or 
(‘*‘, ‘ * ‘), as  arose in a  previous example. The  dependences  
for such sequential loops are further refined and  represented 
as  (0, ‘ + ‘), (‘ + ‘, ‘ f ‘). 

To  enable calculation of Td  where dis a  vector of com- 
ponents  and  T is a  matrix of integers, we define component  
addit ion to be  

[a, b] +  [c, dj =  [u +  c, b  +  dj 

where for all s  E 2  U {co}, s +  00  is 0;) and  for all 
s E 2U{-co}, s+-co is -co. Thus 2+[-3,001 = 
[2,2]+[-3,001 = [-l,cc].Lik ewise, we define multiplication 
of a  component  by  a  scalar as  

[sa, sb], if s  2  0  
[sb, sa], otherwise 



WOLF AND LAM: LOOP TRANSFORMATION AND ALGORITHM TO MAXIMIZE PARALLELISM 459 

where s.00 is oo for positive s, 0 if s  is 0, and -oc for negative 
s, and likewise for a factor times -oo. Component subtraction 
a - b is defined to be a + (-1)b. These definitions of addition, 
subtraction, and multiplication are conservative in that 

where f is a function that performs a combination of the 
defined operations on its operands. The converse 

e’E qf(&,&)) * 
3& E E(&) and 3Za E E(&) : f(&,Z2) = Z’) 

is not necessarily true. 
1 1 For an example, with transformation T = o 1 and 

[ I 
d’ = (0, ‘ + ‘), the precise distance vector set of Ti is ((1, 
l), (2, 2), (3, 3), . . .}. Using the component arithmetic defined 
above, the resulting dependence vector is (‘ + ‘, ‘ + ‘), which 
represents the ranges of each component correctly and is the 
best representation of the infinite set given the dependence 
representation. The choice of the direction representation is a 
compromise; it is powerful enough to represent most common 
cases without the cost associated with the more complex and 
precise representation; but the application of certain trans- 
formations may result in loss of information. This drawback 
to direction vectors can be overcome by representing them 
as distance vectors whenever possible, since no information 
is lost during distance vector manipulation. In the above 
example, we can represent the dependence by (0, 1) rather 
than by (O,‘+ ‘), since by transitivity both are identical. 
The transformed dependence is then (1, l), which exactly 
summarizes the dependence after transformation, rather than 
(‘ + ‘, ‘ + ‘), which is imprecise. 

When direction vectors are necessary, information about the 
dependences may be lost whenever skewing is applied. We can 
only guarantee that E (T-l (Td)) 1 E (0, but T-l (Td = d’ 
is not necessarily true. Thus, for general dependence vectors, 
the analogue of Theorem 2.1 is a pair of more restrictive 
theorems. 

Theorem 4.1: Let D be the set of dependence vectors of 
a computation. A unimodular transformation T is legal if 
V& D : Td++ 6. 

Theorem 4.2: Let D be the set of dependence vectors of a 
computation. A unimodular transformation T that is a product 
of only permutation and reversal matrices is legal if and only 
if Vc?E D : Td> 0’. 

V. PAFULLELIZKHON WITH DISTANCES AND DIRECTIONS 

Recall that an n-deep loop nest has at least n - 1 degrees 
of parallelism if its dependences are all distance vectors. In 
the presence of direction vectors, not all loops can be made 
fully permutable, and such degrees of parallelism may not be 
available. The parallelization problem therefore is to find the 
maximum number of parallelizable loops. 

The parallelization algorithm again consists of two steps: 
the first to transform the loops into the canonical form, and 
the second tailors it to fine- and/or coarse-grain parallelism. 

Instead of a single fully permutable loop nest, the canonical 
format for loops with general dependences is a nest of fully 
permutable loop nests with each outer fully permutable loop 
nest as large as possible. As we will show below, once the 
loops are placed in this canonical format, we can maximize 
the total degree of parallelism by maximizing the degree of 
parallelism for each fully permutable loop nest. 

A. An Example with Direction Vectors 
Let us first illustrate the procedure with an example. 

for 11 := 1 to N do 
for12 :=ltoNdo 

for 13 := 1 to N do 
(@I, Id,Wl ,12,131) := 

The loop body above is represented by an N x N x N iteration 
space. The references a[I1, 13] and a(I1 + 1,13 - l] give rise 
to a dependence of (1, ‘&‘, - 1). The references a[Il ,131 and 
a[Il, 13/ do not give rise to a dependence of (0, ‘%‘, 0), which 
is not lexicographically positive, but rather to a dependence 
of (O,‘+‘,O). b(11,12,13] and b[Il,12,13/ give rise to a 
dependence of (0, 0, 0), which we ignore since it is not a 
cross-iteration edge. Finally, b[Il ,4, Ia] and b[Il ,I2, I3 - l] 
give rise to a dependence of (0, 0,l). The dependence vectors 
for this nest are 

D = ((0, ‘+‘,O), (1, ‘h’, -l), (O,O, 1)). 

None of the three loops in the source program can be paral- 
lelized as it stands; however, there is one degree of parallelism 
that can be exploited at either a coarse- or fine-grain level. 

By permuting loops I2 and I3 loops, and skewing the new 
middle loop with respect to the outer by a factor of 1, the 
algorithm transforms the code to canonical form: 

forI; :=ltoNdo 
for 14 := 1; + 1 to 1: + N do 

for 1; := 1 to N do 
(u[I; , I; - I;],b[I;, I;, I; - I;/) := 

f(u[I:,I:-I;], u[I~+l,I~-l~-l/, 
b[I; , I;, I; - I;/, b[I; , I;, I; - I; - I]); 

The transformation matrix T and the transformed dependences 
D’ are 

and 

D’ = {(O,O, ‘ + ‘), (l,O, ‘ f ‘), (O,l,O)}. 

The transformation is legal since the resulting dependences 
are all lexicographically positive. The resulting two outermost 
loops form one set of fully permutable loop nests, since inter- 
changing these loops leaves the dependences lexicographically 
positive. The last loop is in a fully permutable loop by itself. 



460 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO.  4, OCTOBER 1991 

The two-loop fully permutable set can be transformed 
to provide one level of parallelism by application of the 
wavefront skew. The transformation matrix T for this phase 
of transformation, and the transformed dependences D” are 

and 

1 1 0 
T’= 1 0 0 [ 1 0 0 1 

D” = {(O,O, ‘+‘)I (l,l, ‘*‘), (l,O,O)} 

and the transformed code is 

for I: := 3 to 3N do 
doall 1; := max(l,[(lr - N)/21) to 

min(N,[(ly - 1)/2J) do 
for 1: := 1 to N do 

(a[$‘, Ii’ - 2I!/],b[I’,‘, If, Ii’ - 2147) := 
f(u[I;,I:‘-21;], u[I;+l,li'-21;--11, 
b[I;, I;, I:‘-2147, b[I!/, I;, I:‘-2I;-11); 

Applying this wavefront transformation to all the fully per- 
mutable loop nests will produce a loop nest with the maximum 
degree of parallelism. For some machines, tiling may be 
preferable to wavefronting, as discussed in Section III-B3. 

To implement this technique, there is no need to generate 
code for the intermediate step. The transformation to get 
directly from the example to the final code is simply 

T”=T’T= [a i ;] [a 8 ;] = [a 8 81. 

B. Canonical Form: Fully Permutable Nests 
The parallelization algorithm attempts to create the largest 

possible fully permutable loop nests, starting from the out- 
ermost loops. It first applies unimodular transformations to 
move loops into the outermost fully permutable loop nest, if 
dependences allow. Once no more loops can be placed in the 
outermost fully permutable loop nest, it recursively places the 
remaining loops into fully permutable nests further in. The 
code for this algorithm, called MakeNests, is presented in 
Appendix A. It calls FindYPNest to choose the fully per- 
mutable nest to place outermost at each step in the algorithm; 
that algorithm is discussed in Section VI. 

For loops whose dependences are distance vectors, Section 
III shows that their parallelism is easily accessible once they 
are made into a fully permutable nest. Similarly, once a 
loop nest with general dependence vectors is put into a nest 
of largest fully permutable nests, its parallelism is readily 
extracted. This canonical form has three important properties 
that simplify its computation and make its parallelism easily 
exploitable: 

1) The largest, outermost fully permutable nest is unique 
in the loops it contains, and is a superset of all possible 
outermost permutable loop nests (Theorem B.5). We 
need to consider only combinations of loops that make 
up the largest outermost fully permutable nest. 

2) If a legal transformation exists for a loop nest originally, 
then there exists a legal transformation that will generate 
code with the largest possible outermost fully permutable 
loop nest placed outermost (Theorem B.3). This property 
makes it safe to use a greedy algorithm that constructs 
fully permutable loop nests incrementally starting with 
the outermost fully permutable loop nest and working 
inwards. 

3) Finally, a greedy algorithm that places the largest out- 
ermost fully permutable loop nest, and then recursively 
calls itself on the remaining loops to place loops further 
in, exposes the maximum degree of parallelism possi- 
ble via unimodular transformation (Theorem B.6). The 
maximum degree of parallelism in a loop nest is simply 
the sum of the maximal degree of parallelism of all the 
fully permutable nests in canonical form. 

C. Fine- and Coarse-Grain Parallelism 
To obtain the maximum finest granularity of parallelism, we 

perform a wavefront skew on all the fully permutable nests, 
and permute them so that all the DOALL loops are innermost, 
which is always legal. 

To obtain the coarsest granularity of parallelism, we simply 
transform each fully permutable nest to give the coarsest 
granularity of parallelism, as discussed in Section III-B2. If the 
fully permutable nest contains direction vectors, the technique 
of Section III-B2 must be modified slightly. 

Let S be the orthogonal subspace of the dependences, as 
in Section III-B2. Although the dependences are possibly 
directions, we can still calculate this space precisely. Since 
the nest is fully permutable, dp 2 0. We can assume 
without loss of generality that dr = dpin or dp” = oc 
by enumerating all finite ranges of components. If some 
component of d’ is unbounded, that is dr = 00, then 
our requirement on s’ E 5’ that s’. d’ = 0, implies that 
Sk = 0. This puts the same constraint on S as if there 
had been a distance vector (0,. . . ,O, l,O, . . . ,O), with a sin- 
gle 1 in the Icth entry. Thus, we can calculate S by find- 
ing the nullspace of the matrix with rows consisting of 
(dp”, . . . , d$“) and of the appropriate (0,. . . ,O, 1, 0, . . . , 0) 
vectors. 

These rows are a superset of the dependences within the 
fully permutable loop nest, but they are all lexicographically 
positive and all their elements are nonnegative. Thus, we can 
use these as the distance vectors of the nest and apply the 
technique of Section III-B2 for choosing a legal transformation 
T to apply to make the first 15’1 rows of the transformation 
matrix span S, and the technique will succeed. Since S is 
calculated precisely and the first ISI rows of T span S, the 
result is optimal. 

VI. FINDING FULLY PERMUTABLE LOOP NESTS 

In this section, we discuss the algorithm for finding the 
largest outermost fully permutable loop nest; this is the key 
step in parallelization of a general loop nest. Finding the 
largest fully permutable loop nest in the general case is 



WOLF AND LAM: LOOP TRANSFORMATION AND ALGORITHM TO MAXIMIZE PARALLELISM 461 

expensive. A related but simpler problem, referred to here 
as the time cone problem, is to find a linear transformation 
matrix for a Jinite set of distance vectors such that the first 
components of all transformed distance vectors are all positive 
[12], [13], [18], [21]. This means that the rest of the loops are 
DOALL loops. We have shown that if all the distance vectors 
are lexicographically positive, this can be achieved by first 
skewing to make the loops fully permutable, and wavefronting 
to generate the DOALL loops. However, if the distances 
are not lexicographically positive, the complexity of typical 
methods to find such a transformation assuming one exists is 
at least O(d+l), where d is the number of dependences and n 
is the loop nest depth [21]. The problem of finding the largest 
fully permutable loop nest is even harder, since we need to 
find the largest nest for which such a transformation exists. 

Our  approach is to use a cheaper technique on as many 
loops as possible, and apply the expensive time cone technique 
only to the few remaining loops. We classify loops into three 
categories: 

serializing loops, loops with dependence components 
including both +oo and -co; these loop cannot be 
included in the outermost fully permutable nest and can 
be ignored for that nest. 
loops that can be included via the SRP transformation, 
an efficient transformation that combines permutation, 
reversal, and skewing. 
the remaining loops; they may possibly be included via 
a general transformation using the time cone method. 

Appendix A contains the implementation of FindJPNest, 
the algorithm that finds an outermost fully permutable loop 
nest. The parameters to FindJPNest are the set of loops and 
the set of dependences D not satisfied by a loop enclosing 
the current loops. The routine returns the loops that were not 
placed in the nest, the transformed dependences, and the loops 
in this nest. In addition, the actual implementation must keep 
track of exactly which transformations are being implicitly per- 
formed by the algorithm in order to update the loop body and 
loop bounds. The algorithm first removes the loops in category 
1 from consideration, as discussed below, and then calls the 
SRP transformation to handle loops of category 2. If necessary, 
it then calls General-Transform to handle loops of category 3. 

As we expect the loop depth to be low to begin with 
and further reduced since most loops will typically fall in 
categories 1 and 2, we recommend only a two-dimensional 
time cone method for loops of category 3. If there are 
two or fewer loops in category 3, the algorithm is optimal, 
maximizing the degree of parallelism. Otherwise, the two- 
dimensional time cone method can be used heuristically to find 
a good transformation. The algorithm can transform the code 
optimally in the common cases. For the algorithm to fail to 
maximize the degree of parallelism, the loop has to be at least 
five deep. The overall complexity of the algorithm is O(n3d). 

A. Serializing Loops 
As proven below, a loop with both positive and negative 

infinite components cannot be included in the outermost fully 
permutable nest. Consequently, the loop must go in a fully 

permutable nest further in, and cannot be run in parallel with 
other loops in the outermost fully permutable nest. We call 
such a loop a serializing loop. 

Theorem 6.1: If loop Ik has dependences such that 3c? E 
D : ,Tin = -cc and 32~ D : dp” = ce then the outermost 
fully permutable nest consists only of a combination of loops 
not including Jk. 

Proof: 3d E D : dp”’ = -oc implies that the transfor- 
mation T that produces m outermost fully permutable loop 
nests must be such that V’i 5 m : t+ 5 0. Likewise, 
3&D:dy= 00 implies that Vi 5 m : ti,l, > 0. Thus 
if 32~ D : (dp’” = -co) A 32~ D : (dr = co) then it 
must be the case that Vi 5 m : ti,k = 0. Thus, none of the m 
outermost loops after transformation contains a component of 
4. 0 

In our example in Section V, the middle loop is serializing, 
so cannot be in the outermost fully permutable loop nest. Once 
the other two loops are placed outermost, the only dependence 
from D’ that is not already made lexicographically positive 
by the first two loops is (O,O, ‘+‘), so that for the next fully 
permutable nest, there were no more serializing loops that had 
to be removed from consideration. 

When a loop is removed from consideration, the result- 
ing dependences are no longer necessarily lexicographically 
positive. For example, suppose a loop nest has dependences 

{Cl, ‘ f ‘,O,O), (0,1,2, -11, ((41, -1,l)l. 

The second loop is serializing, so we only need to consider 
placing in the outermost nest the first, third and fourth loops. 
If we just examine the dependences for those loops ((1, 0, 0), 
(0, 2, -l), (0, -1, l)}, we see that some dependences become 
lexicographically negative. 

B. The SRP Transformation 
Now that we have eliminated serializing loops from con- 

sideration for the outermost fully permutable nest, we apply 
the SRP transformation. SRP is an extension of the skewing 
transformation we used in Section III to make a nest with 
lexicographically positive distances fully permutable. This 
technique is simple and effective in practice. The loop in 
Section V is an example of code that is amenable to this 
technique. 

We first consider the effectiveness of skewing when applied 
to loops with general dependence vectors. First, there may not 
be a legal transformation that can make two loops with gen- 
eral dependences fully permutable. For example, no skewing 
factor that can make the components of vector (1, ‘ - ‘) all 
nonnegative. Moreover, the set of dependences vectors under 
consideration may not even be lexicographically positive, as 
discussed above. Thus, even if the dependences are all distance 
vectors, it is not necessarily the case that n - 1 parallel 
loops can be extracted. For example, suppose a subset of 
two loops in a loop nest has dependence vectors ((1, -l), 
(-1, 1)). These dependences are anti-parallel, so no row of any 
matrix T can have a nonnegative dot product with both vectors, 
unless the row itself is the zero vector, which would make the 
matrix singular. Nonetheless, there are many common cases 



462 IEEE TRANSACI’IONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL. 2, NO. 4, OCTOBER 1991 

for which a simple reverse and skew transformation can extract 
parallelism from the code. 

Theorem 6.2: Let L = (11, . . . , I,} be a loop nest with 
lex_icographically positive dependences d’ E D, and Di = 
{d E Dl(dl,.-., d+l) # 6). Loop Ij can be made into a 
fully permutable nest with loop Ii, where i < j, via reversal 
and/or skewing, if 

VIE Di : (dyin # -cm A  (djm;n < 0 + dyin > 0)) or 

Vri~ Di : (dy # 00 A (dj”” > 0 + dTin > 0)) . 

Proof: All dependence vectors for which (dl, . . . , 
d;-1) > 0’ do not prevent loops li and I? from being fully 
permutable and can be ignored. If 

VIE Di : (dp # -cc A (dj”‘” < 0 -+ dFn > 0)) 

then we can skew loop Ij by a factor of f with respect to 
100p Ii where 

to make loop Ij fully permutable with loop Ii. If instead the 
condition 

b’z E  Di : (dy= # co A  (dj”” > 0 + dp > 0)) . 

holds, then we can reverse loop Ij and proceed as above. 0 
From this theorem, we derive the FindSkew algorithm in 

the Appendix. It takes as input D, the set of dependences that 
has not been satisfied by loops outside this loop nest. It also 
takes as input the loop nest N and the loop Ij. It attempts to 
skew loop Ij with respect to the fully permutable loop nest N 
so that all dependences (that are not satisfied by outer loops) 
will have nonnegative dj components. It returns whether it was 
able to successfully skew, as well as the skews performed and 
the new dependence vectors. The run time for this algorithm 
is O(INld + d), w h ere d is the number of dependences in the 
loop nest. If N  is empty, then this routine returns successfully 
if loop Ij was such that all d.j 2 0, or if loop Ij could be 
reversed to make that so. 

The SRP transformation has several important properties, 
proofs of which can be found in [23]. First, although the entire 
transformation is constructed as a series of a permutation, 
reversal, and skew combination, the complete transformation 
can be expressed as the application of one permutation trans- 
formation, followed by a reversal of zero or more of the loops, 
followed by a skew. That is, we can write the transformation 
T as T = SRP, where P is a permutation matrix, R is a 
diagonal matrix with each diagonal entry being either 1 or -1 
(loop reversal), and S is a lower triangular matrix with ones 
on the diagonal (loop skewing). Note that while T produces 
a legal fully permutable loop nest, just applying P may not 
produce a legal loop nest. 

Second, as an extension to the skewing transform presented 
in Section III, SRP converts a loop nest with only lexicograph- 
ically positive distance vectors into a single fully permutable 
loop nest. Thus, SRP finds the maximum degree of parallelism 
for loops in this special case. Generalizing this observation, 
if there exists an SRP transformation that makes dependence 

- 
I 

_ 

vectors lexicographically positive, and none of the transformed 
depndence vectors has an unboundedly negative component 
(Vd : dmin # -co), our algorithm again will place all the 
loops into a single fully permutable loop nest. 

Third, the FindJPNest algorithm that uses SRP to find 
successive fully permutable loop nests will always produce a 
legal order for the loops if all the dependences were initially 
lexicographically positive, or could have been made SO by 
some SRP transformation. 

Fourth, the complexity of the SRP transformation algorithm 
is O(m2d) where m  is the number of loops considered. If 
FindYPAJest does not attempt transformations on loops in 
category 3, then it is O(n2d) where n is the number of loops 
in the entire loop nest. 

Fifth, if FindJPiVest with SRP fails to create any fully 
permutable nest with more than one loop, then there is no uni- 
modular transformation that could have done so. To rephrase 
slightly, FindTPlVest with SRP produces DOALL parallelism 
whenever any is available via a unimodular transformation, 
even if it finds less than the optimal degree of parallelism. 

C. General Two-Dimensional Transformations 
In general, the SRP transformation alone cannot find all 

possible parallelism. Consider again the example of a loop with 
dependences D = ((1, ‘*‘,O,O), (0,1,2,-l), (O,l, -1,l)). 
The first loop can obviously be placed in the outermost 
fully permutable nest. The second loop is serializing, and 
cannot be placed in the outermost fully permutable loop 
nest. The question is whether the third and fourth loops 
can be placed into the outermost fully permutable nest. That 
is, does a transformation exist that makes all components 
of dependences {(l,O, 0), (0,2, -l), (0, -1,l)) nonnegative 
after transformation. While SRP will not succeed, such a 
transformation does indeed exist. The first loop can go in the 
fully permutable nest; the challenge is to find a T such that 
T(2, -1) and T(-1,l) are fully permutable. Finding such 
a T is a reformulation of the time cone problem discussed 
above. We present an efficient O(d) algorithm to solve for a 
transformation in the special case when there are exactly two 
loops in the nest. 

The algorithm consists of two steps. The-first is to @td a 
direction t’in the iteration space such that Vd E  D : t’. d > 0. 
The second is to find a unimodular matrix T that contains t’in 
the first row, so that t’is the direction of the outermost loop 
after transformation. 

To find the “time” direction c we note that each dependence 
will restrict the legal space of t’to a cone in the iteration space. 
We illustrate this method using the example of subvectors 
(2, - 1) and (-1,1) in Fig. 6. As shown in the figure, each 
dependence restricts the legal t’ to a half-plane that has a 
nonnegative dot product with z The intersection of the legal 
times form a cone, any of which is a legal outer loop. If 
the cone is empty, then there is no possible transformation 
that achieves our goal. Otherwise, the extreme edges of the 
cone can be (vector) summed to produce a direction z2 The 

2Banejee [S] discusses a method for choosing the direction that maximizes 
the number of iterations that can be performed in parallel. 

- 



WOLF AND LAM: LOOP TRANSFORMATION AND ALGORITHM TO MAXIMIZE PARALLELISM 463 

Fig. 6. An example of a two-dimensional time-cone. 

components of the vector t’are chosen such that their greatest 
common divisor is one.  In our  example, (tl, t2) = (2,3). The  
technique can easily be  extended to any  number  of distance 
and/or direction vectors. 

The  transformation matrix Twill transform the dependences  
in the desired manner  if 

T  =  tl ‘2 [ 1  x Y 
and  T is unimodular. To  achieve this, we choose x and  y 
integral such that the determinant of T  is unity, which occurs 
when  tly - t2x =  1. Since tl and  t2 are relatively prime, an  
x and  y pair are easily found using the Extended Eucl idean 
algorithm. For our  example, Euclid’s algorithm produces x =  
1  and  y =  2, and  we get 

TX 2 3  [ 1  l 2  andT-I= 2  -3 [ 1  -1 2  . 

The  (II, I2) iteration is transformed by T into the (Ii, I.$) 
iteration. By the construction of the transformation T, the Ii 
component  of all dependences  are positive, so  all dependences  
are lexicographically positive. Thus, we can skew the IL loop 
with respect to the Ii loop by  calling SRP to make the nest 
fully permutable. 

By incorporating the two-dimensional transform into 
FindJPXests, the execut ion time of the complete paralleliz- 
ing algorithm becomes potentially O(n3d).  In the worst case, 
SRP takes O(n2d)  but places no  loops in the nest, and  then 
Find-FPiVest searches (T) pairs of loops to find a  pair for 
which the two-dimensional time cone method succeeds.  Thus, 
at worst it takes O(n2d)  to place two loops into the nest, which 
makes the worst case run time of the algorithm O(n3d).  In 
the case that SRP was sufficient to find the maximum degree 
of parallelism, the two-dimensional transformation port ion of 
the algorithm is never  executed, and  the run time of the 
parallelization algorithm remains O(n2d).  

VII. IMPLEME~ATING THE TRANSF~R~TI~N~ 

In this section, we discuss how to express a  loop transformed 
by unimodular transformation and  tiling back as  executable 
code.  In either case, the problem consists of two parts: 
rewriting the body  of the loop nest and  rewriting the loop 
bounds.  It is easy to rewrite the body  of the loop nest; the 
difficult part is the loop bounds.  W e  first discuss unimodular 
transformations, then tiling. 

A. Unimodular Transformations 

Suppose we have  the loop nest 

for II := . . . 

for I, := . . . 
S(Il,... 7  In); 

to which we apply the unimodular transformation T. The  
transformation of the body  S only requires that Ij be  replaced 
by  the appropriate linear combinat ion of II’s, where the I”s 
are the indexes for the transformed loop nest: 

Performing this substitution is all that is required for the loop 
body.  The  remainder of this section discusses the transforma- 
tion on  the loop bounds.  

1) Scope of Allowable Loop  Bounds:  Our  method of de-  
termining the loop bounds  after unimodular transformation 
requires fhat the loop bounds  be  of the form 

for Ii := max(Li, Lf,. . .) to min(Ut,U:, . . .) by 1 do 

where 

Li =  

and  Uj =  

and  all I$ and  u!,, are known constants, except  possibly for 
liO and  US 0, which must still be  invariant in the loop nest. (If 
a’ceiling &curs where we need  a  floor it is a  simple matter 
to adjust 1:,, and  &, and  replace the ceiling with the floor, 
and  likewise if a  floor occurs where we need  a  ceiling.) If any  
loop increments are not one,  then they must first be  made  so, 
for example via loop normalization [l]. If the bounds  are not 
of the proper form, then the given loop cannot  be  involved in 
any  transformations, and  the loop nest is effectively divided 
into two: those outside the loop and  those nested in-the loop. 

It is important to be  able to handle loop bounds  of this 
complexity. Although programmers do  not often write bound  
expressions with minima, maxima, and  integer divisions, loop 
transformations can create them. In particular, we consider 
tiling as  separate from unimodular transformation, so  in the 
case of double level blocking, we can transform the nest with 
a  unimodular matrix, tile, and  then further transform the tiled 
loops and  tile again inside. Since tiling can create loops of this 
complexity, we wish to be  able to handle them. 

2) Transforming the Loop  Bounds:  W e  outline our  method 
for determining the bounds  of a  loop nest after transformation 
by  unimodular matrix T. W e  explain the general  method and  
demonstrate it by  permuting the loop nest in Fig. 7  to make I3 
the outermost loop i md  II the innermost loop, i.e., by  applying 

ro O  11 
the transformation 0  1  0. L 1  1  0  0  



. 

464 IEEE TRANSACTIONS ON PARALJJX AND DISTRIBUTED ,c,ySm~~, VOL. 2, NO,  4, OCTOBER 1991 

An example loop nest: 

for II :=l to nl do 
for 12 := 21, to n2 do 

for I3 := 2h + I2 - 1 to min(I2, “3) do 
S(Il ( 12, Ix); 

Step 1: Extract inequalities: 
h z 1 I1 In1 
12 1 211 I1 I w  
13 >_ 2Il + I1 - 1 I3 5 I2 I3 5 n3 

Step 2: Find absolute maximum and minimum for each loop index: 

F=l Iy = n, 
@7=2x1=2 Iy = n2 
I;” = 2 x I + 2 - 1 = 3 p = min(n2, ns) 

Step 3: Transform indices: I, + I; 12 3 I; I3 + I; 

Inequalities Maxima and minima 
I; 2 1 4 I n1 I{“” = 3 I{,, = min(n2, n,) 
I; 2 21; Ii I n2 I;&=2 Ii”” = n2 
I; 1 21; + I; - 1 I; 5 I; I{ 5 n, I;& = 1 Ii”” = n, 

Step 4: Calculate new loop bounds: 

Index Inequality (index on LHS) 
4 I; 2 24 

Ii 2 I{ 
Ii 5 n2 
IisI,‘-21j+1 

4 I; > 1 
I; 5 n1 
I; 5 (I{ - Ii + 1)/2 

The loop nest after transformation: 

Substituting in I’& and Pm” 
Ii 2 2 

Ii 5 Z{ - 1 

for I{ := 3 to min(nl, n2) do 
for I; := I{ to min(n2,Z; - 1) do 

for I; := 1 to min(nl, [(I; - I; + 1)/2J) do 
Xl; 1 Ii j 1;); 

Fig. 7. Finding the loop bounds after unimodular transformation. 

Step 1: Extract inequalities. The first step is to extract 
all inequalities from the loop nest. Using the notation from 
Section VII-Al, the bounds can be expressed as a series of 
inequalities of the form Ii 2 Li and Ii 5 Vi. 

Step 2: Find the absolute maximum and minimum for each 
loop index. The second step is to use the inequalities to find 
the maximum and minimum possible values of each loop 
index. This can be easily done from the outermost to the 
innermost loop by substituting the maxima and minima outside 
the current loop of interest into the bound expressions for that 
loop. That is, since the lower bound of Ii is maxj(L~), the 
smallest possible value for Ii is the maximum of the smallest 
possible values of Li. 

We use &Fin and Lfvmin to denote the smallest possible 
value for Ii and L{, and fkminz5j to denote either Ipin or Ipax, 
whichever minimizes (Ii k  IFS, ) /Z{ i : 

where 

and 

sign(li,,) = sign(&) 
otherwise. 

Similar formulas hold for Ujtmin ) ,p=, and u!9max. 
Step 3: Transform index;s. We now use (II’, . . . , In) = 

T-‘(I;, . . . , IA) to replace the Ij’s variables in the inequalities 
by Ii’s. The maximum and minimum for a given I; is easily 
calculated. For example, if Ii = II - 2I2, then Iima = 
1”” - 21”‘” and I’“‘” 1 2 1 = I”‘” - 2I”““. In general, we 
use (I{,...,IA) = T(Il,... , Ii) to expriss the Ii’s in terms 
of the Ij’s. If I; = C aj Ij, then 

lmin _ 
Ik - 

Uj > 0 
otherwise 

and likewise for IL,,. 
Step 4: Calculate new loop bounds. The lower and upper 

bounds for loop Ii are just Iimin and Iimax. Otherwise, to 
determine the loop bounds for loop index Ii, we first rewrite 
each inequality from step three containing I, by solving for 
Ii, producing a series of inequalities of the form Ii 5 f(. . .) 
and Ii > f(. . .). Each inequality of the form Ii 5 f(. . .) 
contributes to the upper bound. If there is more than one such 

I 
- 



WOLF AND LAM: LOOP TRANSFORMATION AND ALGORITHM TO MAXIMIZE PARALLELISM 465 

expression, then the minimum of the expressions is the upper 
bound. Likewise, each inequality of the form I,! 2 f(. . .) 
contributes to the lower bound, and the maximum of the 
right-hand sides is taken if there is more than one. 

An inequality of the form Ii 2 f(Ii) contributes to the 
lower bound of loop index Ii. If j < i, meaning that loop Ii 
is outside loop Ii , then the expression does not need to be 
changed since the loop bound of Ii can be a function of the 
outer index Ii. If loop I$ is nested within loop I{, then the 
bound for loop index I, cannot be a function of loop index Ii. 
In this case we must replace I, by its minimum or maximum, 
whichever minimizes f. A similar procedure is applied to the 
upper loop bounds. The loop bounds produced as a result of 
these manipulations again belong to the class discussed in 
Section VII-Al, so that our methods can calculate the loop 
bounds after further transformation of these loops. 

3) Discussion ofMethod: The algorithm to determining loop 
bounds is efficient. For an n-deep loop nest, there are at least 
2n inequalities, since each loop has at least one lower and 
upper bound. In general, each loop bound may be maximum 
and minimum functions, with every term contributing one 
inequality. Let the number of inequalities be 4. Both steps 
1 and 2 in the algorithm are linear. The third step requires 
a matrix-vector multiply and a scan through the inequalities, 
and so is O(n2 + q). The fourth step is potentially the most 
expensive, since all q inequalities could potentially involve 
all n loop indexes, for a total cost of O(nq). Thus, the loop 
bound finding algorithm is O(nq). 

. 

The resulting loop nest, while correct, may contain exces- 
sive maxima and minima computation in the loop bounds, 
and may contain outer loop iterations that have no loop body 
iterations executed. Neither of these problems occurs in the 
body of the innermost loop, and thus the extra computation 
cost should be negligible. These problems can be removed via 
well-known integer linear system algorithms [ 111. 

B. Tiling Transformation 
The technique we apply for tiling does not require any 

changes to the loop body. We thus discuss only the changes 
to the loop nest and bounds. While it has been suggested that 
strip-mining and interchanging be applied to determine the 
bounds of a tiled loop, this approach is not straightforward 
when the loop bounds are not rectangular [26]. A more direct 
method is as follows. When tiling, we partition the iteration 
space, whatever the shape of the bounds, as in Fig. 8. Each 
rectangle represents a computation performed by a tile; some 
tiles may contain little or even no work. 

Tiling a nest (Ii, . . . , Ij) adds j - i + 1 controlling loops, 

denoted by (II;, . . . , IIj), to the loop nest. The lower bound 
on the Ik is now the maximum of the original lower bound and 
IIk; similarly, the upper bound is the minimum of the original 
upper bound and III, + Sk - 1, where Sk is the size of the 
tile in the lc loop. For loop IIk, the lower and upper bounds 
are simply the absolute minimum and maximum values of the 
original Ik, and the step size is Sk. As shown in Fig. 8, some of 
these tiles may be empty. The time wasted in determining that 
the tile is empty should be negligible when compared to the 

Si 
t 

Fig. 8. Tiling a trapezoidal loop (2-D). 

execution of the large number of nonempty tiles in the loop. 
Once again, these problems can be removed via well-known 
integer linear system algorithms [ 111. 

Applying these methods to the permuted example loop 
nest from Fig. 7, we can tile to get the follow- 
ing: 

for II{ := 3 to min(Ns,Ns) by S1 do 
for II.$ := 2 to N2 by 5’2 do 
forIIA:=1toN1byS3do 

for Ii := max(3, II:) to min(Ns, Na, II{ + 5’1 - 1) do 
for Ii := max(I{, II;) to min(N2, Ii - 3, II; + S2 - 1) do 
for Ii := m&l, II;) to min(N1, L(Ii - Ii - 1)/2J, II; 

+Sa - 1) do 
S(Ii, I;, I:>; 

Note that Ii, IL, and Ii are fully permutable, and so are the 
II:, II;, and II;. Each of these two groups can further be 
transformed to deliver parallelism at the fine and/or coarse 
granularity of parallelism, as discussed in Section III-B3. 
The same loop bound conversion algorithm described here is 
sufficient to support such further transforms, because the loop 
bounds of each group again satisfy the general format allowed. 

VIII. CONCLUSIONS 

This paper proposes a new approach to transformations for 
general loop nests with distance and direction dependence vec- 
tors. We unify the handling of distance and direction vectors 
by representing direction vectors as an infinite set of distance 
vectors. In this approach, dependence vectors represent prece- 
dence constraints on the iterations of a loop. Therefore, depen- 
dences extracted from a loop nest must be lexicographically 
positive. This departure from previous research on vectorizing 
and parallelizing compilers leads to a simple test for legality 
of compound transformations: any code transformation that 
leaves the dependences lexicographically positive is legal. 

This model unifies all combinations of loop interchange, 
reversal and skewing as unimodular transformations. The use 
of matrices to model transformations has previously been 
applied only to special cases where dependences can be sum- 
marized by distance vectors. We extended vector arithmetic 
to include directions in a way such that the important and 
common operations on these vectors are efficient. With this 
model, we can easily determine a compound transform to 
be legal: a transform is legal if it yields lexicographically 



466 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 4, OCTOBER 1991 

positive dependence  vectors when  multiplied to the original 
dependence  vectors. The  ability to directly relate a  compound  
transform to the characteristics of the final code  allows us to 
prune the search for the optimal transform. A problem such 
as  maximizing parallelism is now simply one  of finding the 
unimodular transformation matrix that maximizes an  objective 
function, subject to the legality constraints. 

To  demonstrate the usefulness of this model, this paper  
applies this loop transformation theory to the problem of 
maximizing the degree of coarse- or fine-grain parallelism in 
a  loop nest. There are three main results. First, the maximum 
degree of parallelism can be  achieved by  transforming the 
loops into a  nest of coarsest fully permutable loop nests, and  
wavefront ing the fully permutable nests. Second,  this canoni-  
cal form of coarsest fully permutable nests can be  transformed 
mechanical ly to yield maximum degrees of coarse- and/or 
fine-grain parallelism. Third, while it is expensive to find the 
coarsest fully permutable loop nest, our  efficient heuristics can 
find the maximum degrees of parallelism for loops whose 
nest ing level is less than five. 

This loop transformation theory has  both theoretical and  
practical benefits. This matrix transformation model  makes it 
possible to formulate various loop transformation problems as 
mathematical optimization problems, prove certain transforms 
to be  optimal in an  infinite space of general  loop transforms, 
and  to devise efficient and  effective heuristics to complex prob- 
lems. Besides applying the theory to maximizing parallelism, 
we have  successfully used  this model  in developing an  efficient 
algorithm that applies unimodular and  tiling transforms to 
improve the data locality of loop nests [24]. The  e legance 
of this theory helps reduce the complexity of the implemen- 
tation. Once  the dependences  are extracted, the derivation 
of the compound  transform simply consists of matrix and  
vector operations. Once  the transformation is determined, a  
straightforward algorithm applies the transformation to the 
loop bounds  and  derives the final code.  

APPENDIX A 
THE PARALLELIZATION ALGORITHMS 

algorithm MakeJPNesrs 
(D: set of dependence,  
n: integer) 

return 
(success: boolean, 
D: set oi dependence,  
T: matrix, 
fpnests: liit of index); 

fpJWsts: liit of index := []; 
bol: integer := 0; 
T: matrix := identity; 
while bot -C n  do  

Tf : matrix; 
top: integer := twt+l; 

(D.T’ hot) I= FindJPNest(D,top,n); 
if top > bot then 

return (fak,D,Tfpnests); 
end if; 
fpnests := fpnestsi- [top] ; 
T  := TfT; 

end while; 
return (true,D,TJp-nests); 

end algorithm; 

algorithm FindJPNest 
(D: set of dependence,  
top: index, I* first unplaced *I 
n: index) 

return 
(D: set of dependence,  
T: matrix, 
bot: index); I* last placed *I 

bot: index; 
T,T, : matrix; 
Dtop: set of dependence  := (JE D((dl, . . . ,dtop-l) 3  6}; 
I: set of index := {i E {top,. . . , n}I 

Va~D~~p:@#-ooor  
V& DtoP : p  #  00); 

(D,T.bot,I) := SRP(D,top.top- 1  ,I); 
ifI#0thea 

(D,T,bot,I) := General-Transform(D,top,botJ); 
T  := T,T; 

end if; 
return (D,T,bot); 

end algorithm; 

algorithm SRP 
(D: set of dependence,  
top: index, I* top of fp nest */ 
cur: index, I* last loop in fp nest so far */ 
I: set of index) 

return 
D: set of dependence,  
T: matrix, 
bot: index, 
I: set of i&x); I* available loops *I 

done: boolean := false; 
T,T, ,Tp: matrix := identity; 
while not done do 

skewed: boolean; 
able := true; 
foreach c E I repeat 

(skewed,D,T,) := FindJkew(D,c,top,cur); 
if skewed then 

done := false; 
T ‘= P . identity with rows c and cur + 1 swapped; 



WOLF AND LAM: LOOP TRANSFORMATION AND ALGORITHM TO MAXIMIZE PARALLELISM 461 

T := T,T,T; 
D := Va E D : swap components dcur+l and d,; 
I := I - {c}; /* c  now placed *I 
ifcrcr+l E I then 

I := I - {cur+l} + {c}; 
end if; 
cur := cur+l; 

end if; 
end foreach; 

end while; 
return (D,T,cur,I); 

end algorithm; 

algorithm FindJkew 
(D: set of dependence. 
j: index, I* candidate for skewing *I 
top,cur: index) I* fp nest top to cur *I 

return 
(success: boolean, 
D: set of dependence, 
T: matrix): 

N: set of index := {top,. . . ,cur}; 
T: matrix := zero; 
Dtop: set of dependence := {c?E Dl(dl,...,dtop-1) 3 6); 

/* pass one: determine whether skewing possible */ 
ifVaE Dtop:djmi#-coand 

(y 10 or 3L E N : d;“” > 0) then 
Tj,j J= 1; 

elseifV~EDtoP:~#ooand 
(v 5 0 or 3k E N : d;“” > 0) then 

Tj,j := -1; 
foreach 2 E D do dj := -dj ; end foreach; 

else 
return (false,D,T); 

end if; 

/* pass two: determine skews *I 
foreach d’ E Dtop do 

ifp<Othen 
chooseanyk:kENAe>O; 
%,k := IlXU(Tj,k, r-djm;l/dr;i”l); 

end if; 
end foreach; 

I* pass three: fix dependences *I 
foreach d’ E D do 

dj := dj •I xkcNTj,kdk; 
end foreach; 

return (true,D,T); 
end algorithm; 

algorithm GeneraLTransform 
(D: set of dependence, 
top: index, I* top of current nest *I 
cur: index, I* l..cur already ordered *I 
I: set of index) 

return 
(D: set of dependence, 
T: matrix, 
bot: index, 
I: set of index) 

success: boolean := false; 
cl ,122 : index; 
T tmp,T: matrix := identity; 
foreach cl, c2 E I, cl # c2 do 

(success,D,Tt,p) := FindZd_Trans(D,q ,cz,cur); 
if success then 

T := Ttmp; 
cur := cur+2; 
if I # 0 then 

(D,Ttmp,cur,I) := SRP(D.top,cur,I); 
T := TtmpT; 
if I # 0 then 

fD,Tt, ,cur,I) := General-Transform(D,top,cur,I); 
T := TtmpT; 

end if; 
end if; 
return (D,T,cur,I); 

end if; 
end foreach; 
return (D,T,cur,I); 

end algorithm; 

algorithm FindJd-Trans 
(D: set of dependence, 
cl,c2: index, I* loops to transform *I 
cur: index, I* l..cur already ordered *I 
I: set of index) 

return 
(success: boolean, I* true if 2D transf. exists */ 
D: set Or dependence, I* the new dependences *I 
T: matrix, I* the Uansf. found *I 
I: set of in&x) I* unplaced loops *I 

I* See Section VI-C *I 
end algorithm; 



468 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 4, OCTOBER 1991 

APPENDIX B 
PROOFS 

W e  first state and  prove a  lemma about  unimodular matrices 
that we need  for the proofs in this section. 

Lemma B.1: If gcd(tr,r, tl,s,. . . , tr,,) =  1, then an  n  x n  
unimodular matrix T  exists with (tr,r, tr,s,. . . , tr,,) as  its first 
row. 

Proofi This lemma is true for n  =  2, as  we saw in Section 
VI. W e  prove that it is true for general  n  by  mathematical 
induction. 

If tl,i =  0  for i =  2,+.. , n, then tr,r is 1  or -1 and  a  
solution is the identity matrix with the first diagonal element 
replaced by  tr,l. So assume at least one  of tt,i is nonzero in 
i =  2,... ,n. Let g  =  gcd(tr,a, . . . , tr,,). W e  construct the 
matrix 

t1,1 t1,2 . . . t1,n 
0 u2,2 * * . u2,n 

u= : : 

0 %-1,2 --* %-l,Tl 
_ x t1,2s/g *.. t1,,s/g- 

where rows 2  through n  - 1  of U are chosen so that the upper  
right n  - 1  x n  - 1  submatrix has  a  determinant of fg. This is 
possible because a  unimodular matrix exists with a  first row 
of (t1,2/g,. . . , tl,+/g), by  the induction hypothesis. Given this 
construction, the lower right n  - 1  x n  - 1  submatrix of U 
has  a  determinant of fs. The  determinant of U is therefore 
(tl,d(fs) - (x)(h) h  h  w ic can  be  written as  the determinant 

of one  of the four matrices represented by  t11 f&J [ 1  ; l Is . The  

top row has  a  gcd  of unity, so  that x and  s can be  chosen 
to make the appropriate matrix unimodular. Thus, we have  
constructed an  n  x n  unimodular matrix with the required first 
row. 0  

A. Parallelism in a  Fully Permutable Nest 
Theorem B.2: Applying the wavefront transformation 

-1 1  ..* 1  1- 
1  0  ... 0  0  
0  1  **a 0  0  

. . 
-0 0  ... 1  a- 

to a  fully permutable loop nest maximizes the degree of 
parallelism within the nest. For an  n-dimensional loop nest, 
the maximal degree of parallelism is n - 1  if there are any  
dependences  carried within the loop nest, and  n  otherwise. 

Proof: Suppose the fuly permutable loop nest is loops 
I; through Ij. Let Di = {d E Dl(dl,. . . ,d;-1) +  0’). The 
dependences  in Di are the only ones  of interest, since all 
others are automatically satisfied. For all dependences  ZE Di, 
the loops are fully permutable means  that dk  2  0  for all 
k  =  i, . . . ,j. Thus, for all e’ E E(i) either e; +  . . +  +  ej >  0  or 
all ek  =  0. in either case, the resulting i+ 1st through jth loops 
are DOALL loops. It is also easy to verify all dependences  that 
were lexicographically positive before are still SO. Thus, the 
transformation produces a  legal ordering of the original nest, 

as  well as  producing j - i DOALL loops. It is not possible to 
have  all loops be  DOALLs unless there are no  dependences  
in Di, in which case the above  transformation also produces 
all DOALL loops. Cl 

B. Legality of Making Loops  Outermost 
Theorem B.3: Suppose there exists a  unimodular transfor- 

mation T such that Vc? E D : Ta?  + 5. Let the vector Z  be  
such that gcd(ur , . . . ,u,)=landV~~D:ii .~>O.Then 
there exists a  unimodular transformation U with first row Z 
such that Vi E D : Ucf +  0’. 

Proof: W e  first prove the theorem under  the assumption 
that all the dependence  vectors Jare distance vectors Z. 

Let t’; be  the ith row of T, and  define the constants 
al;..,& so that C = art; -t . . . +  arnfm, where a, #  0. 
W e  prove the theorem by constructing a  sequence of n x n  
unimodular matrices U1 , . . . , U,. Each lJj we construct will 
have  the property that UjE’ ?j 6, where ?j 0’ means  that the 
first j components  are lexicographically nonnegat ive.  Uj is of 
the form 

where each  Aj is an  m  x m unimodular matrix and  I,-, is 
the n  - m  x n  - m  identity matrix. That is, the first m  rows 
of Uj are combinat ions of the first m  rows of T  and  the last 
n  - m  rows of Uj are identical to the last n  - m  rows of T. 
W e  will show that U, meets the requirements for U in the 
theorem statement. 

W e  construct Al by  choosing as  its first row (al, . . . , a,). 
Such an  Al must exist by  Lemma B.l. Thus, the first row of 
U1 is therefore u’, and  5. Z  is given to be  nonnegat ive for all 
i?. Thus, 171  satisfies the property that UlZ k-1 6. 

W e  now construct A2 such that U2Z >2  0. W e  define the 
constants ci to be  such that zr =  clu’r,r +  . . . +  c~~ZI,~, 
where ??r,k is the Icth row of Ul. If m  > 1, then ca through 
c, cannot  all be  zero, so  we can define c: such that c: =  
ci/ gcd(c2,. . . , c,). Then  we define the matrix A2 by  

A2= [h f c! f;]Al 

where rows 3  through m of the premultiplying matrix are 
chosen to make it unimodular, as  is possible from Lemma 
B.l. U2 again has  a  first row of u’. Now we show that for all 
Z, U2Z ?a  6. The  first component  of U2e’ is u’. Z, which is 
given to be  nonnegat ive.  If it is positive, then the first two 
components  of U& are trivially lexicographically positive; 
if it is zero, we much check for the nonnegativi ty of the 
second component  of U2.Z. The  second row of lJ2 is a  linear 
combinat ion of ii and  & only. In fact, the second row of UZ is 
exactly (tl -clZ)/ gcd(ca, . . . , c,). When  the first component  
of U2e’ is zero, then ii. Z  is zero and  the second component  of 
U2Z is a  positive multiple of lr . C. But zr . Z  is nonnegat ive 
because T is a  legal transformation. Thus, the first two entries 
of U2e’ must form a  lexicographically nonnegat ive vector. 

1 
- 



WOLF AND LAM: LOOP TRANSFORMATION AND ALGORITHM TO MAXIMIZE PARALLELISM 469 

We repeat this process, premultiplying A,-1 to construct a 
new matrix Aj with the property that for all Z, UjZ kj 0’. 
We achieve this by making the jth row of Uj be a linear 
combination of 4-1 and the first j - 1 rows of Uj-1. As long 
as j 5 m, this construction is always possible. This process 
terminates with the construction of U,. 

We now show that U, meets the requirements for U in 
the problem statement. U, is unimodular and the first row of 
U, is u’. To complete the proof, we must show that for all e’, 
U,C? > 6. U,,, is constructed so that U,Z km 6. If U,Z +m 6, 
then U,Z F 6. The only other possibility is that the first m 
components of U,E’are all zero. In that case, it must be that 
the first m components of TZ are also all zero, since the first 
m rows of U, are just a combination of the first m rows of 
T. Since the first m components of U,Z and TZ are identical, 
and U, and T share the same last 72 - m rows, it must be 
that U,C = TZ. Since TZ is lexicographically positive, this 
completes the proof for sets of distance vectors. 

Before extending the proof to direction vectors, we first 
outline the difficult of doing so. Suppose we have the 

transformation U = i 1 0 1 1 -1 and the dependence vector z= 

[ y;]. ui= [ 1”q so the transformation appears 

to be illegal, even-though in-fact for each Z E E(z), Ue’ is 
lexicographically positive. This happens because although the 
first component of the result vector may be zero, or the second 
component may be negative, both of these conditions cannot 
happen in the same resulting UC?. In constructing a U with first 
row (0, 1) as above, we may get the U above, which satisfies 
all the distances, but does not have the property that Uz+ 6. 

0 1 However, the transformation U’ = 1 o has the same first [ 1 
row and is legal both in the sense that Ve’ E E(z) : U’E’ > 6 
and U’J + 6. To prove the theorem for general dependence 
vectors, we must prove that given a set of direction vectors, 
and a first row u’ such that VIE D : fi. c?> 0, we can find a 
U’ with a first row of ii such that ‘die D : U’d+ 0’. 

We begin with a U for which all the distance vectors in 
each distance vector set is transformed to be lexicographically 
positive, which we know is possible from the proof above for 
distance vectors. We then construct U’ by skewing U, which 
does not change the lexicographic positiveness of distance 
vectors. The first row of U’ is U. The second row of U’ is 
the second row of U skewed with respect to the first row 
of U’ so that both elements in any given column or both 
either nonnegative or nonpositive. This is always possible by 
choosing a sufficiently large skewing factor. We repeat this 
process for successive rows, so that the matrix U’ has all 
elements in any given column either all nonpositive or all 
nonnegative. 

We now show that U’c? > 0’ for all d: Consider the first 
component of U’cl : 

Using component arithmetic, the lower bound of this expres- 

sion is 

where 

drln if ui Ic > 0 
x; = d”” 

sky integer in [dp 
if ui Ic ’ <o 

, dr”] if u;lr, = 0. 

Note that if u:,~ > 0 then dpi” # -03, because otherwise 
some Z E E(i) can be chosen such that U’Z has an arbitrarily 
negative first component. Likewise, if u:,~ < 0, then dy # 
00. Thus, all the xi are integral and 5? = (xi, . . . , xg E E(og. 
This means that U’L? has a vnnegative first component, and 
so the first component of U’d has a nonnegative minimum. If 
the first component of U’Jis positive, then this dependence 
is satisfied and the proof is complete. So we assume that the 
first component has a minimum of zero. 

Consider the second component of U’cf : 

z&d1 + . . . + u&&t 

Using component arithmetic, the lower bound of this expres- 
sion is 

where 

1 

min 
dk if uh k > 0 

x; = d”” k if IL; k  1 <o 
x: if uh k = 0. 

We first show that if ~‘2,~ > 0, then dpin # -CCL If 
u:,~ > 0, then the Ic column of U’ is nonnegative, and so 
either ui k  > 0 or ui k  = 0. If ui k  > 0, then dp # -cc 
as discussed above. If u:,~ = 0, then not only is the first 
component of U’S1 zero, as discussed above, but the first 
component of that product is equal to zero for all xi. If 
d rin = -00, then xi could be arbitrarily negative, forcing the 
second component of U’Z’l to be negative, and thus forcing 
U’S? to be lexicographically negative. Since 5 E E(Z), and 
therefore U’Z + 8, this is a contradiction. Thus, drin # -CCL 
Likewise, if u;,~ < 0, then dy # 03. 

Thus, all the zz are integral (noninfinite), and the distance 
vector Z2 = (XT, . . . , x2) is in E(z). Also, the first component 
of U’Z2 is zero, since Z2 also meets the requirements to be 
2’. Since U/Z2 > 6 and has a zero first component, this 
means that U’Z2 has a nonnegative second component. But, 
the second component of U’Z2 is exactly u~,~x:+. . .+u!+xi, 
the lower bound of U’d: so the second component of U’d has 
a nonnegative minimum. If the second component of U’iis 
positive, then this dependence is satisfied and the proof is 
complete. If it is zero, then we contin_ue this process, showing 
that the first nonzero minimum of U’d must be strictly positive. 

Theorem B.4: Suppose there exists a unimodular transfor- 
mation T such that ‘dc?~ D : Tz+ 0’. Let 5’ be spanned by 
{&-.,qsI}Y where VC?E D : s’; . J= 0 for i = 1, *+. , ISI. 
Then there exists a unimodular transformation U such that 
VIE D : UC?+ 0’ and the first JSI rows of U span S. 



470 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 4, OCTOBER 1991 

Proof Apply Theorem B.3 to construct a  legal transfor- 
mation VI from T with first row $1. Further application of 
Theorem B.3 to construct a  legal transformation Uj from Uj-1 
with first row Zj results in the first j rows of Uj of the form 

1  

$j 

tl,Ogj + kl,lzj-1 

k2,Os’j + k2,lzj-1 + k2,2zj-2 

I 

. 

The matrix Ulsl meets the requirements for U in the theorem. 
0  

C. Uniqueness of Outermost Fully Permutable Loop  Nest 
Theorem B.5: Suppose T and  W  are legal unimodular 

transformations, given dependence  vectors 2~  D. Then  there 
exists a  legal unimodular transformation U such that the 
outermost fully permutable nest of U contains rows spaning all 
rows in the outermost fully permutable nests of both T and  W. 

Proofi Let row T  of T  and  W  be  t’, and  G,,, respectively, 
and  let the number  of rows in the outermost fully permutable 
nest of T  and  W  be  pi and  pw, respectively. If the first pw 
rows of W  are all linearly dependent  upon  the first pi rows 
of T, then T meets the condit ions for U, and  we are done.  
Otherwise, we choose a  row w’ from w’l through Gpw that is 
linearly independent  of the first pT  rows of T. W e  construct 
a  unimodular matrix VI that is legal and  has  its first pT  + 1  
rows both fully permutable and  spanning G  and  <I through 
tp, .  By repeat ing this process, we place additional linearly 
independent  rows from the outermost fully permutable nest of 
W  until we  have  constructed the desired matrix U. 

W e  apply the construction used  in the proof of Theorem B.3 
to make w’ the first row of a  new legal transformation VI. As 
a  byproduct  of this construction, the first pT  + 1  rows of VI 
are of the form 

G  
how + h.ltl 1 -a-- -4 

k2,oG + k2,ltl +  kz.,& 

L  1  

where kj,j >  0  for all j =  2,. . . ,pT + 1. The  first row 
of ~~ meets the condit ion for full permutability, because 
d. d  2  0. If kl,o 2  0, then the second row of VI will also 
be  in the same fully permutable nest as  the first row, since 
(kl,ow’ + k&l) . d’ 2  0. If kl,o <  0, then we only need  
skew the second row of VI with respect to the first row by a  
factor of [-kl,ol to add  the second loop into the outermost 
fully permutable nest. To  include rows 3  through pT + 1  of 
VI in the outermost fully permutable nest, we repeat the same 
pattern. q  

D. Producing Maximal Degree of Parallelism 

Theorem B.6: An algorithm that finds the maximum coarse 
grain parallelism, and  then recursively calls itself on  the inner 
loops, produces the maximum degree of parallelism possible. 

Proofi The  proof is by  induction on  the number  of fully 
permutable nests. The  base  case is when  the entire loop nest is 

one  fully permutable nest. Our  algorithm finds n  - 1  degrees 
of parallelism in an  n-dimensional loop, unless they are all 
DOALL loops, in which case it f inds n  degrees of parallelism. 
The  algorithm produces the maximum degree of parallelism 
possible by  Theorem B.2 

Suppose our algorithm finds k >  1  fully permutable nests. 
Let there be  n  total loops in the nest. W e  use F to denote 
the set of loops in the outermost fully permutable loop nest, 
and  F’ to denote the set of remaining loops. Let f be  the 
number  of loops in set F. The  f outermost loops could not all 
be  DOALL loops because otherwise the two outermost loop 
nests could be  merged.  Thus the outermost nest has  f - 1  
degrees of parallelism. Suppose the algorithm finds f’ degrees 
parallelism in F’, and  by  the induction hypothesis, f’ is the 
maximum degree of parallelism available given the outer loops 
F. Thus, the total degree of parallelism is f +  f’ - 1. 

Let (II,... , In) be  the loop nest transformed to contain 
the maximum number  of DOALL loops. Let I, be  the first 
sequential loop within the nest. Then  loops 11, . . . , I,-1 are 
DOALL loops, and  so loops II to 1, are fully permutable and  
must be  spanned  by F, by  Theorem B.S. Therefore, m 5  f, 
and  the first m  loops contain m - 1  degrees of parallelism. The  
remaining loops include f - m  loops from F, and  the loops 
in F’. Since the dependences  to be  satisfied are a  superset of 
those considered when  parallelizing only F’, the maximum 
degree of parallelism of the remaining loops cannot  exceed 
(f - m) +  f’. Thus, the total degree of parallelism cannot  
exceed f +  f’ - 1. 0  

ACKNOWLEDGMENT 
W e  would like to thank the other members  of the SUIF 

compiler group at Stanford University for providing a  context 
in which this research could be  carried out. The  team includes 
S. Amarasinghe, J. Anderson,  J. Hennessy,  D. Maydan,  K. 
Pieper, M. D. Smith, and  S. Tjiang. 

REFERENCES 

111  

PI 
[31 
[41 
151  

[61 

R. Allen and K. Kennedy,  “Automatic translation of FORTRAN pro- 
grams to vector form,” ACM Trans. Programming Languages Syst., vol. 
9, no. 4, pp. 491-542, 1987. 
U. Banerjee, “Data dependence in ordinary programs,” Tech. Rep. 
76-837, Univ. of Illinois Urbana-Champaign, Nov. 1976. 

171 

R-41 

191 

W I 

Dependence Analysis for Supercomputing. Boston, MA: 
G; Academic, 1988. 

“A theory of loop permutations,” in Proc. 2nd  Workshop 
Gges Compilers Parallel Computing, Aug. 1989. 

“Unimodular transformations of double loops,” in Proc. 3rd 
workshop Languages Compilers Parallel Computing, Aug. 1989. 
R. Cytron, “Compile-t ime schedul ing and optimization for asynchronous 
machines,” Ph.D. dissertation, Univ. of Illinois at Urbana-Champaign, 
1984. 
J.-M Delosme and I. CF. Ipsen, “Efficient systolic arrays for the 
solution of Toeplitz systems: An illustration of a  methodology for the 
construction of systolic architectures in VLSI,” Tech. Rep. 370, Yale 
Univ. 1985. 
J. A. B. Fortes and  D. I. Moldovan, “Parallelism detections and transfor- 
mation techniques useful for VLSI algorithms,” J. Parallel Distributed 
Comput., vol. 2, pp. 277-301, 1985. 
K. Gallivan, W.  Jalby, U. Meier, and  A. Sameh,  “The impact of 
hierarchical memory systems on  linear algebra algorithm design,” Tech. 
Rep., Univ. of Illinois, 1987. 
D. Gannon,  W.  Jalby, and  K. Gallivan, “Strategies for cache and local 
memory management  by global program transformation,” J. Parallel 
and  Distributed Comput., vol. 5, pp. 587-616, 1988. 



WOLF AND LAM: LOOP TRANSFORMATION AND ALGORITHM TO MAXIMIZE PARALLELISM 471 

WI 

PI 

P31 

P41 

WI 

WI 

[I71 

WI 

1191 

1201 

WI 

PI 

v31 

1241 

F. Irigoin, “Partitionnement des boucles imbeiquees: Une technique 
d’optimisation pour les programmes scientifiques,” Ph.D. dissertation, 
Universite Paris-VI, June 1987. 
F. Irigoin and R. Triolet, “Computing dependence direction vectors 
and dependence cones,” Tech. Rep. E94, Centre D’Automatique et 
Informatique, 1988. 
-1 “Supemode partitioning,” in Proc. 15th Annu. ACM SIGACT- 
SIGPLAN Symp. Principles Programming Languages, Jan. 1988, pp. 
319-329. 
-. “Deoendence annroximation and global oarallel code generation 
for nested loops,” in Parallel DistributedAlgorkhms, 1989. - 
M.S. Lam. “Software oioelininu: An effective scheduling technique 
for VLIW machines,” in I%oc. A?M SIGPLAN ‘88 Conj Programming 
Language Design Implementation, June 1988, pp. 318-328. 
D. E. Maydan, J. L. Hemressy, and M. S. Lam, “Efficient and exact data 
dependence analysis,” in Proc. ACM SIGPLAN ‘91 Conf Programming 
Language Design Implementation, June 1991, pp. l-14 
A. Portertield, “Software methods for improvement of cache perfor- 
mance on supercomputer applications,” Ph.D. dissertation, Rice Univ., 
May 1989. 
P. Quinton, “The systematic design of systolic arrays,” Tech. Rep. 193, 
Centre National de la Recherche Scientifique, 1983. 
-, “Automatic synthesis of systolic arrays from’uniform recurrent 
equations,” in Proc. 11th Annu. Int. Symp. Comput. Architecture, June 
1984. 
H.B. Ribas, “Automatic generation of systolic programs from nested 
loops,” Ph.D. dissertation, Carnegie Mellon Univ., June 1990. 
R. Schreiber and J. Dongarra, “Automatic blocking of nested loops,” 
1990. 
C.-W. Tseng and M. J. Wolfe, “The power test for data dependence,” 
Tech. Rep., Rice COMP TR90-145, Rice Univ., Dec. 1990. 
M. E. Wolf, “Improving parallelism and data locality in nested loops,” 
Ph.D. dissertation. Stanford Univ., 1991. in oreoaration. 
M. E. Wolf and M. S. Lam, “A data locality’optimixing algorithm,” in 
Proc. ACM SIGPLAN ‘91 Con& Programing Language Design Imple- 
mentation, June 1991, pp. 3w4. 

[25] M. J. Wolfe, “More iteration space tiling,” in Proc. Supercomputing ‘89, 
Nov. 1989. 

[26] -, Optimizing Supercompilers for Supercomputers. Cambridge, 
MA: MIT Press. 1989. 

ra 

Michael E. Wolf received the B.A. degree in physics 
and applied mathematics from the University of 
California, Berkeley, in 1984, and the M.S. degree 
in computer science from Stanford University, Stan- 
ford, CA, in 1987. 

He is currently a Ph.D. degree candidate in the 
Department of Computer Science, Stanford Univer- 
sity. His research interests include compiler tech- 
niques to improve locality and parallelism. 

Monica S. Lam (S’84-M’87) received the B.S. 
degree from the University of British Columbia, 
in 1980, and the Ph.D. degree in computer science 
from Carnegie Mellon University, in 1987. 

She has been an Assistant Professor in the De- 
partment of Computer Science, Stanford University, 
since 1988. Her reserch interests are in parallel 
computer systems, including issues in architecture, 
compilers, and languages. She was one of the chief 
architects and compiler designers for the CMU Warp 
machine and the CMU-Intel iWarp. She is currently 

tllel compiler research project. 


