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Abstract
Modern processors are getting harder to program.

At the same time, wider availability of high-level dy-
namic languages is enabling relatively novice users to
write sophisticated applications. In this paper, we ar-
gue that memory bandwidth-related problems on mod-
ern multi-core processors are exacerbated in the context
of high-level languages. Compilers can help alleviate
these problems, but lack a robust framework to perform
the kind of inter-procedural analysis that is required to
solve these problems for high-level dynamic languages.

We identify some specific issues related to mem-
ory accesses that arise in optimizing applications in
high-level programming systems, such as MATLAB. We
demonstrate that the severity of the memory bottleneck
in such languages forces us to reconsider several tra-
ditional compiler optimizations and, in some cases, to
perform transformations that are the exact opposite of
what “conventional wisdom” dictates.

We propose a theoretical framework to solve sev-
eral of these related problems. The framework relies
on simplifying sequences of function calls based on
separately measured “savings” functions. It focuses
on the specific problem of rewriting function call se-
quences, rather than attempting to be a completely gen-
eral rewriting system that many past systems for de-
scribing compiler optimizations have tried to be. As a
result, we are able to devise efficient algorithms to im-
plement the framework. This seemingly simple frame-
work turns out to be powerful enough to be appli-
cable to a variety of inter-procedural problems with-
out paying the price of live inter-procedural analysis.
These problems include, library function selection, pro-
cedure specialization, “de-vectorization” (converting
vector statements to parallelizable loops), computation
partitioning for heterogeneous platforms, and grouping
operations based on data formats and distributions.

Keywords: High-level programming systems, compil-
ers, multicore, memory bandwidth, library functions

1. Motivation

As major hardware manufacturers have turned to
multi-core architectures to continue the exponential
growth in processing power, the onus of translating the
raw processing power into real gains in software per-
formance has fallen squarely on software developers.
Unfortunately, this comes at a time when software de-
velopment expertise is in continued short supply with
no sign of relief in the near future. Therefore, develop-
ment of automatic or semi-automatic methods becomes
vitally important in order to extract good performance
from multi-core processors. Moreover, such methods
must work while allowing relatively novice end-users to
write their software directly, without relying on the in-
creasingly precious community of expert programmers.

Motivated by this observation we conducted a
small experiment to find where the most notable perfor-
mance bottlenecks could be in high-level programming
systems, such as MATLAB. Figure 1 shows the results
for an array expression involving extensive subscript ex-
pressions. The expression is taken from a MATLAB ver-
sion of the NAS MG benchmark [3] and is shown below
in an abbreviated form.

m =
f(1).*(n(c,c,c)) +
f(2).*(n(c,c,u)+n(c,c,d)+...+n(d,c,c)) +
f(3).*(n(c,u,u)+n(c,u,d)+...+n(d,d,c)) +
f(4).*(n(u,u,u)+n(u,u,d)+...+n(d,d,d));

In the above code f is a vector of length 4 and n
is a three-dimensional cubic array. Variables c, d, and
u are used to index into n in different patterns. Thus,
the additions of the variously indexed subsections of n
are all vectorized. This means that several intermediate
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Figure 1. “De-vectorizing” a loop-nest.

array values must be computed and stored to evaluate
this large expression. It turns out that this code segment
is the core computation in the benchmark, consuming
more than 80% of the total running time. Fortunately,
it is easy to convert the vector operations in this case
into a loop to perform the same computation. The re-
sulting loop eliminates all temporary arrays, replacing
them by temporary scalar values. This conversion alone
results in a factor of 2.25 to 3 speedup of the whole ap-
plication (left bars in Figure 1). Further optimization
can be performed by realizing that the indirection into
n is simply a permutation of the elements of n. Once
subscript computation is optimized the application, with
the above code segment translated into C, runs 5.5 to 7
times faster (right bars in Figure 1).

The transformation described above can be thought
of as inter-procedural loop fusion with array contrac-
tion [12]. An important consequence of starting with
vector statements is that the loops have no loop-carried
dependences and can be parallelized, e.g., to run in
multi-threaded mode to leverage the modern multi-core
processors. This finding is exactly opposite of the “con-
ventional wisdom” that operations should be vector-
ized whenever possible [?, 11, 4] in MATLAB-like array
languages. The most major performance improvement
comes from a dramatic reduction in memory traffic in
the transformed code.

Another example demonstrating the crucial role
that memory traffic plays is in Figure 2, reported ear-
lier by McFarlin and Chauhan [10]. The plot shows the
speedup obtained when a complex matrix expression is
implemented by minimizing the number of temporaries,
even at the cost of increased floating point operations.
The graph clearly demonstrates that as the matrix sizes
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Figure 2. Memory bandwidth bottleneck.

increase the memory bandwidth becomes the bottleneck
and reducing the memory traffic becomes the most criti-
cal optimization, even if that means increasing the num-
ber of arithmetic operations.

A third motivating example in Figure 3 is a code

function [s,r,j hist] = ...
min sr1(xt,h,m,alpha)

....
while ˜ok
....
invsr=change form inv(sr0,h,m,low rp);
big f=change form(xt-invsr,h,m);
....
while iter s < 3*m
....
invdr0=change form inv(sr0,h,m,low rp);
sssdr=change form(invdr0,h,m);
....

end
....
invsr=change form inv(sr0,h,m,low rp);
big f=change form(xt-invsr,h,m);
....
while iter r < n1*n2
....
invdr0=change form inv(sr0,h,m,low rp);
sssdr=change form(invdr0,h,m);
....
end

....
end

Figure 3. Repeating function call patterns.



fragment from an image processing application [?]. The
functions change form inv and change form are
repeatedly called in tandem. As an array output of the
former goes into the latter, it presents an excellent op-
portunity to combine the two functions and eliminate
the array temporary.

In the rest of the paper we present an abstract
framework and its solution in Sections 2 and 3 that is
able to model and solve all the three optimization prob-
lems illustrated above. Section 4 describes how the
framework is integrated in our MATLAB / Octave com-
piler to solve these problems. In addition, the frame-
work can also be applied in other scenarios, as described
in Section 5. Section 7 discusses related work.

2. Problem Abstraction

We define an abstract problem as follows. Suppose
that we are given a sequence of calls to functions, fi,
1 ≤ i ≤ n, where the function fi takes the arguments
αi and returns the values βi, each of which is a list of
values. Thus, αi is the list of actual inputs to the call to
fi and βi is the list of actual outputs.

β1 = f1(α1)

β2 = f2(α2)

· · ·
βn = fn(αn)

We are given a translation table where the jth entry is of
the form:

fi1 : ιi1(ni1) → ρi1(mi1)

· · ·
fik j

: ιik j
(nik j

) → ρik j
(mik j

fi1 fi2 · · · fik j
→ G̃j( f1, ι1,ρi, . . . , fn, ιn,ρn)

Further, each entry is subject to a predicate, P:

P( f1, ι1,ρ1, . . . , fn, ιn,ρn)

that can be computed efficiently. ρi and ιi are the for-
mal output and input parameters to the function fi. The
numbers following them within the parentheses are the
number of formal output and input parameters. The
predicate P has access to simple properties of its ar-
guments, such as queries about the type or value of a
certain function parameter, as well as dependence infor-
mation such as whether there is a dependence between
certain pairs of actual input or output parameters and
whether there are dependences connecting a specific ac-
tual parameter to pieces of code outside the matched

sequence. Finally, there is a savings function, S j, asso-
ciated with the jth entry:

S j(ιi1 , . . . , ιik j
,ρi1 , . . . ,ρik j

)

S j might be a symbolic expression that may depend on
the parameters and their types. The target function G̃j
is a meta-function that, in general, is a specification for
generating the target function from the matched func-
tion sequence. For dynamic and interpreted languages,
which this work primarily targets, it is most convenient
to use the source language itself as the meta-language
for specifying G̃j. The need and use of this will become
clear when we discuss applications of the framework
in Section 5. Similarly, the predicate P, and even the
savings function S j, may also be expressed within the
source language.

In general, the correctness of a specification cannot
be verified by the compiler. However, in an important
special case the compiler can verify the correctness re-
lated to dependences. If the effects of the function G̃
on the dependence graph related to the matched func-
tion sequence can be evaluated then the compiler may
be able to verify automatically if any dependences are
violated.

3. Solution Framework

3.1. Preliminaries

A reference point in a program is a static lvalue or
an rvalue that accesses a memory location. A reference
point refers to a syntactic location in a program and not
to a dynamic or run-time instance of a reference in a
loop or a function call.

We define a dependence graph to be a data-
dependence multi-digraph with three types of edges:

1. δ : true dependence

2. δ−1: anti-dependence

3. δ o: output dependence

Unlike the traditional dependence graphs where nodes
in the graphs are program statements [2], we assume
that nodes in the graphs are reference points. This al-
lows the dependence graph to more precisely point to
the reference that causes the dependence. Notice that
even though we use the term “graph” it is, in fact, a
multi-digraph since there may be multiple edges be-
tween a pair of reference points if the reference points
happen to be inside a loop-nest. There may also be self-
loops corresponding to loop-carried dependences.



We assume the statements in the given program to
be in completely flattened form. Thus, large expressions
are broken down into a series of expressions involving
only the most basic forms of operations by introducing
suitable temporaries. This applies to expressions occur-
ring on the right-hand sides of assignment statements,
as also to complex expressions occurring in function
arguments, array subscripts, and loop and branch con-
ditionals. Such a form allows a more accurate repre-
sentation of the computations that must be carried out
eventually and exposes the implicit temporaries. This is
especially important for array languages, such as MAT-
LAB that this work targets, since failing to account for
array temporaries can dramatically alter the computa-
tion and memory traffic estimates, which can lead to
incorrect decisions by a compiler trying to optimize the
code. “Flattening” is among the very first operations
performed by the MATLAB parallelizing compiler that
we are currently developing, in order to normalize the
input.

Using a completely flattened form also enables a
cleaner theoretical model by using a convenient method
to represent all operations, including the built-in prim-
itive operations, by abstract function calls and assign-
ments. For example, a statement c = a op b may
be represented by a function call f op as [c] =
f op(a,b), using MATLAB-like syntax for (poten-
tially multiple) return values. Such representation al-
lows handling of all operations in a uniform way and
also provides a seamless mechanism to handle the over-
loaded operators, some of which, in fact, may map di-
rectly to function calls. In short, each simple statement
is a function call. The function name may refer to ei-
ther a “real” function or an operator. To make a distinc-
tion between standard function calls and the “pseudo-
functions” that represent statements we will call the lat-
ter statement functions or s-functions. Thus, an s-
function may either be a standard function or an op-
erator represented as a function.

3.2. Basic Blocks

Our experiments with MATLAB applications have
shown that basic blocks are the most important common
case for this problem. Most sequences of s-functions
that profit from coalescing occur within single basic
blocks.

As indicated before, if the compiler can compute
the dependences in the code that replaces a matched
sequence then it may be able to automatically detect
and avoid dependence violations. In such cases, it is
tempting to frame the problem of searching for the
given function sequence patterns in a basic block as sub-

f1 : ι1(2)→ ρ1(3) f1 f3→ g1

f3 : ι3(3)→ ρ3(2) P : depend(ρ1[1]→ ι3[2])
g1 : δ1(4)→ θ1(2) ∧ depend(ρ1[2]→ ι3[3])

[ ] = f1 ( )

[ ] = f2 ( )

[ ] = f3 ( )

Figure 4. Intermediate dependences interfere.

graph isomorphism over the dependence graph of the
basic block. Even though the sub-graph isomorphism
problem is NP-complete, in general, we are dealing
with only a subset of graph types because the depen-
dence graph within a basic block is a Directed Acyclic
Graph (DAG). However, sub-graph isomorphism is not
enough. Consider the example in Figure 4.

The top part of the figure is a specification for re-
placing a sequence of f1 f3 by g1 provided the first re-
turn value from f1 is the second input value to f3 and
the second return value from f1 is the third input value
to f3. The bottom part of the figure shows a sequence
where this relation is satisfied among the actual param-
eters. The dependence graph is superimposed on the
function sequence. The darker edges satisfy the relation
among the arguments of f1 and f3 that is sought. How-
ever, if we were to actually perform the fusion of f1 and
f2 into g1 the intermediate dependences, represented by
lighter lines, will get violated. Thus, it is not enough
to match a sub-graph of dependences. We also need to
ensure that actual replacement of the sequence will not
violate any other dependences.

To keep the exposition concise we assume that the
predicate P has been suitably enhanced or verified by
the compiler, if it is able to do that. We define a candi-
date sequence as follows.

Candidate Sequence: A sequence of actual
functions in a linear code segment is a can-
didate sequence if, (a) the sequence is part of
some entry in the translation table; and (b) the



Algorithm Find Best Candidate Sequence
Input: basic block B, dependence graph D re-

stricted to B, table T of sequence replace-
ment rules

Output: the set of candidate sequences, C, which
results in the biggest overall saving

begin
1 Construct a finite automaton from the pattern

specs in T
2 Run the finite automaton to find all the candi-

date sequences in B, using D
3 Create a new graph, G = (V,E), such that:

V = candidate sequences found on line 2
E = {(u,v) | if u does not overlap with v}

4 Return the clique of G with largest saving
end

Figure 5. Sequence matching for basic blocks.

predicate in the translation table entry evalu-
ates to true for the sequence.

Observe that if there are dependence edges ly-
ing wholly within the sequence that were not part of
the specification then the predicate should reject the
sequence as not a valid candidate. Similarly, if de-
pendence edges entering or leaving the sequence get
deleted because the reference points where the edges
terminated or started disappeared in the replacement
then also the sequence is not a valid candidate. This
might happen, for example, if an intermediate result
is needed later, but replacing the sequence by a single
function will make the intermediate result unavailable.

The algorithm in Figure 5 makes use of the above
definition to look for candidate sequences. Matching se-
quences in B can be efficiently found using a finite au-
tomaton encoding the function sequences and running
the finite automaton over the dependence graph D. The
predicate for the sequence has to be evaluated only if the
automaton finds a syntactic match. In the common case,
the predicate takes no more time than the size of the
matched sequence. The graph G can be created in time
proportional to the square of the total number of match-
ing sequences. A clique in G represents a set of se-
quences that do not interfere with each other and hence
can all be replaced simultaneously. We are interested
in the clique that results in the maximum amount of
saving. Clique finding is a hard problem, however, the
size of G is likely to be very different from B. Specif-
ically, we expect the number of candidate sequences,
and hence the size of graph G, to be much smaller than
the size of B. This is borne out by our experience with
MATLAB applications in the domain of linear algebra

A

B C

D E

F

G

e1

e2

e3

Figure 6. Forward control flow

and image and digital signal processing.
Finally, if the savings functions cannot be com-

pletely evaluated at compile time then one possibility
is to resolve them with additional input from the user
and / or profiling data. Alternatively, the evaluation can
be deferred until run time when, combined with gener-
ation of specialized variants for different expected reso-
lutions, a “dynamic compilation” phase can choose the
right specialized variant to load dynamically.

3.3. Forward Control Flow

The solution for basic blocks can be extended to
a program consisting of forward control flow (i.e., no
back edges). In that case the control flow graphs forms
a DAG. If a candidate sequence spans multiple blocks
the savings are tempered by the additional computation
that the fused function must (presumably) perform even
when the actual control flow path does not require com-
puting the downstream functions in the sequence. An
example will clarify this point.

In Figure 6 the edges e1, e2, and e3 connect four s-
functions that constitute a candidate sequence. The re-
sulting combined function will need to be placed in the
block A. However, this means that the combined func-
tion might perform unnecessary computations when the
control does not pass through the blocks C, D, and F.
This represents a trade-off that is impossible to judge
without additional information. If the control flow
edges are marked with probabilities of their execution



then the compiler can weigh the savings based on the
execution probability of the path on which the candi-
date sequence lies. Alternatively, an expert user (or a
profiler) can provide feedback to the compiler with hints
regarding the most probable paths. Other than this con-
sideration, the algorithm used for basic blocks can be
extended in a straightforward manner to work with ba-
sic blocks in a control flow DAG.

3.4. Side-Effects and Aliases

So far we have assumed that functions have no
side effects, which works for a vast majority of MAT-
LAB programs. However, if arguments may be passed
by reference (in another language), or if the program
uses global variables, then we need additional analy-
sis. Alias analysis can be used to refine the dependence
graph when function arguments can be passed by refer-
ence. To be safe, alias analysis must always report an
alias whenever it can actually occur. Side-effects can
be similarly handled by adding dependence edges for
global variables associated with an s-function.

3.5. Loops

Loops can potentially add substantial complexity
to the analysis of function call sequences with unclear
benefits. In fact, one of the motivating examples men-
tioned earlier was to convert vector statements to loops.
We believe that the ability to handle function sequences
across loop boundaries does not present a compelling
immediate need. Therefore, we leave the investigation
of function call sequences across loop boundaries to fu-
ture work.

3.6. Combining On Demand

Sometimes, it may be possible to coalesce a vari-
able number of operations together. The framework de-
scribed so far has no way to represent such a scenario.
We enhance the framework with a regular-expression-
like syntax to allow a variable number of operations to
be combined using positive closure. For example:

( f1 | f2 | . . . | fn)
+ → G̃

The above rule says that any combination of functions
f1 through fn may be combined together into code ob-
tained by evaluating the meta-function G̃. The argu-
ments to G̃ and the savings function depend on the ac-
tual sequence of functions matched and are implicitly
constructed. Notice that this extension of the framework
does not change the efficiency of the finite-automaton-
based algorithm to search for matching sequences.

This extension is intended to capture the case of
“de-vectorizing” operations that the compiler can then
recombine automatically into a loop-based code that,
presumably, G̃ constructs.

3.7. Savings Function

Computing the actual savings functions is outside
the scope of this paper. These could be computed in
several ways. If a function can be modeled analytically,
then the savings could be computed analytically. If the
functions involved are too complex, empirical model-
ing, or a combination of analytical and empirical mod-
eling could be employed [16].

Often, as our experiments have shown, the most
important consideration in high-level programming sys-
tems is the amount of memory traffic. This is especially
true on modern multi-core processors. Thus, a practical
savings function could be simply the savings in memory
traffic.

4. Implementation

We are implementing the function sequence opti-
mization framework presented in this paper in a MAT-
LAB and Octave compiler that we have been develop-
ing. The overall architecture of the compiler is shown
in Figure 7. The figure shows only the main compo-
nents. The gray boxes represent the components that
use the framework presented here.

The compiler works by compiling portions of the
given code into C++, while keeping the remainder of
the code that will not benefit from such compilation,
intact. In this way those parts of the code for which
the interpreter does a good job can continue to use
the interpreter. Additionally, the compiler can be de-
ployed incrementally—whatever language features or
optimizations the compiler does not support still work
as before within the interpreter. Finally, the compiler
can be used either as a Just-In-Time or an offline com-
piler. We have been using it as both by providing MAT-
LAB and Octave compilation scripts as well as a stan-
dalone executable that can be invoked at the command
line.

Integrating the compiler for MATLAB—or for any
dynamic language, for that matter—with the interpreter
provides another compelling benefit. Any optimiza-
tions based on partial-evaluation can make use of the
language interpreter, eliminating the potential hazard of
differences in operational semantics between the com-
piled language and the language used to implement the
compiler. In the case of MATLAB it also makes it pos-
sible to partially evaluate complex functions, e.g., those
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Figure 7. The overall compiler architecture

related to matrices, which would otherwise be imprac-
tically hard to implement and involve large duplication
of effort. The type inference component makes use of
this opportunity, however the detailed discussion of that
component is beyond the scope of this paper.

Function sequence optimization and library-
function selection are the two major components that

are most relevant to the work presented here. The avail-
ability of the interpreter is also leveraged in these com-
ponents, especially, for function sequence optimization,
by using the MATLAB language itself to specify the tem-
plates for dynamically-generated functions. The next
section illustrates this with an example. It also illus-
trates some other advanced optimizations that can make
use of the framework, some of which will be integrated
into the compiler.

We also note that function sequence optimization
closely depends on the prior phases of type inference
and dependence analysis (not shown in the figure) as it
uses their results.

5. Applications

The abstract formulation described in the last two
sections can be used in several optimization scenarios.
This section describes some of them.

“De-vectorization” Consider a specification using
the regular-expression-like extension of the basic
framework. The individual functions are element-wise
addition and multiplication and the coalescing function,
loop addmul, is a template to generate code to compute
the matched functions inside a loop.

vec add : Ia(2) → Oa(1)
vec mul : Im(2) → Om(1)

( f1| f2)
∗ → loop addmul

Notice that the actual replacement rule uses placehold-
ers for functions. This is useful to be able to refer to
functions in a sequence uniquely when they have the
same name. This specification matches the scenario in
the first motivating example in Section 1 and is able to
perform the “de-vectorization” that results in dramatic
performance improvement in NASMG.

This optimization may also be easily combined
with loop-parallelization by modifying the template
loop addmul to be a parallel loop. In effect, this al-
lows inter-procedural loop fusion without paying the
price of inter-procedural analysis. If the resulting com-
bined function is parallelized, e.g., using threads, then
the transformation can be highly profitable on multi-
core processors by reducing memory traffic and exploit-
ing concurrency at the same time.

Library Function Selection Our second motivating
problem concerned mapping matrix operations in MAT-
LAB to an underlying matrix library, such as the BLAS.
This is easily done in the framework presented here.
For example DGEMM can be a target function (g) of a



sequence of operations involving matrix scaling, multi-
plication and addition. The savings could be modeled
based on the savings in memory traffic due to the elim-
ination of array temporaries.

mx scale : Is1(2) → Os1(1)
mx scale : Is2(2) → Os2(1)

mx mul : Im(2) → Om(1)
mx add : Ia(2) → Oa(1)

f1 f2 f3 f4 → gen dgemm

For the sake of brevity we do not show the accom-
panying predicate. The predicate enforces the depen-
dences between scaling, multiplying, and additions that
together map to a single call to DGEMM. This example
also brings out the importance of type information. It
exactly models, and supersedes, our earlier heuristic-
based approach [10].

Recurring Function Sequences The third motivat-
ing example is the canonical case that is simplest to
handle within the presented framework. All it re-
quires is a simple mapping of the sequences of calls
to change form inv and change form to a com-
bined function that is able to eliminate at least one of
the array temporaries.

Grouped Operations The combined operation can
also be viewed as a grouping operation. This would be
relevant for working on sparse data where there might
be different, competing, representations for the sparse
data. A single grouped operation identifies those se-
quences of operations that all benefit from using a spe-
cific data representation. In such cases, the grouped
operation may still be implemented as a sequence of
operations. Another scenario could be operations that
work on distributed data and grouping those operations
together that work with the same distribution is prof-
itable.

Computation Partitioning When targeting heteroge-
neous platforms the framework can aid in partitioning
the computation. For example, it may be more efficient
to implement certain operations on an FPGA-based co-
processor, or an accompanying Graphical Processing
Unit (GPU). Identifying maximal sequences of opera-
tions that can be offloaded onto a co-processor can re-
duce the overheads compared to repeatedly transferring
data back-and-forth between the main processor and the
co-processors.

Traditional Function Specialization Predicates on
arguments allow the traditional function specialization

to be expressed easily within the framework. The spe-
cialization could be based on values (e.g., when spe-
cific argument values can create more optimized code)
or types (e.g., when functions are overloaded).

In all of the scenarios, except the last, a savings
function that accounts for memory traffic is likely to
work well.

6. Contributions and Future Directions

The main contribution of this paper is in recogniz-
ing that a simple function-sequence replacement opera-
tion allows expressing the most critical optimizations
in high-level programming systems, especially those
based on high-level dynamic languages such as MAT-
LAB. Unlike earlier efforts aimed at developing com-
plete systems that could express all, or most, compiler
optimizations, we started out by identifying the opti-
mizations that were most important in compiling MAT-
LAB. We then created the simplest framework that was
sufficient to express those optimizations. By keeping
the framework simple we have been able to devise a
simple and efficient algorithm to implement it.

Even with the simplicity of the framework, its
programmable predicates, savings, and meta-functions
lend it a great amount of power. We have found that
these mechanisms work naturally with a dynamic and
interpreted programming language because the frame-
work implementation can leverage the interpreter to
evaluate the predicates, savings, and meta-functions.

In addition to implementing and testing the frame-
work on a large number of applications, our future plans
include evaluating the effectiveness of the framework to
express other inter-procedural transformations that are
relevant in the context of high-level programming sys-
tems. Some of these advanced transformations, in addi-
tion to the motivating optimizations, were described in
Section 5, but evaluating them in the context of real ap-
plications is a part of future work. Even though memory
traffic is often the primary bottleneck, we will also be
exploring the cost-saving metrics more inclusive than
memory traffic. Finally, handling the savings functions
that evaluate to symbolic values that cannot be com-
pared at compile time and generating them automati-
cally or semi-automatically is also a part of future work.

7. Related Work

Several general frameworks for expressing com-
piler optimizations have been proposed. One such re-
cent framework, called Pavilion developed by Will-
cock, uses regular-expressions enhanced with existen-
tial and universal path quantification and trace transduc-



tion [14]. Willcock also provides a detailed overview
of numerous other similar efforts in the past. All of
these attempt to build general frameworks, usually Tur-
ing complete, to be able to capture the myriad code op-
timizations. Our goal in this paper has been to develop
a specific and more narrowly focused mechanism that
lends itself to more efficient implementation and simple
specification.

There have been several recent research efforts at
handling library-level optimizations. The Broadway
compiler makes use of a domain-independent annota-
tion language to capture expert knowledge about li-
braries [6]. Our work has overlapping goals with this
project. The annotation language in Broadway is ex-
tensive and sufficiently expressive to capture aliases
and pointer information to be handle their primary tar-
get language, C. However, their documentation sug-
gests that their compiler does not handle library call
sequences, instead focusing only on specializations of
single library calls. Replacing “code patterns” of library
call sequences has been mentioned as their future work.

The telescoping languages approach has been pro-
posed as a way to achieve efficient interprocedural op-
timizations without paying the price for it at “script-
compilation” time [7]. Even though annotations and
recognition of library identities have been suggested as
desirable techniques, there is no documented research
on those techniques within the telescoping languages
approach.

Tools, such as ROSE, let users describe tree-
transformations for automated program rewriting [15].
Our own compiler is implemented using a domain-
specific tree-rewriting language, called Stratego [13].
However, tree-rewriting is in the worst case inadequate,
and in the best case tedious, for transforming function
sequences that might be related through dependences,
but may be widely separated in the parse tree of the pro-
gram.

The classic technique of instruction selection based
on tree matching relies on closeness between the source
and target instruction sets [1]. Subsequent work on tar-
geting more complex instruction sets, such as those of
Digital Signal Processing (DSP) processors using tree
coverage also assumes that the target instructions have
known and predictable costs [8]. More recent work on
DSP targets have focused on making the selection pro-
cess more efficient and accurate, but the underlying as-
sumptions about the cost model remain unchanged [5].
To select most appropriate library functions the solver
needs to be able to account for costs that are given as
expressions, possibly evaluating to symbolic values.

The Falcon compiler used a heuristic-based ap-
proach to select the most appropriate BLAS calls for

MATLAB operations [9]. This approach was later ex-
tended by McFarlin and Chauhan to regions bigger than
basic blocks [10]. This paper presents an abstract for-
malization of the problem that can apply to a variety of
problems in addition to library function selection. The
abstraction also allows handling of arbitrary libraries
through appropriate parameterization.

8. Conclusion

This paper has presented a framework to optimize
sequences of function calls or operations by reducing
them to equivalent integrated functions. The need for
such optimizations arises in several situations, espe-
cially when optimizing for memory traffic. The frame-
work provides a simple model that can be efficiently im-
plemented and is applicable in a range of scenarios, es-
pecially those involving inter-procedural optimizations,
which are the most important optimizations for high-
level programming systems.
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