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Abstract

The popularity of MATLAB in scientific and engineering domains is tempered by its performance. Highly opti-
mized libraries, automatic thread-level parallelism for large computations within libraries, and loop-level parallel
constructs in the language are some of the ways in which the language implementers have tried to recoup the per-
formance. Greater potential for parallelism exists in typical MATLAB programs that remains unexploited. We discuss
our MathWorks-sponsored effort in automatically exploiting parallelism in MATLAB programs using a combination
of compile-time and run-time techniques. Our approach is inspired by data-flow-style computation and makes use
of some modern C++ libraries for generating highly readable code with support for data parallelism and GPUs.

1 Motivation and Design

Computing on modern high performance machines afford parallelism at multiple levels, from the vector instruc-
tions on a single core to multiple multi-core nodes connected through fast interconnects. Graphical Processing Units
(GPUs) add heterogeneity and scheduling complexity to the mix.

In order to shield non-expert users from the complexities and interactions of the various forms of parallelism
it is often wrapped inside libraries. The libraries are carefully optimized to make use of the vector instructions of
the underlying hardware, to use multiple threads when the amount of computation makes it worthwhile, and to
provide versions that might utilize accelerators, such as GPUs. Indeed, this is the dominant approach to parallelism
in MATLAB. With a few exceptions, such as having to specify the computations to be performed on GPUs, the
process is largely automatic for the users and, hence, highly attractive from the perspective of programmability.
However, it suffers from two major inefficiencies: the decisions about parallelism must be made inside libraries,
which are only locally optimal, at best; and parallelism across library functions is hard to exploit.
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Figure 1: System components.

Our primary motivation behind this work is to elim-
inate these inefficiencies without burdening the user
with additional code annotations, such as those re-
quired for using MATLAB parallel constructs. The high-
level nature of MATLAB makes code analysis sufficiently
accurate in the common cases that the compiler is able
to expose the parallelism that MATLAB libraries would
be unable to exploit and which would be non-trivial to
express with the repertoire of MATLAB’s parallel con-
structs. In order to make full use of the parallelism we
emit C++ code, instead of MATLAB, which lets us use
a custom run-time system combined with modern C++
libraries, such as Intel Threading Building Blocks (TBB)
for task scheduling, Armadillo for data-parallel matrix
operations, and Thrust or ArrayFire for GPUs1. The
MATLAB libraries continue to be available to the trans-
lated code. However, their lack of reentrance property prevents us from making concurrent calls to any single
MATLAB library function. Figure 1 shows the overall system.

Our computation model is inspired by coarse-grained data-flow computation [3], which is also implicit in
streaming applications and has been used in large practical systems, such as MillWheel at Google [1]. The wide
applicability of the model makes it a powerful mechanism to exploit parallelism at multiple levels and scales, in-
cluding heterogenous parallelism with GPUs.

1http://www.threadingbuildingblocks.org, http://arma.sourceforge.net, http://docs.nvidia.com/cuda/thrust,
http://arrayfire.com/
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2 Approach
The compiler takes as input a MATLAB function to be parallelized. It performs static type inference, primarily to
determine the array variables and their sizes, if possible. No additional input is required from the user, except type
hints in cases where it is impossible to infer types, e.g., for certain input arguments. The compiler then generates
task specification in which each task consists of some statements, in the program dependence order, from the original
code. A task contains at least one vector statement (i.e., a statement involving arrays) and each vector statement in
the original code belongs to exactly one task. These tasks represent the computational nodes in the data-flow graph.
Each task itself could be data parallel and could be, potentially, scheduled on the GPU [6].
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Figure 2: Evaluation.

Instead of adhering to strict data-flow semantics we use a hybrid approach that in-
cludes two important optimizations for contemporary off-the-shelf hardware, aimed at
reducing inter-task communication and memory copies. Scalar statements are liberally
replicated to be with the tasks that consume their outputs. In this way, scalar values pro-
duced from scalar computations never need to travel across tasks. Arrays are considered
mutable to enable partial in-place updating. This also allows arrays to be communicated
by reference across tasks in shared-memory (e.g., multi-core) environments.

We rely on the underlying TBB scheduler for scheduling tasks across the cores on a
single node. The compiler generates code to create tasks as early as possible to maximize
parallelism, while respecting control- and data-dependencies. Arbitrary control depen-
dencies make it challenging to generate data-flow-style code without using extra gate
tasks or special SSA analysis [2, 4]. We achieve that by using a combination of a smart
run-time system, indexing tasks with iteration-vectors, and a simplifying assumption
of the dependence distance of one for all loop-carried dependencies, which turns out to
not have any significant impact on parallelism in practice [5].

Thanks to the modern libraries—Armadillo for CPU and Thrust or ArrayFire for
GPUs—the output code is highly readable and amenable to manual tweaking, if desired.

We have evaluated our current system on several benchmarks and found promising
results. Figure 2 shows two examples. In both cases “data-parallel” refers to the C++ code that uses data-parallel
libraries but only a single task, and “(task+data)-parallel” refers to the full C++ data-flow-style code. In some cases,
such as Gaussr, the task granularity must be adjusted before we can get full performance benefits, which is the
subject of our ongoing research.

3 Conclusion and Outstanding Issues
Our approach exposes the parallelism in MATLAB code that is often hidden. It unifies multiple types of parallelism,
including data parallelism, task parallelism, and accelerator-based heterogenous parallelism. It promises to be
scalable with applicability to heterogeneous and distributed address-space tasks. The source code builds on open-
source Armadillo and Thrust or ArrayFire libraries and is being prepared for release in open source.

We are currently developing a model to determine optimal task granularity for a given environment, to balance
parallelism against communication costs. Enhanced with sufficient flexibility, the model can also help in scheduling
decisions, especially on distributed address spaces and GPUs [6]. We are developing static analyses that inform the
run-time system for dynamic scheduling of tasks to account for the unpredictability of communication latencies.
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