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Abstract
Many different kinds of loop transformations have been de-
scribed, such as loop interchange, loop skewing and loop fusion.
Each transformation requires its own particular set of depen-
dence analysis tests and paraltelizing a section of code may
require perforfig a series of transformations. The only way to
decide if there is a way of parallelizing a section of code is to try
all possible sequences of transformations, which presents a diffi-
cult search problem.

We present a uniform method of performing loop optimiza-
tion. Rather than optimizing a program by performing a murky
search through a series of transformations, our method consid-
ers a very powerful class of program transformations that in-
cludes any transformation that also can be obtained by any se-
quence of standard loop transformations. This optimization
technique uniformly encompasses the effects of parallelization,
loop fusion, loop splitting, loop interchange, loop skewing and
statement reordering, as well as transformations not previously
described. Thus, we only need to perform one program trans-

formation.

We show that standard techniques for representing depen-

dencies (dependence directions and dependence distances) are

insufficient for this type of optimization and describe a more
powerful technique, dependence relations, that have sufficient
descriptive power.

1. Introduction
Many different kinds of loop transformations have been de-

scribed [AK87, Poly88, WO189, W0190], such as loop inter-

change, loop skewing and loop fusion. However, there is no

automatic way to decide which sequence of transformations

need to be applied to parallelize a section of code. We describe

a new automatic code transformation technique for paralIeliz-
ing code. If any combination of standard loop transformation

can parallelize the code, our techniques will parallelize the

code.

For example, consider the following code fragment:

for 1 := k+l to n do

B[i, 1] := B[i–1, k+l]*B[k, k]

for.j := k+l to n do

B[i, j] := B[i, j]+B[l–1, j]+B[i, j–ll+B[i, kl*B[k, j]

Our methods can automatically transform this code frag-
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ment into the following parallel code fragment, a task that is

difficult or impossible for other automatic methods.

for t :. 2*k+2 to n+k+l do

B[t-–k, H-k] := B[t-2-k, k+l ]*B[k, k]

forall j :. k+l to &k–l do

B[wj, j] := B[Fj, J]+B[&j–1, Jl+B[kj, j–ll+BIM, kl*B[k, j]
for t :. n+k+2 to 2*n do

forall j := >n to n do

B[tcj, j] := B[&J, j]+B[&j–1 , jl+B[*j, j–ll+B[+j, kl*B[k, j]

Our approach consists of finding a schedule TJx] for each
statement SUdescribing the moment at which each iteration x of

SFwill be executed. For example, the code above is produced

using the schedules T1[i] = i+k+l/2 and 7’2[i, j] = i+j. A schedule

is feasible if it respects the orderings imposed by the dependen-

cies in the program. Different schedules are isomorphic to the

effects of different combinations of loop and code transforma-
tions. We optimize a program by evaluating the code produced

by different feasible schedules. Finding a feasible schedule re-
quires a more sophisticated method of analyzing dependencies

than is normally used. The techniques described here are not as

fast as simple optimization techniques and are intended to be

used in practice-only when simpler techniques are insufficient.

The techniques described here, when specialized for “typical

cases,” may prove to be as fast as simpler techniques.
The idea” of equating code-rearrangemen~ with finding

schedules for an iteration space has been examined by several

authors [Lam74, Rib90, W0190, Ban90]. Previous approaches

have been severely limited in their ability to deal w;;h imper-

fectly nested loops and complicated or transitive dependencies.

In this paper, we propose methods for handling dependencies

and imperfectly nested loops that move this approach substan-

tially forward to reaching its full potential as an optimization

method that can subsume all other loop optimizations.

Most previous work on program transformations use data

dependence directions and data dependence distances to sum-

mary the dependencies between two array references. For our
purposes, these techniques are too crude. We use integer pro-

gramming techniques [o represent and evaluate dependencies

exactly. This approach provides more information about the

types of transformations allowable and also allows us to prop-
erly handle transitive dependencies.

Integer programming is a NP-Complete problem and solv-
ing such problems may require exponential time. However, we
have found that problems arising in practice can be efficiently

manipulated, simplified and solved. We make use of the

Omega test [Pug91], an integer programming simplification

and decision alg&ithm desig;ed ~or use in dependence analy-

sis. Most of the problems encountered can be solved in 1-3
milliseconds (on a Dccstation 3100, a 12 MIPS workstation).
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[ – Operations on tuple sets and relations, where F and G are tuple relations and S and T are sets of tuples

To achieve the best results from the methods described in

this paper, we must apply techniques such as constant propa-

gation, forward substitution, induction variable substitution,

scalar expansion and variable copying [ZC91] to programs

before we attempt to optimize them.

This paper is broken into the following sections. Section 2

describes a class of operations on sets and relations of integers

tuples (the implementations of these operations are described
in Appendix 1). Section 3 describes how to obtain a set of

scheduling dependencies for a code fragment. Section 4 dis-
cus ses how to find feasible schedules for a set of statements.

Section 5 show how a feasible schedule is used to rearrange

code. Section 6 discusses the relationship between different

schedules and optimizations. Section 7 shows that our tech-

niques can find an optimization equivalent to any combination

of a series of standard loop optimization. Section 8 discusses

related work and Section 9 summarizes the paper. Sections 4,5

and 6 show the parallelization of two examples that could not
be automatically parallelized by standard techniques.

Appendix 1 describes the implementation of the operations
described in Section 3. Appendix 2 gives an overview of the

Omega test, which is used for manipulating the integer pro-

gramming problems that arise in the methods described here.

The methods presented in the main body of the paper only dis-

cuss highly parallel schedules (schedules that take at most

O(vsn) time, where m is the number of statements and n is the
maximum number of iterations of any loop). Appendix 4

briefly discusses nested time, a method that allows our tech-

niques to be used even in circumstances where no highly paral-

lel schedule exists. Appendix 4 shows the parallelization of an

iterative smoothing program, and Appendix 5 shows the paral-

lelization of a program that does QR decomposition via Givens
Rotations.

2. Integer Tuple Relations and Sets
In this section, we talk about techniques for the uniform ma-

nipulation of integer tuple relations. An integer k-tuple is sim-

ply a point in Zk. For example, [3,4, –3] is a point in Z3. In ma-

nipula ting tuple relations, we also will discuss of integer tuples

sets.

A tuple relation is a mapping from tuples to tuples. A single
tuple may be mapped to zero, one or more tuples. A relation

can be thought of as a set of pairs, each pair describing an input

tuple and the output tuple it is mapped to. All the relations we

consider map from k–tuples to k ‘–tuples for some fixed k and k‘

(e.g., we do not consider relations take as input both l-tuples

and 2-tuples).

We use integer programming techniques to represent and
manipulate relations and sets. A relation is defined by a collec-

tion of linear equalities and inequalities involving the elements

of the input and output tuples, symbolic constants and wild-

cards. Such a relation contains exact those mappings of integer

tuples to integer tuples that satisfy the constraints. A set is de-
fined by a collection of linear equalities and inequalities involv-

ing the elements of the input and output tuples, symbolic con-

stants and wildcards, and such a set contains exact those inte-

ger tuples that satisfy the constraints. An example of a relation

from 2-tuples [sl, SJ to 2-tuples [tl, f2] is { fl = sl+l; fz= sl+2s2 ]

and an example of a set of 2-tuples [sI, S2] is { 1s SI < S2<10 }.

In the representation of a set, a system of linear equalities

and inequalities can refer to the components of tuples in the set,
(denoted as Sl, S2,.... sk) symbolic constants (denoted by the use

of typewriter font) and wildcards (any other variables). For ex-

ample, the set of 2-tuples represented by { SI + S2 = 2ci ) is the

set of all tuples [x, y] such that x+y is even, and the set of
2-tuples represented by { SI + S2< n ] is the set of all tuples [x, y]

such that x+y is at most n.

The representation of a relation is similar, except that the lin-

ear equalities and inequalities for a relation can refer to the

components of the input (i.e., argument) tuple (denoted as Sl,

52, ....sk) and also the components of the output (i.e., result)

tuple (denoted as tl, t2,....tk.),as well as referring to wildcards

and symbolic constants.

Note that we can accommodate integer division and

remainder operations. For example, if m is a known constant,

x=ydivrn can berepresented by{ O<y-m x<rn]andx=y

modvscan berepresentedby{x =y-rrzcx; O<x <m)

If sets and relations are represented this way, we can effi-

ciently compute the results of all of the operations shown in
Table 1, save transitive closure. We can only find an exact,

closed form for the transitive closure of a relation in certain

(commonly occurring) special cases. In other situations, we can

useanapproximation suchas F*= IuFu FoFu FoFo F UF
o F o F o F. Note that this is not a conservative approximation

of F*, but for the situations in which we need to compute F*, we

do not need a conservative approximation (also, we don’t often

need to compute transitive dependencies).

To allow us to discuss sets and relations more concisely, we

denote relations using the form

F [el, e> .... ek] = [fl, fz .... fk,] (p]
to denote the relation that would be more fully represented by
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{SI =el; s~=e~ .... s~=e~ fl =fi; t~ =~~ .... f~=~p;P).

For example, the relation G denoted by

{sl+l=s~; t1=s1;1<f1<f2sn)

can be more concisely described as

G[i, i+l]=[i, j]{l<i<j<n).

In Appendix 1, we describe how to combine integer pro-

gramming problems to obtain the functions in Table 1. In

Appendix 2, we describe how integer programming methods

are used to manipulate and simplify the resulting relations.

3. Data de~endence relations.
We now wish to consider how to analyze the data dependen-

cies within a program. For our analysis, we assume that pro-

grams consist solely of looping constructs and conditional

assignments. We also assume all loops are normalized so as to

have a unary step value. Let s,, S2, . . . . Sk be the assignment
statements within the code being analyzed. Statement SPis con-
tained within dp nested loops and we use sP[il, i~ . . .. i@ to refer

to the iteration of SPwhen the outermost loop index is equal to

il, the next outermost is equal to iz, . . . and the innermost IOOP
index is equal to idP.

We now wish to compute the set of dependence relations in
the program, For example, we might determine that s2[i] must

occur before s3[i+l, j] for all i and j. We denote this as: s2[i–1] 6

S3[i, j]. This dependence could arise because:
● iteration [i] of S2 updates a value that should be read by

iteration [i+l, j] of s3,

● because iteration [i] of S2 must read a value before it is

overwritten by iteration [i+l, j] of S3or
● because iteration [i] of S2writes a value that must be over-

written by iteration [i+l, j] of S3.

Range constraints are associated with a dependence relation, as
in sz[i] S s3[i+l, j] (1 < i < j < n). We implement dependence rela-

tions using tuple relations. Thus, the previous dependence

relation is described by F[i] = [i+l, j] (1 s i < j < n).

We differ from the standard riotation for dependencies in

two respects. First, we annotate the dependencies with more

information about the exact instances that are constrained. The

dependence we denote s3[i, j] 3 s3[i,j+l] would be described by

others [AK87, Ban88, W0189, WO190] as S38(0,,) S3 (giving the

dependence distance) or as S35(.,<) S3 (giving the dependence

direction). For our purposes, dependence distances and direc-
tions are inadequate for dependencies such as s2[il S s3[j, i] (i <j)

and sl[i, i] 5 s4[i, j] (1 s i <j < n) (which conventional notation

would denote S2S(<)ss and S13(.,<) 54).
Second, we do not annotate our dependencies with as much

information about the kind of dependence. Standard notation

uses either Sf or just S is used for a dependence from a write to

a read (a flow dependence), i5a or S for a dependence from a

read to a write (an anti-dependence) and S0 for a dependence

from a write to a write (an output dependence) and-S* for an

arbitrary dependence. Since the work described here does not

distinguish between flow dependencies, anti-dependences and

output dependencies, we simply use S for any dependence.

Reduction dependencies
When compiling for parallel execution, we often allow the
compiler to make the assumption that addition and multiplica-

tion in machine arithmetic is associative. Although this is a

false assumption, it often does not produce significant differ-
ences in the results of the program and can produce significant

speed-ups. Assume ss[i, j] adds b U] to a[i] and the j loop counts

upward. Convention dependence analysis would determine

that there is a data dependence from s3[i, j] to s3[i, j+l ] and re-

quire that s3[i, j] happen before s3[i, j+l]. If we assume machine

addition is associative, we can perform these operations in
either order (assuming this is consistent with all other depen-

dencies), but not simultaneously. Operations that can be treated

as reductions include addition, multiplication, and, or, rein,

and max. When handle such dependencies by treating them as

reductiondependencies [W0190].

In summary, if sp[il, iz, . . . . in] and s~[jl, jz, . . . . jm] perform

compatible updates (i.e., order-independent updates) of the

same location, we denote this as sp[il, iz, . . .. ir 1& sq[jhj2, ..., j~l.
Broadcast “dependencies”
When executing a program on a SIMD machine, we may wish

to avoid having all processors simultaneously requiring read

access to the same value. On a shared-memory SIMD machine,

this could result in memory-conflicts. In a distributed memory
architecture, this probably would require a broadcast of the

required information. This information may be represented by

a broadcast “dependence” [WO190]. If s3[i, j] and s3[i, j’] read the

same information, we denote this as s~[i, j] 6s s3[i, j’].

Computing dependence relations
We create dependencies by noting when two statements read

and /or write the same locations in memory. We do this by

building dependencies that tell which locations of which arrays

are read or written by the execution of a statement.

Let a: be a relation that gives the locations of an array a
read by statement SI and a~ be a relation that gives the loca-

tions of a written by statement S2. These re~tions should

include restrictions on the bounds of the loop variables and the

portion of the guard (if any) expressible as linear equalities and
inequalities on the loop variables and symbolic constants. The
relation (a~)-l[x] gives the iterations of SI that read a[xl and

((u})-l o a~)[il, i= . . .. id2] gives the iteration(s) of S1in which the
same location is read as is written in iteration [iI, i2, . . .. id,] Of S2.

To produce the dependence relation from SI to Sz the rel~tion is

then restricted such that (x, y ) is in the relation only if iteration

x of SI would occur before iteration y of SI under normal se-

mantics (this is ignored for broadcast and reduction dependen-

cies).

As an example, we consider the first dependence of

Example 1 below:

s2[i,j] updates B[i, j] B~[i,j] = [i, j] (k < i,j<n)

sl[i] reads B[l–1 ,k+l] B~[i] = [i–l, k+l] (k < i <n)

and (B})-l[i, k+l] = [i+l] (k s i <n)

.“. ((B~)-l o B?’)[i, k+]] = [i+ll (k < i <n)
and s2[i, k+l] S sl[i+l] (k < i <n)

Example 1, part 1
Consider the following code fragment (this example is based on
one given on page II 5 of [W0189], but additional dependencies

have been introduced to make it more difficult by requiring

loop skewing to parallelize this loop):

for i := k+l to n do

% B[i, i] := B[l-1, k+l] * B[k, k]

for j := k+l to n do

52 B[l, j] := B[i, j] + B[i–1, j] + B[i, j–l] + B[i, kl*B[k, j]

Using the techniques describe in this section, we can easily
determine the dependence relations shown in Table 2, which

are shown graphically in Figure 1. The from and to columns

1 Con~tionaI assimment is an assignment which is executed only if a b~lean

guard is true. Standard assignment statements are just condltmnal

assignments with a boolean guard oft rue.

2 mere any ~any ofier fact~~concerning properties an algorithm must have

m order to be able to be executed efficiently on a SIMD distributed-

memory machine, some of which are discussed in [Wolfe901.
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#
1
2

3

4

5

6

Direct dependencies:

dependence relation

sz[i, k+l] 5 sl[i+l]

Sz[i,j] 5 s2[i+l, j]

sz[i,j] 5 sz[i, j +1]

sl[i] 8 s2[i, i]

sl[i] 6 s2[i+l, i]

sl[i] 8 sz[i, i+l]

dependence

range from to direction

k<i<n S2U B[i, .jI SI R B[i–1, k+l] S2 8(<) s~

k<i<n&k<j Sn s2UB[i, jl s2RB[i-l, jl S2 q<,=) $52
k<i Sn&k<j<n S2UB[I, J] s2RB[i, j–1] S25(=,<)S2

k<i~n SI U B[l, i] S2U B[i, j] S* 5(=)S.2

k<i<n SI U B[i, i] S2R B[.i-1, j] s~5(<) s~

k<i<n SI U B[i, i] S2R B[i, j–1] s~s(=)S2
Table 2- Dependencies for Example 1

# Direct dependencies range from

1 sl[i, j] 5 s2[i+2, j+2] 35i<n–2&3<j Sin-3 s~ u C[i,j]
2 s2[i, j] 6 sl[i, j+ll 3<i<n&3<j Sm–2 S2U b[i, .jI

3 s2[i, j] S sl[i+l, j–1 ] 3Si Sn–1&4Sj<m–l S2U b[l, j]
Table 3- Dependencies for Example 2

show the array accesses that produced the dependence. These

columns show the statement involved in the dependence,

whether the access performed by the statement is an update (U)

or a read (R), and the array location accessed.

Previous dependence analysis techniques would calculate

the dependence direction vectors shown in the rightmost col-

umn (or dependence distance vectors that would convey no

more information). Neither standard technique would distin-
guish between dependence 4 and 6 unless the i and j loops

were interchanged (and the dependencies updated). Normally,
this is acceptable since the difference between these two de-

pendencies is significant only when the i loop is contained
within the j loop. But since we want to consider optimization as

a single transformation, not a search through a tree of transfor-

mations, we need the additional information our dependence

relations provide.

Example 2, part 1
Consider the following code fragment:

fori:=3 tondo

forj := 3 tom–1 do

51: C[i, j] := f@[i, j–l], b[i–1, j+l])

s2~ b[i, j] := g(c[i–2, j-2]);

The dependencies for this code segment are shown in Table 3.

4. Scheduling a set of statements
A feasible schedule for a set of m statements is a set of functions
Tl, T2, ..., Tm such that if SPIXI 5 sJyl, then Tp(x) < Tq(y) and if

SP[X] SRs,Jy] or SP[X] SB sJy] then TP(x) # T~(y) We limit our at-
tention to integer affine schedules: the time at which SP[X] is

executed must be given by an integer affine function of x.

Iteration
Iteration k+l space ofs2 n
space of sl , i I

k+l -

i

n-

L , J
A-

Figure 1- Graphical illustration of dependencies for Example 1

[

k+l

i

n

to
S2R cII–2, j-21

SI R b[i, j–l]

S, R b[i–1, j+l]

Initially, we consider only highly parallel

integer affine schedules. A highly paraHel

schedule is one such the total time to exe-

cute the program is O(nm), where n is the

maximum number of iterations of any

loop and m is the number of statements.

For situations in which we cannot use

highly parallel schedules, we need to use

nested time, a technique described in
Appendix 3.

Given a schedule for each statement, it

is simple to check that the schedules

satisfies all the dependencies (i.e., is a
feasible schedule). Unfortunately, the. .
number of possible schedules is

unlimited. Even if we restrict ourselves to

reasonable schedules (with coefficients with an absolute value

of at most 3 or 4), the number of possible schedules is

exponential in the number of statements and the number of

loops.

There are several methods we can use to limit the number of
candidate schedules to a mere handful. We therefore describe

methods for finding restrictions on the schedules of individual

statements and restrictions between the schedules of different

statements. Schedules that pass these restrictions are nominated

as candidates, and are then tested to see if they are feasible.

It is perfectly acceptable to nominate some infeasible sched-

ules. We can therefore use any partial application of the tech-

niques described below so long as the number of remaining

candidate schedules is reduced to a reasonable number.

We initially find a candidate schedule for a single statement.

To do this, we must be able to characterize all of the restrictions

on the schedule of that statement. In order to do that, we need

to consider both the direct and transitive dependencies of a

statement. In Example 1 above, statement S1 is involved in sev-
eral transitive dependencies. including: sz[i, k+l] S Sl[i+l] S

sz[i+l, i+ll. Note that reduction and broadcast dependencies
are not transitive.

Consider a graph with a vertex for each statement and an
edge from vertex SPto vertexs~ iff there is a dependence from SP

to s~. We can schedule each strongly connected component of

the graph separately. Within a SCC (strongly connected com-

ponent), we consider all the self-dependences of a single state-

ment (including transitive dependencies). If possible, we
choose a feedback vertex to schedule (a vertex that, when re-

moved, eliminates all cycles in the SCC).

Transitive self-dependencies
Transitive self-dependencies can be simple, or they can be

complicated, involving a dependence chain of many state-
ments. We describe below a method of computing the complete

set of transitive self-dependencies for a statement. Restricting

the number of candidate schedules to a reasonable number may
require only a full application of the methods below.

The complete list of self-dependencies for a statement can be

generated by considering the set of statements as a multi-graph,

with each statement corresponding to a vertex and each depen-

dence between statements corresponding to an edge. An edge

from vertex p to vertex q is labeled with a dependence FP~, that
describes, given an iteration of SP,the iterations of s? that must

happen later. Multiple edges from vertex p to vertex q indicate

that dependencies from p to q are the union of the dependencies

3 we may ~i~h to ~ched& larger sections of the graph at a time by, allOwmg

us to consider additional transformation that might reduce overhead in

the final code.
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of all the edges from p to q. There may be edges from a vertex

back to itself.
We can find the complete set of self-dependencies for a

statement by repeatedly trimming this graph until only the ver-

tex for the statement of interest in left. We first remove any

vertices not in the same strongly connected component as the

vertex of interest. We then perform the following process until

only the vertex of interest remains. (Nofe: the process we use is

very similar to the process of deriving a regular expression for

a NFA).
If there are two edges going between the same two vertices

(in the same direction), we replace them with a single edge la-

beled with the union of the dependencies of the two original

edges. If a vertex x has a single self-edge labeled with a depen-
dence F, we replace x with two new vertices, x’ and x“, such

that all edges that went to x now go to x’, all edges that left x
now leave from x“ and there is an edge from x’ to x“ labeled

with the dependence F*. When we eliminate a vertex with no

self-edges, we generate a new edge for each combination of in-

coming and outgoing edges, labeled with the compositions of

the edges. Figure 2 shows an example of computing the exact

self-dependencies for S1.Note that S1is not a feedback vertex, so

we are required to compute transitive closures.

Note that since roe are only nominating candidate schedules, we

can use approximations that report false negatives

(approximations that might report no dependence exists when

in fact one does exist). At this stage, approximations that pro-

duce a small number of false negatives are preferable to ap-
proximations that produce a larger number of false positives.

This is particularly important since we do not currently have ef-
fective and general methods for computing F’ (we can approx-

imate F%for any F as 1 u F u F o F u F o F o F; for certain spe-

cial forms, exact methods for computing F* are described in

Appendix 1).

Computing self-dependence distances
If F describes all the self-dependences of a statement SPon itself,
then dd = rarzge(F ~ 1) is the set of all self-dependence distances

for SP.If TP is a candidate timing function for SF,then

(TP \dd /([f] (t s 0)))

is empty iff TPis a legal timing function for Sp If it is not empty,

we can determine a specific constant self-dependence distance
of SPthat is violated by TV

Nominating, testing and transferring candidate schedules
We enumerate possible schedules, starting with schedules with
the smallest l–norm (the l-norm is the Manhattan metric; the

sum of the absolute values of the coefficients). Note that con-

stant offsets in timing functions cancel out and can be ignored

when examining self-dependencies. This enumeration process

takes into account the limitations imposed by the specific con-

stant self-dependence distances of SPseen so far. For example,

assume the schedule for sJi, j] is of the form Tp[i, j] = ~ i + $ j
+ Cp.We might test the schedule Tp[i, j] = j and be told that it is

illegal because of a self-dependence sP[i, j] S sJi+ 1, j–l ]. Given

this information, we know to nominate only schedules such

that ~– ~P>0,

Once we have a schedule that appears to satisfy all transitive
dependencies for SP,we check the schedule against reduction

and broadcast dependencies. If it passes those tests, we transfer
the schedule to the other statements in the SCC. Assume we

have decided on a candidate schedule for SPand we wish to

determine the constraints this produces on the schedule for Sq

Let F be a relation that describes the dependence SP5s~ and let

G be the relation that describes the dependences~ 5 Sp We then

have

(TP o F-’)[xl < Tq [xl < (Tp o G)[xl.

From this information, we can often derive the only allowable

form for the schedule of s?. If this does not provide us with

enough information, we can combine it with enumeration

methods.
Testing and Aligning Schedules

Now that we have developed a set of candidate schedules for

all statements, we can test and align them. To do this, we sim-
ply check that the schedules imply that if SPIXIS sJyl, then TPIxI

< T,Jy] and if SP[X] SR s.$y] or SP[X] SB s~[y], then Tp[x] # Tq[y].
Note that we allow each schedule to include a constant offset.

When only considering self-dependencies, the constant offsets

drop out. When comparing dependencies between two differ-

ent statements, the constant offsets become very important, As

will be seen, allowing fractional offsets is sometimes essential
to aligning schedules. In Section 4, we will see that fractional

4 *Ctualq,, we don>tn~~d fractional offsets. Given a schedule with fractional

offsets, we can obtain an equivalent fbut longer) schedule by multiplying

by an appropriate constant. For example, rather than using the schedules

TI [i] = 2+k+0.5 and T2[i, j] = i+j in Example 1, we could use the schedules
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Figure 3 – Illustration of the schedules TI [i] = i+k+7z and T2[i, J =

i+j f or Example 1, with some of the more constraining dependencies

for this example. Each wavefront shows the set of tasks performed

at a particular moment of time. The figure shows the wavefronts at t

equal to 2k+4, 2k+41/2 and 2k+5. The wavefronts for the two itera-

tion spaces are synchronized. In this schedule, SI gets executed as

early as possible.

offsets in schedules produce the effects of statement reordering,

and the integer parts of the constant offset produce the effec~s

of loop fusion and splitting.

We test and align schedules bygenerating all constraints

imposed bydirect dependencies and seeing if there is some set

of constant offsets that can be given to the schedules so as to

satisfy the constraints. Since different constant offsets produce
different code, we produce a simplified set of constraints that

allows us to examine the different possibilities for constant
off sets.

Note that this is the one point where we are forbidden to use

any approximation to the true dependencies that gives false

negatives (that fails to report a dependence where there actu-
ally is one). If we used approximate methods previously, we

will catch any potential problems here.

Example 1, part 2- scheduling
Before considering transitive dependencies, we first examine

direct self-dependencies and see how much they restrict the
candidate schedules. Let Tl[i] = CXli + Y1k + c1 and TJi, j] = ~z i

+ 1%j + I’Z k + C2. Without loss of generality, we assume C2= O.
We enumerate possible schedules for S2, with the following
results:

Try T2[i, j] = i: fails, due to dependence distance of (0,1)

(restricts schedules to ones in which ~z > O)
Try Tz[i, j] = j: fails, due to dependence distance of (1,0)

(restricts schedules to ones in which az > O)
Try T2[i, j] = i+j succeeds

While we could examine the transitive self-dependencies for

SI to restrict candidates for a schedule for Sl, we illustrate our
method of transferring schedules. We use the dependencies

between SI and S2to transfer the schedule:

Dependence Inferred schedule constraint range

sl[i] 3 sz[i, i] Tl[i] < T2[i, i] = 2i k+l SiSn

sl[i] S s2[i+l, i] Tl[i] < T2[i+l, i] = 2i+l k+l<i<n
sl[i] S sz[i, i+l] Tl[i] < T.Ji, i+l] = 2i+l k+l<i<n

s2[i, k+l] S sl[i+l] i+k = T2[i–1, k+l] < Tl[i] k+l<i<n
.“. i+k < Tl[i] < 2i k+l~i<n

T1 [i] = 2i+2k+1 and T2[i, j] = 2i+2j. However, the former schedule

produces gcmd code dmectly, whiIe additional transformations would be

rw~ed to produce good code from the later schedule,

Iteration
Iteration k+l space of 52 n
space of S1

j 1
k+l

1

.
.:.:...,:.
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Figure 4 – Hlustration of the schedules Tl[i] = 2i–Y2 and T21i, j] = i+j

for Example 1, along with some of the more constraining dependen-

cies for this exam le. The wavefronts shown are for f equal to
1’2k+3%, 2k+4, 2k+4 /2 2k+5 and 2k+5~2. In this schedule, S1 gets

executed as late as possible.

The only solutions to these constraints with integer coefficients

are Tl[fi = i+k+cl, O < c1 <1 or Tl[i] = 2i+cl, –1’< c1 <0. These

schedules are shown graphically in Figures 3 and 4. We con-

sider using the first (motivated by the fact that all other things

being equal, it is better to have unary coefficients). Having a

candidate set of schedules, we check the schedules against all

the direct dependencies. For our example, we have already

checked the schedules against most of the dependencies while

transferring S2’Sschedule to S1.We find that the schedules TI [i]

= i+k+~/2 and T2[i, j] = i+j are legal with respect to all the

dependencies.

Example 2, part 2- scheduling
The transitive self-dependencies for Example 2 are

sl[i, j] 5 s2[i+2, j+2] S s1[i+2, j+3]

sl[i, j] ~s2[i+Z j+zl 3 Sl[i+s, j+ll
s.Ji, j] S sl[i, j+l] S s2[i+2, j+31

s2[i, j] 6 sl[i+l, j–l] 5 s2[i+3, j+ll

These dependencies give us a fair degree of freedom in

scheduling thk code. We consider the case where we know m is

small compared to n and therefore would prefer to parallelize

the i loop. This corresponds to schedules of Tl[i, j] = j+cl and

T2[i, j] = j+c2 (that both meet our nomination criteria). Without
loss of generality, we assume C2= O,We now have to check that

these schedules are feasible. Since we already have a schedule

for both dependencies, we simply have to check that we can

align the two schedules, based on the cross–statement depen-

dencies:

.@i, j–l] 5 sl[i, j] a T2[i, j–l] < T1[i, j] + j–1< j+cl

sJi-1, j+l] S sl[i, j] a T2[i–1, j+l] < Tl[i, j] * j+l< j+cl

sl[i–2, j–21 5 sz[i, j] * Tl[i–2, j-2] < T2[i, j] ~ j–2+cl < j

This set of constraints simplifies to 1< c1 <2 that can be satis-
fied with c1 = 1%, giving the schedules TI [i, j] = j+ll/2 and

T2[i, j] = j.

5. Code rearrangement
Once we have a schedule, we produce new code that simply

moves through time, executing code as needed. To do this, we

determine the minimum and maximum scheduled time for

each statement. If all statements have the same minimum and

maximum scheduled time, we can simply generate a single

loop over time. Otherwise, we break time down into several
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segments such that during a single segment, one set of state-

ments is scheduled.

We use loops to advance through time by whole units.

Within the body of a time loop with loop variable tUnit, we

might execute all statements that execute at times f for fUnit < f

c fUnif+l, or we could choose to execute all statements that are

supposed to execute at times f for fUnif –1 < f < fUnit. Picking

different rounding methods for fractional times effects the code

that is generated. Executing statements scheduled for a unit in-

terval around a whole time unit simply produces several dis-

tinct groups of statements to be executed in order. Statements

scheduled to execute at the same moment can be executed in

parallel (or in any order).
Once we have selected rounding methods for fractional

times, we must generate the appropriate loops to execute all of

the iterations of a statement that must be performed at any

moment. Consider a schedule TP[i, j] = ai + ~j + yk + c. Let 7’Ji,

j] = cti + ~j be the variable portion of the schedule and let g =

gcd(ct,~). If g >1, then SPwill only be executed every g time
steps, and appropriate code must be generated. Regardless of

whether g >1, consider the following matrix

Q=[a:p:l
[“:g‘ig][;l=[f!l

We will use s as the loop variable for our non-temporal loop.

We pick u and b to be integers such that Det[Q] =+1 (so that Q

is unimodular [Ban90]). Therefor, Q is invertible:

[a:g’(gr[f!l=[;l
Performing this calculation and substituting the results into the
loop bounds for i and j gives appropriate loop bounds for t/g

ands.
Similar techniques are used for schedules involving more

than two loop variables, although extending a schedule involv-

ing more than two loop variables into a unimodular matrix can

be more difficult. Consider the schedule T@[i,j,k] = 6i+10j+15k.

This can be extended to a unimodular matrix as:

[610151

To extend a row [al, LJ2,.... am] with a gcd of 1 into a unimod-

ular matrix, we can use a row with a 1 in position L and O else-

where to transform the problem into finding a unimodular

extension of [al, az, .... a~.l~a~+l, .... uJ. If there e~ist two compo-

nents of the row that have a gcd of 1, we use this technique to

reduce the problem to finding a unimodular extension of those

two components. If no such pair exists, we reduce the problem
down into finding a unimodular extension of a row of three

elements, and use more elaborate techniques that can find a

unimodular extension of a row of three elements.

The Omega test’s ability to perform simplification is used ex-

tensively in calculating the lower and upper bounds of the

resulting loops.

Example 1, part 3- code rearrangement
Remember that TI [i] = i+k+~2, so we need to execute
S1[(f+% )–k– ‘/2] at time f+ 72 for all f such that k+l < (f+’/2 )–

k– $’2 <n. Similarly, T2[i, j] = i+j, so we need to execute s2[f–a,

CX] at time f for all f and ct such that k+l s f–et, a s n.

Simplifying these bounds, we find that we execute S1[f-k] at f +
1/2 for aIl t, 2k+l s fs ~+k and we execute s2[f*, “1, at time f

for all f and ct s.t. 2k+2 s fs 2n and k+l, f-n s a 5 f-(k+l), n.
During the whole unit time interval around t,, we decide to ex-

ecute all statements that execute at time f. – 1< fs f., rather
than f, s f < fU+l. This realignment allows S1[(t% )–k–’/z ] to

execute at t– 1/2 during the period 2k+2 s f < n+k+l (which

aligns the start times for S1and S2).This generates the following
code:

for t := 2“k+2 to n+k+l do

sl[t – 1– k]

forall a := max(k+l, t-n) to min(n, &k–l) do

s2[t – a, U]
for t := n+k+2 to 2*n do

forall a := max(k+l, t-n) to min(n, t-k-1) do

sz[t – a, a]

We find we can resolve the min and max computations stati-

cally, producing

for t := 2*k+2 to n+k+l do

sl[t – 1– k]

forall a := k+l to t-k-1 do sz[t -a, a]

for t := n+k+2 to 2*n do

forall a := tin to n do sz[t –a, a]

Substituting back the bodies of the statements and renaming a
toj produces:

for t := 2“k+2 to n+k+l do

B[t-–k, t-l-k] := B[t-2-k, k+ll * B[k, k]

forall j := k+l to t-k-1 do

B[&j, j] := B[*j, j] + B[tij-1, j] + B[kj, j-1]

+ B[tcj, k]*B[k, j]

for t := n+k+2 to 2“n do

forallj := ~n to n do

B[tnj, j] := B[Gj, j] + B[Gj-1, j] + B[~j, j-l]
+ B[kj, k]*B[k, j]

Example 2, part 3- code rearrangement
For example 2, the schedules are Tl[i, j] = j+l~z and T2[i, j] = j.

This tells us that we must execute SI [a, (f+v2 )–1 721 at time

f+ 1/2 for 4< fs m and execute s2[a, t] at time t for 3 s fs m–1.

This produces the following code.

forall a := 3 to n do s2[a, 3];

for t := 4 to m-l do

forall a := 3 to n do sz[a, t];

forall a := 3 to n do S1[CC,*1];

forall i := 3 to n do sl[a, m–l];

Substituting back the bodies of the statements produces:

forall i := 3 to n do b[i, 3] := g(c[i–2, 1]);

for t := 4 to m–1 do
forall i := 3 ton do b[i, t] := g(c[i–2, t-2]);

forall i := 3 to n do c[l, Fll := f(b[i, t-21, b[i–1, t]);
forall i := 3 to n do c[i, m–1] := f(b[i, m–21, b[i–1, ml);

Note that the tightness of the schedule did not allow us any
flexibility in aligning the schedule. Consider what would hap-

pen if S2in the original code was diffenmt:

fori:=3 tondo

forj := 4 to m–1 do

.$1: C[i, J] := f(b[l, j–l], b[i–1, j+ll);
S2: b[i, j] := g(c[i-2, j-3]);

Using schedules of Tl[i, j] = j+cl and Tl[i, j] = j would pro-
duce alignment constraints of 1< c1 <3, which would allow us

to choose c1 = 2. Since the fractional parts of c1 and C2(=0) are
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equal, the computations for S1and S2can be performed in paral-

lel. This would allow us to produce the code (for clarity, the

original statements have not been substituted back):

forall a := 3 to n do sz[ct, 4]

forall a := 3 to n do sz[a, 5]

for t := 6 to m-1 do

forall a := 3 to n do

Cobegin

52[% t]
sl [a, t-2]

coend

forall a := 3 to n do Sl[a, m–2]

forall a := 3 to n do sl[ci, m–1]

6. The relation between schedules and
optimization

Schedules of the form TP[i, j] = i+% or TP[i, j] = j+cP correspond

to parallelizing St along j and i respectively. Schedules of the

form Tp[i, j] = i+ji-cp, Tp[i, j] = i+2j+cp or Tp[i, j] = i-j+cp corre-
spond to parallelization using different wavefronts or loop

skewing. Fractional offsets in schedules produce the effects of

statement reordering, and the integer parts of the constant off-

set produce the effects of loop fusion and splitting.

7. Completeness Results
We claim that a transformation equivalent to my transforma-

tion that can be obtained via some combination of

● statement reordering,
. loop interchange,

● loop fusion,

● loop skewing,

. loop splittin~

● loop reversal,

● loop alignment,

● loop distribution and
● loop parallelization

will be found by our optimization methods. Our methods can
find optimizations that no combination of the above techniques

will find (as was seen in Example 1 and 2), but it is difficult to

describe the complete set of optimization our techniques

rnkzht find.
“We should note one type of code transformation our current

methods cannot produce a parallel loop with a loop body con-
taining sequential code. For example, given the program

fori:=l tondo

for J:.2 tom do

a[i, j] := a[i, j] + a[i, j–l]

our methods could not produce the optimization below.

forall i := 1 to n do

forj := 2 tom do

a[i, j] := a[i, j] + a[i, j–l]

However, our methods could produce the code

forj :=2 tom do

fora,ll i := 1 to n do

a[i, j] := a[i, j] + a[i, j–l]

that, except for synchronization overhead, has the same run-

ning time. We are looking at ways to overcome this limitation.

For the moment, we assume that a latter step of the optimiza-

tion process may look at moving sequential code inside of par-

allel loops.

THEOREM 1. Let P be any program consisting solely of looping

constructs and conditional assignments. Let P’ be any opti-

mized version of P, subject to the following constraints:
● The program P’ consists of sequential loops, parallel

loops, ~obegin/coend constru~ts and conditional as-

signments such that the body of each parallel loop
contains no sequential code.

● Each conditional assignment statement sl[il, i= . . .. im] in P

appears once in P’ as sJfl, ~2,. . . . /J, where fl, fz, .... fm
are affine functions of the loop indices surrounding the
occurrence ofs, in P’.

● The execution of P’ involves executing the same iterations

of the same statements as P, in some order that respects

the ordering implied by the dependencies between the

statements and ordering between the iterations of the

statements in P.

Then the methods described in this paper can derive P from P.

PROOF: The restrictions imposed on P’ allow us to direct

derive an affine schedule for the time at which each statement

sz[il, iz, . . . . im] is executed (involving nested time iff SXappears

in nested sequential loops). Therefore P’ specifies a complete

set of schedules for the statements of P. Since P’ must respect

the ordering imposed by the dependencies of P, the schedule

for P must respect those dependencies. Therefore, our methods

could derive the schedule that produces P’. ❑

THEOREM 2. If P’ is derived from P by some combination of

statement reordering, loop interchange, loop fusion, loop skew-
ing, loop splitting, loop reversal, loop distribution and loop

parallelization, and P’ doesn’t contain any sequential code in-

side of parallel loops, then P’ meets the restrictions described in

Theorem 1.

PROOF: None of these optimization duplicate statements,

and each of them replaces the indices with an affine function of
the original indices (possibly the identity function). Since the

composition of a series of affine functions is an affine function,

the statements in P’ must be obtained by replacing the original

loop indices with affine functions of the indices. Since any op-

timization that did not respect the ordering require by P would

be a faulty optimization, P’ must respect the ordering of the

iterations of P imposed by the dependencies.

COROLLARY 1. If P’ is derived from P by some combination of

loop optimizations discussed in Theorem 2, our methods can
derive a program P“ from P that has the same inherent paral-

lelism as P’.

PROOF.’ Given P’, we can derive a program P“ that contains

no sequential code inside of parallel loops by performing loop

distribution and loop interchange to move parallel loops in-

ward. We are assured that we can do these transformations
because no dependencies can exist between different iterations
of a parallel loop. The program P“ has the same inherent paral-
lelism as P’, and by Theorems 2 and 1, our methods can derive

P“. •1

8. Related work
Methods for performing individual optimization have been
described by a long list of authors, including [Ban79, AK87,

Nico87, W0189, LYZ89].

Whitfield and Soffa [WS90] looked at the interactions be-

tween optirnizations and the order in which they should be

performed. The only loop optimization they considered were

loop interchanging and loop fusion. (They also consider strip-

mining and loop unrolling, which are optimizations that would
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be applied after the optimizations in this paper were per-

formed), They found that loop interchange should be per-

formed before loop fusion, although it is not clear this would

still hold if they allowed loop splitting.

Hudson Ribas [Rib90] discusses techniques for manipulating

dependencies that are similar to ours. His techniques can be

used to calculate the dependencies between two statements, but

he does not provide methods that allow the wide range of

operations on dependencies supported by our works.

Wavefront methods
The idea of equating code-rearrangement with finding sched-

ules for an iteration space has been examined by several

authors [Lam74, Rib90, W0190, Ban90]. However, previous

approaches have been limited in their ability to deal with im-
perfectly nested loops and complicated dependencies.

The intent of Banerjee’s paper [Ban90] is very close to our
own. However, Banerjee only discusses perfectly nested double

loops with constant distance vectors, and only considered

transformations that can be obtained by combinations of loop

reversal, loop interchange and loop skewing.

Scheduling of recurrence equations
The problem of finding a set of schedules for statements that

respect the dependencies between the statements is closely re-

lated to the topic of parallel scheduling of recurrence equations.
Doing this for a set of uniform recurrence equations was closely

studied in [KMW67]. An example of a set of k-dimensional

uniform recurrence equations is

Q,(X) = fl(az(X – ‘WI), fZ3(X-ZU2))

a2(x) = f2(aI(X-~3), a2(~-@, a3(x–@, @3(x–@)

a3(x) = f3(a2(x–r4r7)),

where x is an integer k-vector and WI, . . .. Wz are constant integer

k-vectors. These equations are uniform because all equations

are defined over the same number of dimensions and because

each the value of each equation at a point x only depends on

equation values located at constant offsets from x. Recurrence

equations are only defined at integer coordinates. Generally, we

wish to determine the values of the recurrence equations at the

integer coordinates within a convex polyhedron of k–space and

any needed values outside that area are supplied as input.

Determining a schedule for a single uniform recurrence
equation was solved in [KMW67]. Determining schedules for a

set of two or more uniform recurrence equations is more diffi-

cult [KMW67, Chen86, RK88]. The recent work is in the context

of attempting to compile uniform recurrence equations into a

form suitable for execution on processor arrays.

We solve an even more difficult problem, because our de-
pendencies are not uniform. In particular, different recurrence

equations (i.e., statements) are defined on different number of
dimensions (i.e., are at different nesting depths) and the loca-

tions from which ai(~) might need values are not restricted to be

constant offsets from x.

There is a direct relation between a set of dependencies and

a set of recurrence equations that require the same schedule.

For example, a schedule that satisfies the set of dependencies

s2[i, j–l] 5 sl[i, j], s21i–Lj+ll S sl[i, j], sdi-Zj-21 ~ ~2[ij j]

can be satisfied if and only if the same schedule can be used to

compute the recurrence equations

%(x) = fl( Uz(x - ( 0, 1 )), @2(x – ( 1,-1 )) )

az(x) = /2( fh(x – <2,2 )) )

5 Such ,~ Ae ~bili~ ~ompose dependence, which is essential tO sched~ing

imperfected nssted loops.

9. Conclusion
In this paper, we have described uniform methods for perform-
ing loop optimization. These techniques automatically con-

sider all possible combinations of standard optimization (such

as parallelfzaticm, loop fusion, loop splitting, loop interchange

and loop skewing) and additional optimization. This allows
our techniques to find ways of parallelizing code that could not

be parallelized by previous techniques. Besides being of practi-

cal use, our techniques hold the promise of providing a simpler

language for discussing loop optimization.

We have shown that our techniques allows us to easily par-

allel two programs that are difficult or impossible to parallelize

using standard techniques.

These techniques can easily be adapted for single assign-

ment programming languages with lazy arrays. In this setting,

only a single write can be performed to any array location and

dependencies always go from a write to reads of the location.

There are some kinds of loop optimization, such as node
splitting [Poly88] and having sequential code inside of parallel

loops, that cannot be described by our current methods. We are

currently exploring methods of extending our techniques.
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Appendix 1: Implementation of Tuple Relations
In this section, we describe our implementation of operations

on tuple relations and sets. A relation is represented by the
union of a list of simple relations. A simple relation is repre-

sented by a set of linear equalities and inequalities involving

the input variables, the output variables, symbolic constants

and wildcards.

We do this because in general we cannot produce a closed

form for the union of two relations. All operations distribute

across union, so this does not pose any fundamental problems.

In the following, we use C(F) to denote set of constraints for

a relation or set F. We also use; to denote the set of input vari-

ables for a relation or a set, ~ to denote the set of output vari-
ables for a relation and ii or O(JI,+) to denote a set of additional

wildcard variables. Given a set of constraints C, we use C[= +
&] to denote the set of constraints produced by renaming; to &

In the following, F and G denote relations, S and T denote sets.

C(F-1) = C(F) [~+ 7’,7’ + 3]

C(FO G)= C(F)[3’ + @ & C(G)[? + ~]

C(Fn G) = C(F) & C(G)

C(F \ S)= C(F)& C(S)

C(F / S)= C(F)& C(S)[~ -+ II

C(F+G)=C(F)[~ +ii]&C(G)[~ +~]&~=d+~

C(FL G) = C(F)[~ + ~] & C(G)[~ + ~] & ~ = ?t-~

C(Sn T) = C(S) & C(T)

C(domain(F)) = C(F)U’ -+ ~1

C(range(F)) = C(F)G’ + ~, Z + S]

For operations that introduce additional wildcard variables,
the Omega test is used to simplify the sets of constraints

(possibly eliminating some of the additional wildcard vari-
ables).

The above methods involve slightly more work than is

needed. By keeping the constraints is specially ordered form,
we can do part (but not all) of the work involved in simplifying

the results of operations such as composition by using matrix

multiplication. However, the above is a concise description of
what gets calculated, if not necessarily how it gets calculated.

Using more complicated representations can give speed

improvements of a factor of 2 or so.

Transitive Closure
It is often difficult or impossible to derive a simple, closed form

for the transitive closure of a dependency. Fortunately, in the

situations in which we need to compute the closure of a depen-

dency, we can use approximations that produce false positives

and /or false negatives. It is often more efficient in practice to

approximate P as some finite sequence such as

F*= IuFu(Fo F)u(FoF oHu(Fo FoFo F)

Exact computation of a closed form for the closure of a
dependency

We calcuIate a closed form for the transitive closure of a
dependency only when the dependence involves a constant

dependence distance. More specifically, assume the constraints

for a dependence F can be represented as shown below (where
P contains only inequality constraints and ~ is a vector of

constant offsets):

C(F)=~=~+~&P

In this case, the constraints for the transitive closure of F are

F’=Iu F+

C(F’)=iii=?+;~&~>O

&7=a+; &P[l+; +zl&P[7+&, ?+&+:]

Appendix 2: The Omega test
The Omega test [Pug91] can be used to decide if a set of linear
equalities and inequalities has an integer solution. Also, it can

be used to simplify an integer programming problem by elimin-
ating wildcard variables. The full details of the Omega test are

described in [Pug91]. We give a few details of the important

aspects here. Although the Omega test can take exponential
time, it appears to take reasonable time in practice (no more

than several milliseconds to decide or simplify the problems

that arise in practice).

Simplifying equality tests
An equality testis a test of the forma + bT x = O. We calculate g,
the GCD of b. If a is not evenly divisible by g, there is no way to

satisfy the constraint. Otherwise, we divide a and b by g.
Simplifying and Tightening inequality tests
An inequality test is a test of the forma + bT x 20. We calculate
g, the GCD of b and replace a and b with l-a/gJ and b/g.

Eliminating wild cards constrained by linear equalities
From a set of linear equality involving a wild card, we maybe

able to find a valid substitution for the wild card that will allow

us to eliminate it. Methods similar to the generalized GCD test

can be used [Ban88, WT90], as can other methods we have

devised that appear simpler in practice [Pug91].

Checking for redundant or impossible inequalities
We can simplify the inequality tests by checking when a

combination of some inequality constraints imply or contradict

another inequality constraint. For example, x >5 implies x >3

and is contradicted by -x >4. In such situations, we can elimi-
nate the implied constraint or decide that the entire system is

infeasible if we find an impossible constraint.
We could determine all redundant or impossible inequalities

using integer programming techniques, but this probably
would not be cost effective We can efficiently check to see if an

inequality is implied or contradicted by any single or pair of

other dependencies. In practice, we have found it sufficient to

check each pair of dependencies to see if they contradict each
other or if one of the pair is redundant.

Eliminating unused wild cards constrained by linear
inequalities

If a wildcard is involved in inequalities tests but not equality

tests and all the coefficients of the wildcard are unary, we elim-
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ina te the variable by performing exact integer Fourier-Motzkin
variable elimination [DE73, WT90, F’ug91 ] on it.

Testing if a relation or set k vacuous

We can use the Omega test [R@] to determine if an integer

programming problem has a solution. The Omega test applies

all the techniques described above, plus special techniques for

use when there are no variables that ‘can be eliminated via exact

integer Fourier-Motzkin variable elimination [DE73, WT90,

Pug91].

If a set of constraints has a solution, we use an adaptation of

the Omega test that returns an actual solution. A further adap-

tation forces the Omega test to return some sample solution

other than (0,0,...,0), or tell us that (0,0,...,0) is the only solution.

Appendix 3: Nested time
To consider less highly parallel schedules, we must consider
nested time. Normally, we require that if SP[X]S s,Jy], then 7’P[x]

is strictly less than l’~[y]. We relax this by allowing TP[x] to be at

most T,Jy]. This schedules one level of time. At any moment f

produced by this schedule, many tasks maybe scheduled to be

executed, some of which must be performed before others. We

handle this by producing a set of dependencies involving only

dependencies between statement iterations scheduled to exe-

cute at the same moment. We use those dependencies and our

standard techniques to derive an inner schedule for each state-

ment, giving a second time index.

Although we could attempt to parallelize a program by us-
ing many levels of nested time, using at most two levels of time

seems appropriate if we wish to parallelize the code.

It should be clear that using nested time corresponds to

using nested serial loops in the final program.

Appendix 4: Iterative smoothing example
This example concerns a program for iterative smoothing. The

program is automatically transformed into the standard red-

black algorithm for iterative smoothing.

Original program

fork: =1 topdo

for i := 2 to n–1 do

forj := 2 to m–1 do

S1[Ki, ~] a[i, j] := (a[i, fill + a[l–1, j] + a[i+l, j] + a[i, j+l] )/4;

Dependencies:

sl [k,i, j] S 51[k’,i, j+l ] l<k<F<p &2<i<n-1&2<j<m–1

sl[k,i, j] S sl[k’,i+l, j] l<k<F<p &2<i<n–1&2<j<m-1

sl[k,i,j]551 [k’,i, j–l ] l<k<k’S p&2<i Sn–l&3<j<m–l

S1[k,i, j] S S1[k’,i-1, j] l<k<k’<p &3<i<n-l&25j5m-l

Finding a schedule
Our schedule is of the form Tl[k, i,j] = a k + () i + yj

Try ‘TI[k, i, j] = k fails due to dd distance of (0,0,1)

Try Tl[k, i, j] = j fails due to dd distance of (0,1,0)

Try T1[k, i, )1 = i+; fails due to dd distance of (1,0,-1)
Try Tl[k, i, j] = 2k-ti+j: succeeds

Finding an appropriate code transformation
We first find a unimodular extension of schedule:

This extensions requires us to usc a forall loop on k and i. The

loop bounds wc derive arc:
6< f < 2p+n+m-2

I<k<n

(2+t-m-n)/2 S k S (k-4)/2
2<i<n-1

l+&m-2k < i < t-2-2k

Generated Code
This analysis leads to the following generated code

for t := 6 to 2*p+n+m–2 do

for k := max(l, r(2+t-m-n)/21) to min(l_(t--4)/2J, P) do

for i := max(2, l+km–2*k) to min(&2-2*k, n-1) do

sl[k, i, t – 2*k – 1]

Appendix 5: QR decomposition via Givens
Rotations Example

This problem involve the reduction of a matrix to upper trian-

gular form via Givens Totations. We assume our language has

been extended with simultaneous assignment statements and

functions that can return multiple values.

for c := 1 ton–1 do

for r := n–1 downto c do

q [G r] cosTheta, sinTheta :=

computeRotation(a [r+ 1, cl, a[r, cl)

fork: =c tondo

S’2[C,r’,H a[r, k], a[r+l, k] :=

cosTheta * a[r, k] + sinTheta * a[r+ 1, k],
cosTheta ‘ a[r+ 1, k] - sinTheta * a[r, k]

To produce good code for this problem, we would need to

perform scalar expansion on cosTheta and slnTheta and local

to each loop and transform this code into:

for c := 1 ton–1 do

for r := n–l downto c do

q [c, s’] cosTheta[r,c], sinTheta[r,c] :=

computeRotation(a[r+ 1, c], a[r, c])

fork: =c tondo

Sz[c,r, k] a[r, k], a[r+l, k] :=

cosTheta[r,c]*a[r, k] + sinTheta[r,c]*a[r+ 1, k],
cosTheta[r,c]*a[ r+l, k] – sinTheta[r,c]*a[r, k]

Dependencies
This example contains the dependencies shown in Table 4.

Finding a schedule
For this example, we decide to attempt to produce code that

avoids broadcast “dependencies”. We first nominate a schedule

for sz:

try T2[c, r, k] = c: fails, due to dd distance of (0,-1,0)

iry T2[c, r, k] = –r: fails, duc to dd distance of (1,0,0)

try T2[c, r, k] = c-n fails, due to dd distance of (1,1,0)

fry T2[c, r, k] = 2C–K fails,

due to broadcast dd distance of (0,0,#0)

try T2[c, r, k] = 2c–r+k succeeds

[1
211

100

010
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Direct dependencies

S2[C,r, k] S S2[C’,r–1, k]

S2[C,Y,k] 6 S2[C’,r, k]

s2[c, Y,k] Ssz[c’, r, k]
S2[C,r, k] 5 S2[C’,r+l, k]

Sl[c, r] 5 S2[C,r, k]

S2[C,r, k] 5 sl[k, r]

S2[C,r, k] 5 sl[k, r+l]

S2[C,r, k] S sl[k, r–1]

range
l<c<c’<k<n&c’<ren

l<c<c’<k<n &c’<r<n
l<c<c’<k<n &c’<r<n

l<c<c’<k<n &c’<r+l<n

l<c<k<n&c<r<n

l<c<k<n&c<r<n
l<c<k<n&c<r<n

l<c<k<n&c<r<n

from

s2Ua[r, k]
s2Ua[r+l, k]
s2Ua[r, k]

s2Ua[r+l, k]

S1U theta

s2Ua[r, k]

s2Ua[r+l, k]

s2Ua[r, k]

to
s2Ua[r+l, kl

s2Ua[r+l, k]

s2Ua[r, k]

s2Ua[r, k]

S2R theta

slRa[r, k]

slRa[r, k]

slRa[r+l, k]

Broadcast “dependencies”

S2[C,r, k] 5B S2[C,r, k’] l<c<r<n &c<k<n&c<V<n S2R theta 52R theta
Table 4- Dependencies for QR Decomposition via Givens Rotations

Next, we transfer this schedule to S1. In doing so, we use the
simplification abilities of the Omega test tommove wild card

variables (kandc’) fromthe constraints:

dependence constraint
SI[c, r] 5 S2[C,r, k] TI[c, r] < 2c–r+k, c < k

Tl[c, r] < 3c–r

sz[c’, r–1, cl 6 Sl[c, r] 2c’+c–r+l < Tl[c, r], c’ < c

3c–r–1 < Tl[c, r]

S2[C’,r, c] S sl[c, r] 2c’+c-r < Tl[c, r], c’ < c

3c–r-2 < Tl[c, r]

s2[c’, r+l, c] 5 sl[c, r] 2c’+c-r–1 <Tl[c, r], c’ < c

3c-r-3 < Tl[c, r]

This gives TIIc, r] = 3c–r–%, and we round fractions so as to
execute tUnit-l < f s tunifinone iteration of the time loop.

Finding an appropriate code transformation
We find that we can perform appropriate unimodular exten-

sions of the schedule by looping on c for SI and on c and k for S2.
For S2,we obtain the following loop bounds:

4-n< f<2n-l

1, t-n< f S n–1, (n-l+f)/3

c, t--cs k 5 n–l +t–2c, n–l

For Sl, we obtain the following loop bounds:

4-n < (t+l/2)< 2n-2

1, (t+% )/2 S c S (n–l+t+Y2 )/3, n-1

Generated Code

fort: =4–nto2n–ldo
forall c := max(l, rt/2~ to mti~(n – 1 + t)/3], n–1) do

Sl[c, 3C – t]

forall c := max(l, t – n) to mtnt(n – 1 + t)/3J, n–1) do

feral.1 k := max(c, t -c) to min(n– 1 + t – 2c, n) do

S2[C, 20+k–t, k]

Scheduling, transformation and resulting code, Take 2
Without worrying about broadcast dependencies, we would
settle on schedules of T2[c, r, k] = 2c–r and Tl[c, r] = 2c–r~z.

This would have produced the following code

fort: =3–nton–ldo

forall c := max(l, t) to mtn~(n – 1 + t)/2j, n–1) do
Sl[c, 2C - t]

forall c := max(l, t) to minfl(n -1 + t)/2J, n–1) do
forallk := c ton do

S2[C,20-t, k]
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