
Telescoping Languages: A System for Automatic
Generation of Domain Languages

KEN KENNEDY, FELLOW, IEEE, BRADLEY BROOM, MEMBER, IEEE, ARUN CHAUHAN,
ROBERT J. FOWLER, JOHN GARVIN, CHARLES KOELBEL, CHERYL MCCOSH, AND

JOHN MELLOR-CRUMMEY

Invited Paper

The software gap—the discrepancy between the need for new
software and the aggregate capacity of the workforce to produce
it—is a serious problem for scientific software. Although users ap-
preciate the convenience (and, thus, improved productivity) of using
relatively high-level scripting languages, the slow execution speeds
of these languages remain a problem. Lower level languages, such
as C and Fortran, provide better performance for production ap-
plications, but at the cost of tedious programming and optimization
by experts. If applications written in scripting languages could be
routinely compiled into highly optimized machine code, a huge pro-
ductivity advantage would be possible.

It is not enough, however, to simply develop excellent compiler
technologies for scripting languages (as a number of projects have
succeeded in doing for MATLAB). In practice, scientists typically
extend these languages with their own domain-centric components,
such as the MATLAB signal processing toolbox. Doing so effectively
defines a new domain-specific language. If we are to address effi-
ciency problems for such extended languages, we must develop a
framework for automatically generating optimizing compilers for
them.

To accomplish this goal, we have been pursuing an innovative
strategy that we call telescoping languages. Our approach calls

Manuscript received March 25, 2004; revised October 15, 2004. This
work was supported in part by the Department of Energy under Contracts
03891-001-99-4G, 74837-001-03 49, and 86192-001-04 49 from the Los
Alamos National Laboratory through the Los Alamos Computer Science In-
stitute (LACSI); in part by the Texas Coordinating Board’s Advanced Tech-
nology Program under Grant 003604-0061-2001; in part by the National
Science Foundation through the National Partnership for Advanced Com-
putational Infrastructure under Cooperative Agreement ACI-9619020; and
in part by the Computer and Information Technology Institute, Rice Univer-
sity, under an Innovation Grant.

K. Kennedy, R. J. Fowler, J. Garvin, C. Koelbel, C. McCosh, and
J. Mellor-Crummey are with the Department of Computer Science,
Rice University, Houston, TX 77251-1892 USA (e-mail: ken@rice.edu;
rjf@rice.edu; garvin@rice.edu; chk@rice.edu; chom@rice.edu;
johnmc@rice.edu).

B. Broom is with the Department of Biostatistics and Applied Mathe-
matics, University of Texas M. D. Anderson Cancer Center, Houston, TX
77030-4009 USA (e-mail: broom@odin.mdacc.tmc.edu).

A. Chauhan is with the Department of Computer Science, Indiana Uni-
versity, Bloomington, IN 47405 USA (e-mail: achauhan@indiana.edu).

Digital Object Identifier 10.1109/JPROC.2004.840447

for using a library-preprocessing phase to extensively analyze and
optimize collections of libraries that define an extended language.
Results of this analysis are collected into annotated libraries and
used to generate a library-aware optimizer. The generated library-
aware optimizer uses the knowledge gathered during preprocessing
to carry out fast and effective optimization of high-level scripts.
This enables script optimization to benefit from the intense anal-
ysis performed during preprocessing without repaying its price.
Since library preprocessing is performed only at infrequent “lan-
guage-generation” times, its cost is amortized over many compila-
tions of individual scripts that use the library. We call this strategy
“telescoping languages” because it merges knowledge of a hier-
archy of extended languages into a single library-aware optimizer.

In this paper, we present our vision and plans for compiler
frameworks based on telescoping languages and report on the
preliminary research that has established the effectiveness of this
approach.

Keywords—Compiler optimization, component integration
system, domain-specific language implementation, high-perfor-
mance computing, library generation, MATLAB compiler, type
analysis.

I. INTRODUCTION

Over the last decade, the performance of computer sys-
tems has continued to advance at a rapid pace. However,
much of the progress has come at the price of increasing ar-
chitectural complexity: more parallelism within and among
processors, longer instruction pipelines, and deeper memory
hierarchies. As a result, the fraction of the science and en-
gineering community that can use computer systems at the
limits of their capabilities has become much smaller.

Over the same period, the drive to accelerate software pro-
ductivity has led many scientists and engineers to turn to
high-level scripting languages and problem-solving environ-
ments, such as MATLAB [33], Mathematica [69], EllPack
[37], and the S family of languages [4], [10], [11]. Math-
Works, Inc., reports that there are over 500 000 licenses for

0018-9219/$20.00 © 2005 IEEE

PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005 387

MATLAB, making it the most widely used engineering lan-
guage today.

Unfortunately, this usage is primarily for small-scale
experiments and prototyping, rather than production code
development, because these high-level languages often do
not achieve acceptable performance for complex, com-
putation-intensive applications, especially if they entail
substantial programming in the package’s scripting lan-
guage. For example, a linear system solver written in
MATLAB that runs for several minutes on a workstation
may be acceptable for testing, but is prohibitively slow if
the solver is embedded in the inner loop of a simulation
running for millions of steps on full-scale problems. As a
result, important applications that are prototyped in such
languages are rewritten and optimized by professional pro-
grammers in lower level languages, such as C and Fortran.
This labor-intensive step nullifies many of the advantages of
programming in high-level scripting languages. Optimizing
implementations of scripting languages would eliminate the
need for this step. In other words, if applications written in
scripting languages could be directly compiled into highly
optimized machine code, the scientific community would
experience a huge productivity gain—one that would accel-
erate progress on the science and engineering problems that
are explored through computation.

Is this goal achievable? Even today, a number of projects
have produced optimizing compilers for high-level scripting
languages, particularly MATLAB [15], [24], [46], [52], [54].
However, single-language solutions are not sufficient, be-
cause current practice encourages the specialization of high-
level languages to specific domains through the addition of
domain libraries or “toolkits.” For example, MATLAB and S
include many toolkits for specific areas, such as digital signal
processing and biomedical computation. Even small research
groups can effectively define new domain-specific languages
by adding their own specialized components. If each domain
library effectively defines a new language, then there will be
an enormous number of specialized high-level languages that
will each require an optimizing compiler. Writing so many
compilers by hand is clearly beyond the capabilities of the
computer science community. If we are to address the ef-
ficiency problem for such languages in a general way, we
must instead develop a framework for automatically gener-
ating optimizing compilers for them.

To that end, we advocate a new approach, called tele-
scoping languages, as the basis for automatic generation
of optimizing compilers for high-level domain-specific lan-
guages [41]. The fundamental idea underlying this strategy
is to construct compiler systems via an extensive prelim-
inary analysis and optimization of collections of libraries
that define the functionality of a high-level programming
environment. Since the analysis and optimization phase need
be done only at infrequent “language-generation” times,
its cost can be amortized over many compilations of pro-
grams that use the libraries. Because the libraries define the
semantics of the language, they also embody much higher
level information about its domain. We have designed the

telescoping languages approach to exploit such knowledge
for optimization of domain language programs.

II. TELESCOPING LANGUAGES: GOALS, IMPLEMENTATION,
AND APPLICATIONS

In designing a system to support the generation of
high-level domain-specific languages, we have been driven
by three key principles.

First, the compilation system must generate code that
achieves high performance. Although prototyping systems
can be useful even with low performance, our goal is to make
it possible to build production applications in the generated
domain-specific languages without the need for tedious
recoding in a lower level programming language once an
application prototype has demonstrated its usefulness. To
achieve this goal, our generated code must perform well
enough so that the end user is not tempted to engage in such
recoding exercises.

Second, the system must support extensibility in that it
must be possible to create new domain-specific languages
on top of existing languages. In our view, most of the power
of a domain-specific language derives from the operations
supported by such a language. Thus, one can define new
domain-specific extensions to a given language by providing
a library of components that implement those extensions.
The difficulty with this approach is that it conflicts with our
first principle because it treats components as black boxes,
which can lead to substantial inefficiencies, particularly if
these components are invoked many times during the exe-
cution of an application. Viewing components as immutable
objects misses opportunities for performance improvements
based on the context in which the components are invoked.
To address this issue, our system will need compilation
technology that understands and optimizes library-based
extensions.

Third, the implementation must be responsive—the time
for the pre-execution processing of applications written in the
domain-specific language must not increase nonlinearly with
the size of the program. In other words, the compilation time
for a script should not be astonishingly long; rather it should
be linear or near-linear in the size of the script. This precludes
the use of standard interprocedural optimization schemes at
script compilation time because these schemes would need
to process not only the user’s script but also the source code
of all of the components invoked, directly or indirectly, from
within that script.

To construct a system consistent with these principles, we
must exploit powerful interprocedural compilation strategies
without dramatically increasing script compilation times. To
do this, we propose moving the costs of optimizing compo-
nents to a new “language-generation” step, which will pre-
process the library to produce a fast script optimizer. Fig. 1
provides a high-level overview of this strategy, which per-
forms compilation in two phases.

• The library analysis and preparation phase depicted
in the upper half of the figure is used to optimize li-

388 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 1. Telescoping languages.

brary packages speculatively for use in high-perfor-
mance scripts. Its principal component, the Palomar
translator generator takes a library, along with pro-
grammer-specified relationships among the library en-
tries, and generates a library-aware optimizer for use in
script translation. Because this step is performed only
when the library is defined or redefined, it can em-
ploy very expensive analyses and optimizations, incor-
porating the results into a library-aware optimizer that
will be reused on many scripts.

• The script compilation phase depicted in the lower half
of the diagram is used to compile and optimize scripts
that invoke entries in the domain-specific libraries.
The efficiency of the code generated in this phase
depends on two components: the script translator,
which produces an efficient version of the script in
the system’s “base language” and the library-aware
optimizer, which incorporates numerous optimizing
transformations generated by the library analysis and
preparation phase.

In this scheme the domain-specific language is defined by
two components: the scripting language, as implemented by
the script translator, and the domain-specific library, which
defines the component operations that can be invoked from
the script. Because we expect the scripting language to
change less frequently, the library analysis and preparation
phase can be thought of as the language-generation step.

We note that these two compilation phases roughly corre-
spond to two classes of programmers. Specialists will write
the libraries that are input to the library analysis and prepara-
tion phase while ordinary users will feed their high-level ap-
plications to the script compilation phase. However, as code
written in scripts matures, it can be fed back into the library
analysis and preparation phase to optimize performance fur-
ther. In this way, the compilation strategy can “telescope”
hierarchies of libraries, thus constructing new optimized lan-
guages on top of the existing base.

To illustrate how telescoping languages could be used to
create a high-performance, domain-specific programming
environment, we present a simple scenario.1 Initially, a

1This example is based loosely on the experiences of our colleague W.
Symes of Computational and Applied Mathematics. Because he did not have
access to telescoping languages, Symes had to abandon MATLAB for his
seismic imaging application, primarily due to poor computational perfor-
mance and lack of support for out-of-core arrays.

user creates a new optimization method suitable for inver-
sion problems such as seismic imaging. He develops and
tests his method on small data sets by instantiating a new,
domain-specific toolbox in a scripting language such as
MATLAB. The seismic imaging application is an ordinary
script calling the toolbox.

Once the method works for small data sizes, it must be
tested on more realistic problems. If the performance is still
disappointing using a conventional optimizing MATLAB
compiler, the best current option is to turn over the appli-
cation (including the toolbox) to a group of professional
programmers who painstakingly reimplement it in Fortran
or C. It is precisely this step that our scheme aims to make
unnecessary.

Alternatively, using telescoping languages framework, the
user would present the library (with annotations, as explained
in Section IV) to Palomar. As appropriate, Palomar would
synthesize specialized library routines tailored to expected
call-site contexts and construct new library operations by de-
composing and combining procedures. In addition, Palomar
would generate a companion library-aware optimizer. This
optimizer would then be used to compile unmodified seismic
imaging applications into optimized programs that use the
enhanced library. We expect a Palomar-generated optimizer
to produce faster code by exploiting algebraic identities pro-
vided to it as library annotations. In addition, the optimizer
will generate code more quickly than a whole-program com-
piler, thus shortening the program development cycle.

A. Sample Applications of Telescoping Languages

Telescoping languages is a surprisingly flexible concept
that can be used to unify a variety of emerging ideas on
implementation of high-level languages and construction of
powerful programming systems. To give the reader a taste of
the possibilities, we now present a few examples of the ap-
plication of telescoping language ideas to real problems.

• MATLAB compilation: MATLAB itself can be viewed
as a scripting language in which the library of matrix
operations from LAPACK and other sources defines
the domain. Telescoping languages provides a mech-
anism for substituting calls to the most specialized
entries to those libraries based on context. In addi-
tion, by avoiding extensive inlining, it reduces script
compilation times. This application is described in
Section III-B.

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 389

• MATLAB for digital signal processing: MATLAB
is widely used for prototyping signal processing ap-
plications. Because successful prototypes are almost
always rewritten in C to achieve high performance
or compact memory usage on embedded processors,
signal processing is also an ideal domain for tele-
scoping languages. Our preliminary study, described
in Sections III-A and V-A, has determined that reuse
of standard libraries is common practice in these ap-
plications. In addition, the research has discovered
a number of high-level transformations whose use-
fulness extends beyond the domain itself, including
procedure vectorization and procedure strength reduc-
tion [13], which are described in Section IV-B.

• Medical statistics: Clinical trial design is a computa-
tionally intensive statistical calculation that must be
repeated for each new trial. Currently, biostatisticians
develop models of new experimental trial designs and
new statistical methodologies in the language S, be-
cause it includes the high-level, complex statistical op-
erations that greatly facilitate the rapid development of
new models. Unfortunately, the performance of the cur-
rent commercial and open-source S implementations
is too slow for direct use in the simulations required,
so that the applications must be laboriously recoded
in C or Fortran after the prototyping stage. In a pre-
liminary study, discussed in Section III-A, we have
demonstrated that compilation techniques, combined
with specialized high-level operations, can lead to hun-
dredfold performance improvements in S, which would
make the recoding step unnecessary. This application is
discussed further in Section V-C.

• Library prototyping: Several library developers have
confessed to us that they prototype their libraries
in MATLAB or some other scripting language and
then translate the prototype to several variants in C
or Fortran to achieve higher performance. The latter
process typically involves specializing the prototype
by hand to different expected calling sequences (e.g.,
real versus complex, dense versus sparse, symmetric
versus nonsymmetric matrices). In Section V-B, we
show how telescoping languages can eliminate the
need for this step by using our MATLAB compilation
strategy and its type analysis system [44]. The result is
a powerful tool that can be applied to libraries in many
other domains.

• Component integration systems for scientific com-
puting: Component integration systems, though ac-
knowledged as a promising technology for improving
software productivity, incur performance penalties
that make the integrated applications inefficient for
scientific use. The principal problem is that, for flexi-
bility, components are constructed and compiled well
in advance of the applications that incorporate them so
optimization of components to context is precluded.
In addition, the linking process for components is
dynamic so that component-crossing invocations are
more expensive than function calls in standard lan-

guages. Most of these problems can be overcome if the
collection of relevant components is known in advance
and preprocessed by a library analysis and preparation
phase like the one in telescoping languages. Thus,
telescoping languages could provide the basis for an
efficient component integration system. This topic is
explored in more detail in Section V-E.

B. Implementation Overview

In the next few sections of this paper, we discuss our
approach to implementation of the telescoping languages
framework. To repeat, implementation is driven by the desire
to achieve three general goals: the applications generated
from scripts must have excellent performance, the scripting
language must be extensible by adding new primitive opera-
tions into the library, and the script compile time should be
reasonable—that is, script compile time should be roughly
proportional to the length of the script. We divide our dis-
cussion of implementation into two main topics.

• Scripting language translation. Section III describes
the strategies we are using to translate scripting lan-
guages into efficient code in a base language such as
C or Fortran, so that source-to-source transformation
strategies developed for such languages can be easily
applied. Script language translation differs from script
compilation as depicted in the lower half of Fig. 1 in
that the latter also includes library-aware optimiza-
tions. In other words, scripting language translation
is the first step in script compilation. In addition, if
domain libraries may be written in scripting languages,
scripting language translation must be part of the li-
brary analysis and preparation phase as well.2

• Library analysis and preparation. Section IV discusses
the strategies for generating library-aware optimizers
for scripting languages. This basically incorporates all
of the facilities in the Palomar translator generator de-
picted in the upper half of Fig. 1. The key phases of
the Palomar system include: 1) generation of type jump
functions that can be used to propagate the general-
ized types supported in the domain language; 2) con-
struction of a macro substitution system that replaces
sequences of component invocations occurring in the
script with other sequences that are more efficient in
the application context; and 3) generation of compo-
nents specialized to likely application contexts and a
phase that substitutes these for more general, and less
efficient, versions in any application context where it is
legal to do so.

In the remainder of the paper, we describe the ambitious
program of research that we have undertaken to validate
and apply the telescoping languages concepts. We begin
with a description of the approaches we plan to use for both
script translation and library precompilation, completing
this discussion with a description of the current state of our

2If one eliminates the script translation step, then the telescoping frame-
work still works to optimize library calls in programs written in the base (C
and Fortran) languages: it then becomes a powerful tool for optimizing pro-
grams, written in those languages, that make extensive use of libraries.

390 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

implementation. In Section V, we conclude the technical
material in the paper with a more detailed description of the
applications that are driving our research and we present
some preliminary results with these applications.

III. SCRIPTING LANGUAGE TRANSLATION

We now turn to a discussion of the technologies we are
using to translate scripts to a base language such as C or
Fortran. As shown in Fig. 1, the script translation step can
be used either in the script compilation phase or the library
analysis and preparation phase. Because the translation of li-
braries must be done without the knowledge of the calling
programs, special requirements are imposed on script trans-
lation in the library analysis and preparation phase; these are
discussed in more detail below.

Our research on script translation focuses on two lan-
guages that are widely used for prototyping applications in
the science and engineering community: MATLAB and S.

• MATLAB is a dynamic, array-based language that is
widely used in science and engineering. MATLAB is
“untyped” in the sense that a variable may be used
at different times for different data structures. The
principal data structures available in the language are
scalars and arrays of various dimensions. Arrays are
dynamically allocated and can be expanded during the
course of a program execution, often by simply storing
into a row or column that has not yet been allocated.
In addition, MATLAB supports both dense and sparse
representation of arrays.

• The S language (its commercial implementation is
called S-PLUS, while the open-source implementation
is referred to as “R”) is widely used for statistical
calculations, particularly in biology and medicine. It is
similar in flavor to MATLAB, in that it is interpreted
and untyped and its execution involves dynamic allo-
cation of large data structures, particularly arrays.

A. Preliminary Studies

To determine the best strategies for scripting language
translation, we conducted preliminary studies of MATLAB
and S programs to determine the sources of performance
problems in those languages. These studies, which focused
on the kinds of optimizations that a translator should include,
are described in the following paragraphs.

MATLAB Optimization: As a prelude to our work on the
use of MATLAB in signal processing (see Section V-A), we
studied the sources of inefficiency in MATLAB. The current
commercial MATLAB implementation by MathWorks is in-
terpretive, so that the operations on the major data structures
in the languages—scalars, vectors, and arrays of various
types and structures—can be dynamically selected during
execution. Although the MATLAB 6.5 implementation
includes a just-in-time (JIT) compiler, which produces good
code locally, it does not perform global optimizations like
type analysis over a whole function. MathWorks also offers
MCC, a compiler that translates MATLAB to C. In our
experiments, however, MCC does not markedly improve

performance; instead, it provides a compatibility mechanism
that allows merging of MATLAB and C programs. With
MCC, the fundamental MATLAB operations are still em-
bedded in the MATLAB runtime library routines, which are
callable from C and perform the functions of the interpreter
before carrying out an operation.

Clearly, a true compiler—one that determined the
datatype, size, and shape of every variable in a MATLAB
function and then generated C or Fortran code—should
provide substantive performance benefits over the current
interpreter, even with local JIT compilation. There are
two things that must be done to produce such a compiler.
First, the compiler must be able to determine, through a
sophisticated type analysis such as the one described in
Section III-C, a general type for every variable at every ac-
cess point in the program being compiled. Fig. 2 shows the
impact of inferring the correct types on the performance of
a user-level DSP library procedure, called . For each
platform, the bars on the left show the running time of jakes
on the MATLAB 6.5 implementation, which uses dynamic
type testing, while the bars on the left show the running time
of the Fortran version of in which the types intended
by the user are explicit and primitive operations specialized
for those types are used. The figure clearly demonstrates
that specializing on the right type configuration is very
important to achieving high performance in a translated
application.

Second, the compiler must take steps to make it possible
to replace dynamic data structures with statically allocated
structures or at least dynamic structures that are less fre-
quently reallocated. In MATLAB, it is possible to increase
the dimensions of an array by simply storing beyond the allo-
cated bounds of that array. Our study showed that MATLAB
programmers frequently do this in loops. However, if the ag-
gregate size after all such allocations can be determined in
advance, a single allocation at the beginning of a routine will
suffice. Section III-C describes the strategy that our proto-
type MATLAB translator uses to accomplish this. Static al-
location of this kind is well-understood strategy, described in
MATLAB tutorials, for improving MATLAB performance
by hand. Our contribution, driven by necessity (otherwise
translation to C or Fortran would not work), is to automate
the strategy in a translator.

In addition to these two essential functions, there are
a number of transformations that are extremely effective
for improving performance of MATLAB programs. For
example, because array operations in MATLAB are imple-
mented using calls to highly optimized array libraries, while
element-wise operations on the same structures in loops are
interpreted, it pays to convert loops to array operations. This
optimization, known in the literature as “vectorization,” can
produce integer factor improvements in the running time of
MATLAB programs.

S Optimization: In collaboration with biostatistical re-
searchers in the M. D. Anderson Cancer Center, Houston,
TX, we have conducted a study of a number of applications
written in the S language. These applications include many
that employ calls to standard toolbox routines written by the

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 391

Fig. 2. Importance of type-based specialization.

M. D. Anderson researchers. The S programs we examined
also included the use of many standard programming idioms.

Our study identified a collection of transformations and
compilation strategies that improved various S programs by
factors ranging from 10 to 143. The most important of these
were: 1) avoidance and elimination of allocation of tempo-
rary arrays; 2) conversion of loops to array operations (e.g.,
vectorization); 3) hoisting array expressions out of loops;
4) translation to primitive types and native operations in C;
and 5) folding temporary arrays into usage points. Using do-
main-specific information about the structure of a matrix,
we were able to obtain an overall speedup of 23 000 for one
program.

Although all but the domain-specific optimizations could
be employed in a whole-program optimizing compiler,
the compile time of such a strategy would be prohibitive.
Scripting language users like being able to modify and run
a script on a tight cycle and they would typically want to
modify the program even after it goes into the production
stage. This is the reason that we believe that the scripting
community will greatly benefit from the telescoping lan-
guages strategy, which would move much of the optimization
cost to the library analysis and preparation phase.

B. Generating Base Language Programs

Although there is a significant body of work on compi-
lation of MATLAB and S (especially MATLAB—see Sec-
tion VI), to support telescoping languages, we need to avoid
the common practice of extensive procedure inlining lest we
make compile time too long to be practical. Thus, an im-
portant part of our work has been the development of in-

terprocedural analysis and optimization strategies that leave
procedures intact and only minimally expand the code size.

Our compiler strategy for these languages performs the
following steps. First, it carries out a form of type analysis
(discussed below) that reduces the number of types that must
be considered for each variable at each point in the program.
In most cases the number of such types can be reduced to
one. Then, it uses the reduced set of types to generate a C
or Fortran program that invokes an intrinsic operator or li-
brary routine implementing each operation or function invo-
cation in the script. When the set of reduced types is greater
than one, it uses runtime type checking to select the right
operation.

In the case of the subset of MATLAB for linear algebra,
the generated C or Fortran program invokes the appropriate
routine from LAPACK once the types of the operations are
known.

Our current work on S translation has focused on the
closely related language “R,” which differs from S in several
significant ways. In particular, S is dynamically scoped,
while R is lexically scoped. The principal reason for using
R is that we can base our program generation on the R
open-source runtime library. Our initial compiler, called
RCC, simply converts the R code to C by using the compo-
nents from the R runtime library to implement the intrinsic
operations in the language. This approach does not produce
the best possible performance because, as in the case of the
MathWorks compiler for MATLAB, the component routines
include parts of the interpreter to determine input and output
types for the operation. We plan to improve this by using
type analysis as in MATLAB. A more complete discus-

392 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

sion of the status and performance of RCC is contained in
Section IV-D.

C. Type Analysis

A key technology for compiling any untyped scripting lan-
guage is type analysis, where the term “type” is used in the
most general sense to indicate not only data types but also
more abstract properties such as array rank, size, and matrix
type (e.g., symmetric versus nonsymmetric). Type analysis,
therefore, makes it possible to determine the correct declara-
tion type and size of structures within the language so they
can be statically allocated in a base languages such as C or
Fortran, as well as providing information useful for special-
ization even in typed languages.

In our case, this problem is complicated by three fac-
tors. First, the dynamic nature of scripting languages such as
MATLAB makes it difficult to statically capture the behavior
of the functions. Second, because library routines might be
specified in the scripting language, the type analysis must
be carried out on functions in which the calling context is
not yet known. Thus, the standard strategy of function in-
lining is not an option in our approach. Third, accurate type
analysis for MATLAB requires the use of both forward and
backward propagation of type information, which suggests
a constraint-based approach.

In order to get the most accurate type information for
specialization, type analysis must be able to infer which
type configurations over the function variables could validly
occur, not just types for each variable in isolation. To capture
this information, we construct type jump functions, which
can be quickly evaluated from the types of the inputs to
determine variable types everywhere in the function. We
represent a type jump function as a table where every entry
represents a valid configuration of types over the variables
in the routine. Each valid type configuration over the inputs
results in a separate generated variant.

To address these issues, we have developed a new poly-
nomial-time algorithm for constructing type jump functions
for a MATLAB routine [44]. The long-term implication of
this work is that it is possible to generate code for a given
MATLAB routine during the library analysis and prepara-
tion phase and to use this information at script-compilation
time to determine quickly and accurately the effects of library
calls on its inputs and outputs.

Our type inference strategy first examines each statement
in isolation and then combines the information from the state-
ment over the whole function to determine the valid type con-
figurations. Type inference is performed over a normalized
version of the function in which each statement only involves
a single operation or function call. Also, because variables
can change types in MATLAB, we use static single assign-
ment form so that each use refers to a single definition point
and, therefore, a single type. The statement constraints are
formed by looking up the type jump function for that state-
ment’s operation or function call. The statement constraints
are written as a sequence of clauses, where each clause gives
a possible assignment to the variable types.

The statement constraints are then combined over the en-
tire function using a graph representation. The graph has
levels, where each level corresponds to a different statement
constraint. Each node in a level corresponds to a clause, and
there is an edge from one node to another if the types given
by the clauses do not contradict each other.

The problem of finding all valid type assignments then
becomes one of finding -cliques over the graph, where a
clique is a complete subgraph. The intuition behind this is
that we want to find type assignments that are valid over the
entire function. That is, for each statement, they must satisfy
a clause in the corresponding statement constraint. Thus, we
want to find sets of clauses, one from each statement con-
straint, such that the clauses in each set do not contradict
one another. On the graph, this exactly corresponds to finding

-cliques. Each resulting clique is solved to produce a type
configuration which is included in the type-jump-function
table.

While finding cliques in general is NP-complete, we are
able to use the structure of the problem to prove that we
are working on a subset of the clique-finding problem that
is polynomial under practical conditions.

Array sizes present a special problem because they may
depend on values or the outcome of control statements that
are not determinable at library analysis time. The static type
inference algorithm is able to describe the sizes of the arrays
in terms of the size of the inputs and other variables defined
within the program using metavariables to represent the stat-
ically undeterminable sizes (i.e., the sizes of the inputs). Un-
fortunately, this is not enough to capture the behavior of the
library routines in some cases. For example, arrays can grow
within MATLAB routines by assigning to a subscript out-
side of the array’s initial bounds. This array growth in many
cases requires costly reallocation of the array. To address this
problem, we employ a code transformation technique called
slice hoisting [14]. Slice hoisting moves the computation of
these array sizes to just after function entry, so that allocation
of the arrays may occur as early as possible.

Finally, type analysis can be substantively assisted by
having types of the input parameters externally specified
through annotations by library writers. While static type in-
ference will account for every possible configuration of types
over the variables, some of the inferred type configurations
may involve input types that should never occur in practice.
Annotations help the compiler generate only the variants
that are used in practice. They also reduce the complexity of
type inference, and in the case of size inference, can provide
exact sizes that are undeterminable through static analysis.

Fig. 3 demonstrates how the three different ways to disam-
biguate types combine to precisely infer the sizes of all the
variables in five different DSP library routines. Static type
inference is able to determine a majority of the array sizes in
terms of exact values or the sizes of the other variables. Slice
hoisting is used to determine those variables that depend on
the outcome of complex control flow or values resulting from
complex computations. Finally, annotations were needed to
determine exact sizes for some of the inputs.

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 393

Fig. 3. Accuracy of type analysis.

Once the actual types of inputs are known at script-com-
pile time (or during the generation of specialized variants
during library analysis and preparation), the type jump func-
tions are evaluated to make it possible to generate C or For-
tran output code for the MATLAB routine. The operations
and function calls are replaced with calls to the appropriate
optimized variants. In our work, this code directly invokes
the LAPACK routines for the primitive operations on the
arrays, particularly the kernel functions that compose the
BLAS.

In Section V, we present a special application of the
MATLAB compilation technology to maintenance of
scientific libraries, along with statistics establishing its
effectiveness in improving performance.

IV. LIBRARY ANALYSIS AND PREPARATION IN PALOMAR

To create an optimizing compiler for a domain language,
Palomar will be applied in the library analysis and prepa-
ration phase to generate an optimized runtime library and
a library-aware optimizer for the domain language. Fig. 4
outlines the steps of this process. Palomar will take as inputs
a set of procedures expressed in the base language that
define domain language primitives and toolbox components
(translated where necessary from the domain language).
After extensive analysis, Palomar will create an enhanced
library, which will include, in addition to the domain prim-
itives and simple translations of procedures in the domain
toolbox, versions of routines tailored to exploit common
contexts in which they may be invoked. Palomar will also
generate a library-aware base-language optimizer that will

have knowledge of the semantics of both the original and
enhanced library primitives.

To more completely understand what must be done by
Palomar in this phase, we must consider the functions to be
performed by the generated optimizer. These functions fall
into three categories.

First, the optimizer must propagate generalized types
(e.g., matrix base type, size, shape, density, and other
user-defined properties) throughout an application script. To
do this without making compile times excessively long, a
violation of one of our goals, the optimizer must have pre-
computed return type jump functions, specialized versions of
the type jump functions discussed in Section III-C, for each
component in the library. For a given library component,
the return type jump function quickly computes the types of
output parameters from the types of the input parameters.
This requirement means that the optimizer generator must
both determine the relevant types that might be attached to
component parameters and compute return type jump func-
tions for the component on input parameters ranging over
those types. This capability is discussed in Section IV-A.

Second, the optimizer must implement a substitution
phase that replaces sequences of component invocations
occurring in the script with other sequences that are more
efficient in the application context. These substitutions are
derived from annotations by the library designer that are
part of the material presented to Palomar. In a sense, these
annotations define an algebra of relations among the compo-
nents along with information about cost that can be used as
a basis for optimization decisions. For example, if a library

394 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 4. Library analysis and preparation with Palomar.

implements a stack data structure, the designer knows that
“push” and “pop” are in some sense inverses: the script
compiler should be able to replace a push followed by a pop
with a simple assignment. To generate this global substitu-
tion system, Palomar must be able to accept annotations and
construct substitution transformations from them. Strategies
by which to accomplish this are discussed in Section IV-B.

Third, once the calling context is known for each
component invocation, the optimizer must substitute the
specialized version of a component that is best suited to
that context. In other words, if there are multiple versions
of a library component, the optimizer should select the
most efficient version consistent with the types that are
actually presented when the application script is known. To
support this process, the optimizer generator must produce a
database of specialized versions of each library component,
while limiting the number of such variants to a manageable
size. The mechanisms for both specialization and selection
are the subject of Section IV-C.

In the next few subsections, we discuss how elements
of Palomar will support these script compilation functions.
Section IV-D finishes the treatment by describing the cur-
rent implementation status of the project and the software
infrastructure that will serve as the foundation of Palomar.

A. Abstract Properties and Their Propagation

If Palomar is to generate domain-language optimizers that
can accurately predict the runtime types that apply at any
point in the user’s application, it must address two critical
challenges. First, it must identify the types and properties
that are to be propagated across the program and, second, it
must produce type jump functions that propagate these types
across calls to the underlying domain library used as the se-
mantic basis for the language.

While the optimizers generated by Palomar should be able
to propagate information on standard types (e.g., real or com-
plex, scalar versus array), higher level information will often
be the key to effective optimization. For instance, knowing
whether a matrix is sparse, dense, symmetric, or triangular
at some point in the program is an example of a key property
that will not be obvious from low-level analysis.

The problem with abstract types such as these is that they
can be large in number, which can cause an explosion in the
number of specialized routines that need to be collected in
the enhanced domain library. Therefore, Palomar will need
to incorporate strategies for identifying the important types
for use in the generated optimizer. There are three ways this
may be done.

• Palomar can reason backward from particularly prof-
itable optimization opportunities to determine what pa-
rameter types will make these optimizations possible.
This will commonly involve reasoning about the value
ranges of scalar variables or the sizes of arrays. For
example, if an operation steps through an array using
an unknown stride parameter, it may be worthwhile to
have a specialized version for the case where the stride
is greater than zero, because the operation can be un-
conditionally vectorized in this case.

• Palomar can examine sample input files, typically
provided by library designers, to look for particularly
interesting properties that might be exploited to pro-
duce better code. For example, it might be possible to
determine that two array parameters to a given library
routine are frequently just shifted versions of the same
array, which could lead to better memory utilization
within the body of a specialized version of that routine.

• Finally, important properties can be specified as an-
notations by the library designers. We expect that this

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 395

category will be the most useful because it provides a
natural mechanism for the library designer to specify
types that lead to the highest payoffs and the trans-
formations and specializations that can be carried out
based on those types. In this category, one might find
the most abstract concepts such as sparsity and storage
layout.

Our plan for the Palomar implementation is to support all
three approaches with the same general mechanism. Specif-
ically, each component of the domain library will be anno-
tated with a collection of tuples, in which each tuple contains
a set of parameter types that can be passed to that routine in
some legal invocation for which a specialized version would
be profitable. That is, each routine would have a table of input
types for which specialization is desirable. Our preliminary
implementation relies exclusively on library developer spec-
ification to define these tuples, but the mechanism should be
completely general.

For this to work with abstract types specified by the li-
brary designer, the library itself would need to be augmented
with the specification of the domain of types for that library.
Our current MATLAB implementation supports types that
include scalars and arrays of various base types, where ar-
rays have additional specifications of rank, size in each di-
mension, and “pattern” (e.g., dense, triangular, symmetric,
etc.). However, the library designer must be free to add new
types as needed.

Finally, each callable library component must have a re-
turn type jump function, which computes the types for the
output parameters as a function of the types for the input pa-
rameters. These functions make it possible to determine the
side effects of procedure invocation without the overhead of
a full analysis [9]. Thus, by precomputing return type jump
functions during the library analysis and preparation phase,
we can dramatically speed up the propagation of types when
the application is presented during the script compilation
phase. In Palomar we construct return type jump functions
using the constraint-based type analysis strategy described
in Section III-C.

B. Constructing a High-Level Transformation System

To optimize code from a user application after script
translation to a base language, the library-aware base-lan-
guage optimizer generated by Palomar will transform it by
rewriting fragments that match a database of transformation
rules. This database, which is also produced by Palomar,
will include rules synthesized automatically during analysis
of the domain library as well as high-level transformation
rules written by the language designer. In essence, Palomar
will generate a transformation phase that can be thought of
as a sophisticated macro substitution process.

We plan to generate optimizers that include a transforma-
tion pass constructed both from library analysis and from
designer specifications. In other words, some transforma-
tions will be automatically generated, while others will be
completely specified by the library designer. In the first
case, identification of useful transformations, along with the

conditions under which they will be profitable, will lead
Palomar to break up library components into more funda-
mental parts that can be recombined into efficient sequences
by these transformations. In the second case, the library
designer, based on a deep understanding of the underlying
problem domain, should be able to specify an algebra re-
lating sequences of library calls to other sequences that are
equivalent in meaning within a given calling context. When
coupled with an understanding of the relative costs of these
sequences, the transformation pass can make substitutions
that will improve performance, once the types of parameters
and calling contexts are known. In what follows, we describe
the mechanisms for each of these transformation strategies.

Procedure Transformations: The first high-level trans-
formation strategy entails identification of a collection of
common transformation patterns along with the conditions
under which it is profitable to employ them. Our MATLAB
and S experiments suggest several possibilities, primarily
based on the observation that many procedures and functions
are invoked within loops.

Our original study of MATLAB programs, described in
Section III, established the importance of vectorization [12],
which entails the conversion of loops into whole-array or
vector operations that can be carried out by MATLAB’s ef-
ficient array-handling primitives. At the procedure level, the
analogous operation is procedure vectorization in which a
procedure or function that might be applied to the elements
of a vector or array is converted to one that can be applied
to the entire vector or array. The transformation that makes
this possible is the movement of a loop over the elements of
the key array into the procedure or function. Fig. 5 shows
the result of vectorization applied to a routine within a signal
processing application from the Department of Electrical and
Computer Engineering, Rice University, Houston, TX. Be-
fore the transformation is applied, the variable is a
two-dimensional array that is computed each time through
the loop on . After the transformation, an extra dimension
of size 200 is added to which is now computed out-
side the loop on . The vectorized version of _ is
produced by moving a copy of the loop on into the func-
tion, which in turn permits vectorization of code within that
routine.

In addition to procedure vectorization, we have designed
and implemented procedure strength reduction [13], which
can be applied to loop-enclosed procedures for which only
a single parameter depends on the loop induction variable.
Such procedures could be divided into two components—a
loop invariant initialization section and a loop-varying sec-
tion—enabling the initialization section to be moved outside
the enclosing loop. Fig. 6 shows the result of applying this
optimization to the same example that was used in Fig. 5. In
this case, however, strength reduction is applied to three pro-
cedures: _ with respect to the loop on induction
variable , with respect to the loops on both

and , and with respect to the loop on .
Our preliminary studies of MATLAB applications in

signal processing have shown that procedure strength reduc-
tion alone can lead to substantive improvements in running

396 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 5. Applying procedure vectorization to jakes_mp1 called in ctss.

Fig. 6. Applying procedure strength reduction to procedures called in ctss.

times. Fig. 7 shows the improvements resulting from pro-
cedure reduction in strength applied to three MATLAB
routines and two full applications. On these codes, both the
original and optimized version were run on the MATLAB
interpreter.

These examples represent only some of the transforma-
tions that should be explored to fully generate optimized spe-
cializations of single procedure calls and common invocation
sequences.

Both of the transformations described here involve gen-
erating one or more new routines from existing library pro-
cedures. As we shall see in Section IV-C, we must avoid
generating too many specialized procedure variants if we
wish to maintain performance of the script compiler. There-
fore, we will use specifications by the library designer to
indicate when to perform this generation. For example, the
designer might indicate that a particular procedure will often
benefit from vectorization or that it is likely to be called in a
loop with the loop index passed in the third parameter posi-
tion. Based on these “profitability specifications,” Palomar

will generate the appropriate specialized variants, such as
_ _ or _ automati-

cally and include them in the library of specialized variants.
User-Specified Transformations: User-specified high-

level transformation rules are critical for achieving top per-
formance with domain-specific languages because automatic
analysis cannot discover all useful high-level transforma-
tions. Many useful transformations cannot be found because
the enabling preconditions are obscured. For example, when
using a library that implements access to an “out-of-core”
array, it would be useful to replace a single-element fetch
within a loop by a block fetch, provided that the loop can
be distributed around the fetch operation. A compiler could
not determine if this transformation is legal due to lack of
knowledge about I/O system call side effects. However,
annotations that would enable such an optimization would
be fairly easy for a library designer to specify [6], [46], [68].

An important issue yet to be addressed in our work is how
to express the high-level transformations and their precon-
ditions. For example, the preconditions must be able to in-

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 397

Fig. 7. Performance improvements due to procedure strength reduction.

clude specification of dataflow and dependence relations as
well as loop containment. Our preliminary implementation
uses an XML specification that indicates, for each transfor-
mation, the code pattern to be matched and a replacement
code pattern. This suffices for the applications we have un-
dertaken to date, but is unlikely to be adequate to meet all our
goals in the long run.

To be effective, a specification language must make it
easy to express transformations at a high level in a compiler
independent fashion. However, we believe that it must also
be possible to specify transformations with complex precon-
ditions and effects. For example, how to express high-level
transformations to achieve effects such as loop fusion is an
open problem. In our research, we are exploring a variety
of strategies for expressing transformations at a high level
that enable complex semantic preconditions and postcondi-
tions to be specified and exploit semantic information in a
significant way. One key issue is how to incorporate program
dependence information, such as that required to express
transformations like procedure vectorization and procedure
reduction in strength, into our specification language. Our
current XML-based specification strategy does not support
the explicit use of dependence in the development of pre-
conditions. We are currently exploring the use of predicates
that explicitly query the results of dependence analysis in
transformation preconditions.

Once the transformations are specified, Palomar must con-
struct the substitution phase. There are two key issues here.
First, how can we convert human-friendly transformations
into a macro-substitution phase? One straw-man proposal is
to take specifications, consisting of source code plus human-

friendly annotations, and convert them to the XML specifica-
tion for substitutions used in our current translator. Second,
how can we prioritize transformations based on a reasonable
cost model? Our current prototype uses an ad hoc approach
in which transformations are applied in a specified order, but
this will clearly be inadequate for the longer term. A better
strategy may be found in the use of techniques from artifi-
cial intelligence, based on the profitability considerations de-
scribed in the next few paragraphs.

Although transformation rules can indicate equivalence
between two different sequences of operations, to use
transformation specifications as the basis for optimization
requires that we describe when the rule should be applied. To
guide application of a rule, we will associate a quantitative
cost model with its left- and right-hand sides to determine
when it is profitable. In a compiler for tensor contraction ex-
pressions, Cociorva et al. [17] used dynamic programming
to choose among implementation alternatives.

Database query optimizers provide a model for transfor-
mation strategies that can be potentially employed by the
library-aware optimizer. Query optimizers use two-phase
plans that involve first applying algebraic identities and ax-
iomatic rewriting rules, and then using a cost-model-driven
specialization of query operators [29]. The strategies em-
ployed in this specialization process are similar to those that
our library-aware optimizer could use to explore the trans-
formation space. These strategies include heuristic selection
rules (with or without considering cost); naive exhaustive
search; local search (e.g., hill climbing); branch and bound;
dynamic programming (which records only the least cost
alternative at each step in a bottom up enumeration); and

398 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Selinger-style bottom-up search [3], which extends dynamic
programming by keeping not only the least cost alternative
at each point, but also a set of “interesting alternatives” that
have properties that may be useful in other stages.

Heuristics for transforming database queries often have
analogues in scientific computations. For example, greedy
join ordering—combining the pair of relations that produces
the smallest result first—can be likened to the heuristic for
ordering a sequence of matrix multiplications—multiply the
pair of adjacent matrices with the longest common dimen-
sion first.

A key choice when selecting physical query-operator im-
plementations for performing a set of logical database oper-
ations is whether to use materialization (producing a value
in its entirety), or pipelining (producing it incrementally).
The alternatives available to our library-aware optimizer are
whether to use a fully vectorized version of an operation,
which materializes the largest possible vector result, a scalar
version of a primitive, or some intermediate level of vector-
ization. The fully vectorized version may be the most effi-
cient way of performing the operation in isolation, but at the
cost of instantiating a large temporary array. The scalar ver-
sion, possibly inlined, can be composed with other scalar op-
erators in a pipeline that minimizes the size of temporaries.
This improves memory hierarchy performance, but at the
cost of increased pressure on registers and functional units.
Vectorizing at intermediate granularities (for example, rows,
columns, or tiles of arrays) will enable the optimizer to ex-
plore the space of tradeoffs.

In future work on generating an effective transformation
phase, we plan to explore all these alternatives with the goal
of producing truly effective optimizations based on the al-
gebra of relations specified by the library designer.

C. Context-Driven Specialization

As described in the introduction to Section IV, at script
compilation time the generated optimizer will perform a pre-
liminary analysis of abstract types; then, at each call site for
a routine in the domain library, the optimizer will use the
determined types of parameters to the called routine to select
the most specialized version of the library routine that can be
legally substituted at that call site. Given that we expect the
number of specialized variants to be large, we will be using
a fast selection algorithm that is a variant of unification from
the domain of theorem proving.

In this section, we will describe the steps that the Palomar
compiler generator must perform to support the specializa-
tion step and to make it more effective. Generally these tasks
will fall into two categories. First, Palomar must determine
the set of specialized variants to actually provide. The key
issue here is how to avoid a combinatorial explosion of dif-
ferent variants. Second, once the type signatures for all vari-
ants to be included in the database are determined, Palomar
must generate the specializations that are needed.

Minimizing the Number of Variants: Previous work on
whole-program compilation has shown the value of inter-
procedural dataflow information (a form of context) applied

to traditional languages [1], [7], [8], [21], [34]–[36], [48],
[53], [64]. For example, procedure inlining [20], [22] is
beneficial not only because it removes call/return overhead
but also because it provides a context for optimizing the
procedure’s code. Unrestricted inlining can be detrimental,
however, because it can place a significant burden on later
compilation stages, particularly the register allocators. In ad-
dition, using inlining exclusively is an unsuitable approach
for implementing telescoping languages because it may lead
to excessively long compilation times even for short scripts.

An alternative to inlining, procedure cloning [18], [19],
can generate specialized variants of procedures that are tai-
lored to the calling context. Unfortunately, instantiating a
clone for every potential calling sequence that might be en-
countered at script compilation time would be impractical,
hence the need to prune the number of variants actually gen-
erated by Palomar.

Clearly there is a large space of alternative specializations
to be explored, so limiting the number of specializations to
those that are most likely to be useful is a major focus of our
research. Generally there are two ways to do this.

• The first is to assess likelihood through the analysis
of hints and specifications provided by the library
developer. We have already seen in Section IV-A that
annotations by the library designer will determine
many of the required variants. However, it will un-
doubtedly prove useful to provide automatic ways
of determining useful variants. To accomplish this,
Palomar will perform some optimizations specula-
tively, “guessing” at the likely (and useful) contexts in
which specific library components might be invoked.
If we are to successfully limit the number of different
variants generated speculatively, we must identify
“interesting” contexts that can lead to substantive
performance improvements. Sample calling sequences
should provide a rich source of such hints. However,
we plan to augment this information with feedback
from the generated script optimizer. If a large number
of programs that are actually presented to the optimizer
could benefit from a specialization not present in the
preprocessed domain library, then that specialization
could be scheduled for generation offline. This gener-
ation step might be run at more frequent intervals than
the entire language generation process because it is
restricted to single routines.

• The second approach is to use information about
profitability of optimizations to guide generation of
specializations. For example, if for a given library
component there are two potential specializations, one
slightly more general than the other, and the more
general version is only slightly less efficient than the
specialized one, it may be prudent to include only the
general version because it covers more cases. On the
other hand, if the potential performance improvement
is huge and there are indications that the more spe-
cialized case occurs frequently in practice, then both
specializations should be generated.

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 399

In the first prototype implementation, we are focusing
exclusively on designer-specified specialization strategies,
although we intend to include context based specializations
like procedure strength reduction. However, in the longer
term, we expect to automate the generation of specialization
annotations by having the Palomar interprocedural analysis
system produce “suggested” annotations for the designer.
These annotations can be augmented with those that are
produced during actual script compilations. If the results of
these processes are acceptable, it may significantly reduce
the burden on library designers and developers.

Variant Generation and Specialization: We plan to base
the generation of specialized versions of library routines on
our type analysis strategy, described in Section III-C. Type
analysis not only gives us a tool for constructing return type
jump functions to be used for propagating types across li-
brary calls, it can also drive the generation of specialized
variants through its specification of the abstract types used at
each point within the original library routine. In addition, the
algorithms we are producing will make it possible through
backward analysis to limit the space of input parameter types
to those that make sense.

In addition, as discussed in Section IV-B, we plan to
go beyond simply specializing procedures for particular
contexts—we aim to use information about potential calling
contexts and procedure implementations to decompose and
recombine library routines, creating a new library of stream-
lined primitives for high-performance programs. Thus, a
library routine that performs multiple operations, some of
which are not needed in every context, will be decomposed
so that each operation can be invoked selectively.

As an example, the library operation invoked by the R
interpreter to add together the values encapsulated in two
data objects checks that they are numeric types and performs
coercions as necessary, checks for conformable shapes of
objects, allocates a result object, and then performs the opera-
tion. The checking and coercion operations should be explic-
itly exposed so that traditional compiler optimizations such
as common subexpression elimination and hoisting invari-
ants out of loops can then avoid unnecessary recomputations.
Similarly, rather than allocating storage for a result inside the
arithmetic routine, it would be better to expose the allocation
and allow reuse of the storage using a combination of region
analysis [62], [63] and explicit annotations.

Where profitable, composite routines will be constructed
by combining two or more separate procedures to perform a
computation more efficiently. For example, in S one might
write an assignment statement , where , , ,
and are all objects coercible to vectors of the same size.
S interpreters would compute this statement by first calling
primitive routines to do type and size coercion if necessary,
then calling a routine to perform the vector multiply into
a temporary vector variable, and, finally, calling a separate
primitive to perform the vector addition. If this represents
a common idiom, it would be better to create a family of
type-specific composite routines, each of which fuses these
operations into a single loop. This avoids creation of multiple

full-size temporary vectors and it potentially allows the use
of a multiply–add machine instruction on the target platform.

Once such variants are identified, we will use various
program transformation and optimization strategies to pro-
duce the actual code for specialized variants. Generally, we
will take the combinations of routine bodies that are chosen
for specialization and integrate them using well-known
optimization strategies.

For example, in the case of procedure strength reduction
[13], described in Section IV-B, Palomar would perform
the partitioning of a selected function into an initialization
and iterative version by using program slicing to select the
code in the function that depends on the containing loop
induction variable, leaving the code that is independent of
the loop induction variable in the initialization function.
(A better strategy, which we plan to use, is to construct the
initialization routine by symbolically executing the function
using the value of the induction variable on loop entry and
to use program differencing to determine how to compute
the iterative function value from the value for the previous
iteration.)

In the case of procedure vectorization, Palomar would con-
struct an initial procedure body by moving the vectorized
loop into the procedure body, then applying loop distribution
to see if further vectorizations could be achieved recursively.

D. Implementation Status

To date, the implementation effort has produced prelimi-
nary prototypes of the script compilers for S and MATLAB
and is well on the way to the first prototype of Palomar itself.
These milestones are described in the paragraphs below.

MATLAB Compiler: We have developed a rudimentary
compiler for MATLAB by coupling the type analysis routine
described in Section III-C with a code generator that pro-
duces C with calls to the appropriate LAPACK routine. In
addition, this compiler uses program slicing to move array
allocations outside of loops. Because LAPACK is being used
as the implementation library, the current compiler only sup-
ports linear algebra. The portion of the language for handling
generalized objects is not yet implemented, although some of
this will be required to extend the library generation to model
reduction as described in Section V-B.

The performance of the code generated by this compiler is
illustrated later (see Figs. 10 and 11, which appear in the dis-
cussion of LibGen, an application of the MATLAB compiler
to the problem of library maintenance, in Section V-B).

RCC: The R language [38] is a modernized version of
the award-winning S language for statistical computing.
We have developed RCC [30], a prototype domain-lan-
guage translator from R scripts to C code, by leveraging the
open-source infrastructure for R.3 At present, our translation
of R into C is fairly straightforward. The C code generated
by RCC constructs instances of data types compatible with
the R runtime library and makes calls to the R runtime
system to perform each language primitive operation. RCC
translates each R function into a C function that can be called

3[Online] Available: http://www.r-project.org

400 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 8. Performance of RCC-generated code
versus the R interpreter.

from other compiled code or R using the foreign code calling
interface. RCC directly generates C control flow for R loops
and conditionals. Construction of R data representations for
invariant values is hoisted into an initialization routine to
avoid unnecessary redundant synthesis at run time.

Fig. 8 shows the performance of five R programs com-
piled with RCC compared to their performance under the
R interpreter. Each of the bars shows the ratio of the run-
ning time of the interpreted program to that of the same
program compiled with RCC: numbers above one represent
speedups, while numbers below one are slowdowns. The test
programs are a combination of microbenchmarks (for, fib,
array) and applications used by researchers at the M. D. An-
derson Cancer Center (mixture, trials). The , , and

microbenchmarks are designed to measure repeated
function calls, deeply recursive functions, and array oper-
ations, respectively. is a Bayesian mixture anal-
ysis code. performs calculations used in clinical trial
design.

In general, the performance of code generated by RCC
is similar to interpreted code, since it calls runtime library
primitives much in the same fashion as the interpreter. RCC
provides a building block that will enable us to apply a
domain-language-independent analysis and optimization
framework (developed to support analysis and optimization
of library-based programs in C) for high-level optimization
of R scripts. Compilation does eliminate much of the inter-
preter’s overhead due to function calling, list allocation, and
evaluation of code objects. RCC compilation improves per-
formance significantly for and , microbenchmarks
with large numbers of function calls, and , a large
application with significant evaluation overhead. In contrast,
the programs and , which consist mostly of
array operations, show compiled performance roughly equal
to interpreted performance.

Palomar: Our preliminary research has led to the devel-
opment of a number of the software technologies that are to
be part of Palomar. For example, the type analysis mecha-
nism described in Section III-C provides information needed
about possible executions of a library routine to generate
variants specialized for different possible calling contexts.

Specifically, it is able to determine which variants are neces-
sary so that every valid execution of the library routine is han-
dled (e.g., one for each inferred type tuple over the inputs).
It also provides the type information needed to generate spe-
cialized paths within the variants that handle different pos-
sible outcomes of control flow. Thus, the dynamic behavior
of the routine is captured by the variants. Specialization of
the user application or other library routines replaces the
calls to the general library routines with calls to the appro-
priate specialized variants. We have also implemented some
of the automatic specialization strategies, including proce-
dure reduction in strength and procedure vectorization, that
are planned for the library-aware optimization phase. These
capabilities have been critical to the various application ef-
forts we have been involved in (see Section V).

The first prototype of the Palomar system will be based
on the type-based specialization strategy described above,
which is elaborated in more detail in the discussion of
LibGen in Section V-B. The organization of this system is
presented in Fig. 9. In this prototype, the specializations
are guided in part by annotations from the library designer
that provide some of the type tuples to be expected for
each library routine. The type analysis system is then used
to generate both a database of return type jump functions,
which describe the output types from a library function for a
given set of input types, and type jump functions, which can
be used to compute the specific type of each data element
in a function given the input data types. The former would
be used during type analysis for scripts and other library
routines that invoke library routines while the latter make
it possible to convert the dynamic types in MATLAB to
static types in C or Fortran for each variant. Using these
type jump functions, the code generation system simply
generates a specialized version of each routine for each
input type tuple inferred by type inference system, saving
these specializations in the database.

Once the two databases are available, the script compiler
can perform global type analysis on the script without tracing
through library routines by employing the return type jump
functions. This process determines the input types for the pa-
rameters at each invocation of a library routine in the script;
the C code generator then selects the most specialized variant
of each routine that is compatible with the given input types.

Currently, most of the top of Fig. 9 is in place. Although
a C code generator exists, it does not yet incorporate type-
based variant selection. Because this feature is fairly straight-
forward to implement, we expect that it will be incorporated
into Palomar by the time this paper appears.

Building on this preliminary effort, we are designing a
more sophisticated Palomar optimizer generation framework
that will include the advanced analysis and optimization
strategies discussed earlier in this section. For the first
iteration of this new version, we are concentrating on au-
tomatic management of the number of variants produced
for the specialization database and on construction of the
high-level transformation system from annotations by the
library developer.

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 401

Fig. 9. Organization of the first Palomar prototype system.

V. APPLICATIONS

A major focus of our preliminary work has been the struc-
ture and function of the Palomar system itself: in particular,
what strategies the Palomar generator should employ to sup-
port the speculative procedural optimizations that are needed
in the library aware analysis and optimization phase.

Our work on the Palomar design, described in
Section IV, has been driven by two preliminary applica-
tion studies—MATLAB for signal processing applications
and the LibGen library generation system— and three longer
term application studies. Here we describe these applications
in more detail.

A. MATLAB for Signal Processing

MATLAB is hands-down the language of choice for proto-
typing signal processing applications. It is also ideal for tele-
scoping languages because successful prototypes are almost
always rewritten in C to achieve high performance, which in
some cases means fitting into the memory of an embedded
processor. With funding from the State of Texas, we carried
out a small project in collaboration with researchers in Rice
University’s Electrical and Computer Engineering Depart-
ment to improve the performance of digital signal processing
applications written in MATLAB.

In addition to uncovering a number of important insights
into the compilation of MATLAB, this work has validated
the fundamental hypothesis of telescoping languages that
substantive performance improvements can be achieved by
transforming a program to use specialized versions of proce-
dures in common contexts, such as loops. Two particularly
useful transformations, whose applicability extends beyond
the domain itself, are procedure vectorization and procedure
strength reduction [13], introduced in Section IV-C. These
optimizations can be effectively applied in the translator
generation process.

Traditional compilation systems tend to use inlining to get
whole-program optimizations. This is not the most desirable
strategy for domain-specific languages because it increases
the size of single procedures to the point where compile

times, which can increase nonlinearly with procedure size,
become intolerable. The lesson from our MATLAB study
is that it may be possible to discover an algebra of pro-
cedure optimizations that are analogs of operation-level
optimizations performed in conventional compilers (see
Section IV-B). Such optimizations may make it possible to
get the benefits of powerful optimization strategies without
excessive inlining into the user scripts.

B. Library Maintenance Using LibGen

Our colleague D. Sorensen of the Computational and
Applied Math Department is the principal developer of the
ARPACK library for large-scale eigenvalue problems. He
currently prototypes these libraries in MATLAB and then
translates them by hand to eight different variants (real and
complex, dense and sparse, symmetric and nonsymmetric
matrices) written in Fortran. His MATLAB prototype for
the key routine ArnoldiC currently takes about a page of
MATLAB to express.

We hypothesized that our basic MATLAB compilation
strategy (described in Section III), which is based on a
high-level type analysis system and is used to generate base
language code from scripts written in MATLAB, might
obviate the need for the hand translation step, the most
time-consuming part of the development of ARPACK.
As a demonstration, we undertook a project to construct
a translator that could generate type variants for any
MATLAB-specified library routine. We have come to
call this library generation system “LibGen,” for “Library
Generator.”

Using LibGen, we have been able to transform Sorensen’s
MATLAB program for ArnoldiC to produce Fortran versions
in all eight variants with performance comparable to his
hand-coded Fortran routines [44]. The performance results
for two of the variants are shown in Figs. 10 and 11. These
runs are on matrices of size 3200 by 3200 that are both
sparse; however, the dense numbers employ a dense repre-
sentation in MATLAB. Numbers for the MATLAB versions
are from the MATLAB 6.1 interpreter. The bars labeled

402 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 10. LibGen versus hand-coded ARPACK
on dense symmetric matrices.

Fig. 11. LibGen versus hand-coded ARPACK
on sparse symmetric matrices.

“ARPACK” represent the running times for the hand-coded
Fortran, while the bars labeled “LibGen” are for the Fortran
versions generated by our system. The LibGen-generated
versions perform slightly better than ARPACK because the
hand translation introduced overheads in the library interface
that are not present in the original MATLAB version.

These results make it clear that, with the complete Palomar
framework, we should be able to make hand translation com-
pletely unnecessary. However, Palomar would also make it
possible to produce a script compiler that would serve as an
integration system for the library: a kind of component in-
tegration system. The result would be a powerful tool that
could be applied to libraries in many other domains. The use
of Palomar as a component integration system will be dis-
cussed in Section V-E.

C. Computationally Intensive Statistics

Computationally intensive statistical methods, such as
Bayesian analysis, are required for many emerging prob-
lems; for instance, the analysis of very large data sets. For
many such analyses, a new statistical application specifying
the precise statistical model and computation required
must be developed. S is the language preferred by many
statisticians for developing new statistical models and
methodologies, partly because it includes native support
for vector and matrix data and operations, and intrinsic
high-level, complex statistical operations. S is also popular

because there is a very large, widely available collection of
external libraries and packages, many written in S itself,
for computing an extensive range of complex statistical
functions. Consequently, S greatly facilitates the rapid de-
velopment of new statistical models and methodologies.

For computation-intensive applications, however, S pro-
grams are far too slow for direct use. When presented with
a computation-intensive problem, many statisticians who
prefer S nevertheless abandon it for a lower level language,
such as C or Fortran, that is known to be more efficient. A
substantial drawback of this approach is that while a newly
conceived statistical method is being transformed into a
program, considerable time passes before even a preliminary
numerical evaluation of the new method can occur. Another
common approach is to develop a prototype in S and then
rewrite, or employ professional programmers to rewrite, the
S programs in an efficient, low-level language. As well as
being extremely time consuming, this rewriting step intro-
duces new possibilities for error. Both approaches require
staff versed in statistics, programming, and often high-per-
formance computing. Thus, there is no ideal language in
which to rapidly design, prototype, and perform full-scale
evaluation of computation-intensive statistical methods,
creating a fundamental bottleneck retarding the ability of
statisticians to solve many emerging statistical problems.

For many applications, time to solution is critical. For
instance, before a trial of a new cancer drug can begin,
cancer researchers must conduct an experiment to assess the
efficacy of the treatment and to maximize the accuracy of
estimation of confidence intervals for the relevant param-
eters associated with the trial’s results. These experiments
must be designed to minimize the risks and maximize the
benefits to all individuals participating in the trial. Since each
trial schema is different, a new experimental design must
be created and evaluated for each trial. Usually the exact
efficacy for specific cohorts undergoing the new treatment
is unknown, so extensive simulations of the experimental
design must be used to determine the design’s operating
characteristics under different assumptions about the new
treatment’s actual efficacy. These operating characteristics
can then be used to select the optimal design. Similarly,
new methodologies [25], [26], [59], [60], [61], such as
the analysis of gene expression microarray data and the
inclusion of such data into a clinical trial, must also often
be evaluated by extensive simulation. Clearly, it is highly
desirable to obtain the results of these computation-intensive
simulations as quickly as possible, to enable new clinical
trials to commence as soon as possible.

Currently, our collaborators at the M. D. Anderson
Cancer Center—K.-A. Do, P. Mueller, and P. Thall—de-
velop models of new experimental trial designs and new
statistical methodologies in S and employ programmers to
rewrite the S programs in a low-level language. As well as
considerably delaying the commencement of new trials, this
process also effectively excludes, for all except very small
trials, the possibility of adaptive designs in which interim
results can be used to guide subsequent redesigns in the
latter part of a trial.

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 403

Time to solution is also paramount for many other appli-
cations, such as the analysis of massive quantities of inter-
cepted communications for information relevant to national
security.

We are applying the telescoping languages strategy to the
construction of a script compiler for statistics. Our prelimi-
nary studies described in Section III-A have shown that such
a compiler, generated by Palomar, could make the manual
rewriting step unnecessary, which would dramatically speed
up the development of new computationally intensive statis-
tical methodologies.

D. Image Processing

MATLAB is widely used to express many image pro-
cessing and analysis algorithms. MathWorks, Inc., provides
an image processing toolbox that efficiently “provides a
comprehensive set of reference-standard algorithms and
graphical tools.”4 However, these tools are not, by them-
selves, sufficient to address the needs of researchers who are
adding new functionality at the forefront of the field. Our
goal in this effort is to support such researchers.

The processing of large images requires enormous
amounts of computation. To achieve reasonable perfor-
mance on such problems, the algorithms must be coded to
avoid particular language constructs, such as loops, wher-
ever possible. Unfortunately, because of memory hierarchy
issues, it is not practical to replace loops over an entire
image with whole-array operations. In some cases, a spe-
cial routine (blkproc) is used to apply a function to all the
subblocks of an image without incurring MATLAB’s loop
overhead. These issues detract from MATLAB’s suitability
for computation-intensive image processing, requiring ex-
tensive manual optimization of the MATLAB program or
its translation into a lower level language such as C. Our
preliminary analysis of signal processing applications in
MATLAB suggests that telescoping languages can help
overcome these problems.

We have enlisted the collaboration of two Rice University
faculty members, R. Baraniuk of Electrical and Computer
Engineering and W. Symes of Computational and Applied
Mathematics, to help us apply the telescoping languages
technology to their problem domains. Both of these re-
searchers would prefer to use MATLAB instead of low-level
languages. Baraniuk currently uses MATLAB, but execu-
tion times are problematic. Symes abandoned MATLAB,
primarily because of poor computational efficiency due
to memory-hierarchy effects mentioned earlier (see the
discussion of component integration below for another
reason). Specific algorithms whose MATLAB implementa-
tions are inefficient include wavelet-based statistical signal
processing [23] and image segmentation [16], [49].

In collaboration with these researchers, we plan to iden-
tify program transformations that improve the efficiency of
these and other image processing algorithms and to discover
strategies for automatically applying these transformations
to MATLAB libraries and applications. Our goal is to create

4See http://www.mathworks.com/products/image/

an environment in which image processing applications
can be expressed in natural, high-level MATLAB, that is,
without (significant) manual transformation aimed solely
at increasing performance, and in which these programs
will execute, after automatic transformation, with similar
performance to the best manually optimized code.

E. Component Integration and Parallel MATLAB

One of the major challenges to the goal of increasing the
productivity of programming professionals is developing
strategies to enhance software reuse. Although component
integration frameworks (e.g., COM [56] and CORBA [50])
are widely employed in commercial software development,
they are generally considered too inefficient for scientific
software development. The Common Component Architec-
ture (CCA) [2] initiative is trying to reduce the overheads to
levels that are acceptable to computational scientists.

Nevertheless, CCA-compliant component frameworks
still suffer from performance difficulties at the interfaces
for two reasons. First, they support dynamic component
selection which adds significant overhead to method invo-
cation and compounds the standard performance penalties
due to dynamic dispatch in object-oriented programs.
Second, components are treated in most frameworks as
black boxes to which cross-procedural optimizations cannot
be applied. Thus, opportunities for great improvements—in
some cases, by integer factors—are lost. These issues are
particularly critical when a component implementing a data
structure (e.g., sparse matrix) is to be integrated with a
component implementing functionality (e.g., linear algebra).
If component integration technology can be developed
to make it possible to separate data representation from
functional behavior without sacrificing performance, it will
dramatically improve the effectiveness and applicability of
component-based programming.

We plan to attack this problem using telescoping lan-
guages. Our initial strategy will be to abstract the matrix
representation by requiring a matrix to provide certain
methods, including those needed to get and put a single
element and get a row or a column. These methods will
be invoked by functional code in place of the usual ma-
trix addressing and access operations. This approach is
not unique—other research groups have developed such
abstractions [43], [51]. The value added by our approach
is that sequences of operations on the data structures can
be optimized in context by the Palomar-generated script
compiler. A facility like this would also make it possible
to include out-of-core arrays in MATLAB—the absence of
this capability is the second reason that our collaborator
W. Symes (see Section V-D above) abandoned MATLAB.

The key to success is for Palomar to generate a compiler
that can carry out analogs of standard addressing optimiza-
tions on sequences of accesses to the new access primitives.
An example is reduction in strength, by which the multiplica-
tions required by standard matrix addressing are replaced by
additions when successive elements are accessed in a loop.
This could be accomplished in the new matrix representation

404 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

by keeping track of the currently referenced element and pro-
viding a fast next entry to access the next element along some
dimension of the matrix. The code for this could be inlined
in the loop to ensure that performance of stepping through an
array is optimized.

A side benefit of this approach is that it leads to a strategy
to incorporate parallelism in array scripting languages such
as MATLAB. If we can extend MATLAB to deal with arrays
written in terms of the more general representations de-
scribed here, we can include the notion of data distributions
for arrays, which could specify that an array be allocated
across the nodes of a parallel machine. In addition to the
standard distributions (e.g., block and cyclic), the developer
could provide components implementing sparse or adaptive
structures, such as those based on space-filling curves.
The Palomar generator would speculatively apply both the
standard optimization and others specific to parallelism,
including distributed array allocation and communication
scheduling. Our research team is in an ideal position to
explore this strategy because we have already developed
a rich infrastructure for compiling distribution-based par-
allelism in High Performance Fortran [45]. This strategy
for parallelizing MATLAB, which generalizes the approach
taken by Otter [52], is appealing because it preserves the
simplicity of MATLAB while permitting sophisticated
data-structure developers to exploit parallelism with help
from the compiler and runtime system.

VI. RELATED WORK

Many projects have created optimizing MATLAB com-
pilers [15], [24], [46], [52], [54], and we will use and extend
their techniques as appropriate. Palomar, however, will
attack a more general problem: using high-level semantics
to automatically construct optimizers for domain-specific
languages.

The telescoping languages approach shares much in
common with other research [65] into simplifying the
generation of high-performance domain-specific language
translators. Palomar specifically requires new advances in
speculative procedure specialization and high-level program
transformation driven by annotations provided by library
designers.

Recent work by Cociorva et al. [17] uses dynamic pro-
gramming and (empirically derived) cost estimates to choose
among alternate parallel implementations of tensor contrac-
tion expressions. We expect to use a similar approach to
reason about implementation variants, although in the con-
text of more arbitrary code fragments and a wider set of
transformations.

Previous work on whole-program compilation has shown
the value of interprocedural dataflow information (a form
of context) applied to traditional languages [1], [7], [8],
[18]–[22], [34]–[36], [48], [53], [64].

However, these techniques are not sufficient for tele-
scoping languages because they require the libraries to
be included with the script in analysis and optimization.

Instead, our library preprocessing phase performs as much
of this analysis as possible offline.

The problem of how to specify transformations has been
studied by a number of other research projects. The code
composition approach of Catacomb [58] and expression
templates [66] enable optimizing transformations to be
coded independent of the compiler’s intermediate represen-
tation; however, while these approaches enable sophisticated
expansion of individual operations tailored for their context,
they do not support optimization across separate operations.
Alternatively, Lacey and de Moor [42] describe a general
method for specifying imperative program optimizations
as rewriting rules. Their transformations specify predicates
about what properties must match at certain nodes (e.g.,
definition or uses) along with a temporal logic notation
that specifies the truth of predicates over paths between the
nodes involved. They show that conventional optimization
strategies such as constant propagation, dead code elimi-
nation, and operator strength reduction can be described
conveniently using their notation. However, Lacey and de
Moor analyze only basic properties of nodes; user-defined
properties would also be useful. In our research on the spec-
ification of transformations, we plan to build on this work.

Procedure specialization has been widely researched in the
literature on interprocedural analysis [19], [31] and in work
on partial evaluation [5], [39]. Our strategy differs from the
previous work in that we aim not only to produce specializa-
tions of individual procedures, but also to explore opportu-
nities for decomposing and recombining procedures. Since
we will perform these transformations during library prepro-
cessing, when calling context is unknown, we must prepare
specializations for any expected contexts that could lead to
significant cost savings.

Previously, researchers have explored axiomatic ap-
proaches for optimizing domain-specific languages. Menon
and Pingali [46], [47] describe a set of hand-coded axioms
for matrix operations that are applied in a particular order to
optimize MATLAB programs. Weaver et al. [67] describe a
compiler representation that allows incorporation of user an-
notations concerning library properties such as associativity,
commutativity, and identity. We plan to extend this work by
deriving the optimizer automatically from the given axioms.

Guyer and Lin [31], [32] describe a compiler-based frame-
work and an annotation language that allows a library de-
veloper to guide optimization of calls to library operations.
Their notation language allows user-defined properties, but
only of enumerated values in a two-level lattice. The anno-
tations also can indicate when to remove an operation or re-
place it with a more specialized operation. We hope to extend
their work in pursuit of our goal of optimizing sequences of
library calls.

High-level rewriting systems for program optimization
have been extensively studied for functional languages [57]
and logic-based languages [55]. For instance, Jones et al.
[40] describe a simple rewriting system that is included in
the released Glasgow Haskell Compiler. However, imple-
menting rewriting systems for imperative languages is much
more difficult, requiring nontrivial program analyses. For

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 405

Palomar, the required analyses and their role in controlling
program transformation must be described by a general, yet
simple, notation.

The MAGIK system [27] gives advanced users the ability
to include domain-specific semantics into compilation, en-
abling high-level interface optimizers and checkers. MAGIK

is extended by dynamically linking C code with access to
the system’s intermediate representation. The KHEPERA

system [28] is similar, but includes a little language for
coding transformation rules. Both approaches require the
language-extension designer to know considerable detail
about the compiler’s internal representation and make lan-
guage extensions dependent upon a particular compiler
implementation. In contrast, for Palomar we aim to use
general annotations to portably describe domain-language
transformations independent of details of the compiler gen-
erator’s implementation.

VII. CONCLUSION

Although users appreciate the convenience (and, thus, im-
proved productivity) of using relatively high-level scripting
languages, the slow execution speeds of these languages
remain a problem. Lower level languages, such as C and
Fortran, provide better performance for production ap-
plications, but at the cost of tedious programming and
optimization by experts. If applications written in scripting
languages could be routinely compiled into highly optimized
machine code, a huge productivity gain would be realized.

If we are to achieve this goal, we must recognize that
conventional compilation technology, by itself, may not
be enough. In practice, scientists typically extend these
languages with their own domain-centric components,
such as the MATLAB signal processing toolbox. Doing
so effectively defines a new domain-specific language. To
address efficiency problems for such extended languages,
we must develop a framework for automatically generating
optimizing compilers for them.

Our group at Rice University has been exploring an
innovative strategy called telescoping languages that uses
a library preprocessing phase to extensively analyze and
optimize collections of libraries that define an extended lan-
guage. Results of this analysis are collected into annotated
libraries and used to generate a library-aware optimizer.
Since this preprocessing phase need be done only at infre-
quent “language-generation” times, its cost can be amortized
over many compilations of individual scripts that use the
library. The generated library-aware optimizer, which will
be run much more frequently to translate individual scripts,
uses the knowledge gathered during preprocessing to carry
out fast and effective optimization of high-level scripts.
This enables scripts to benefit from the intense analysis
performed during preprocessing without repaying its price.

Research to date has followed two lines of investigation:

• compiler technology for MATLAB and S using con-
straint-based type analysis to specialized calls to the
runtime libraries based on the operand types;

• compilation and optimization strategies within the
Palomar framework for generation of library-aware
optimizers.

This work has led to prototype compilers for MATLAB and
S, along with a prototype of the Palomar system based on
the MATLAB compilation system. We are in the process of
developing a more sophisticated Palomar system based on
the Open64 compiler infrastructure.

We are driving our research by exploring important ap-
plications of the telescoping languages strategy, including:
1) signal and image processing applications in MATLAB;
2) statistical calculations from scientific disciplines written
in the language S; 3) library maintenance and generation
systems, such as LibGen; and 4) component integration
frameworks for scientific software. This work has already
led to significant insights and preliminary results that
demonstrate performance improvements that are significant
enough to make recoding script-based applications in C or
Fortran unnecessary.

ACKNOWLEDGMENT

The authors would like to thank the referees for their
numerous constructive suggestions, which substantially
increased the quality of this paper.

REFERENCES

[1] F. Allen, “Interprocedural Data Flow Analysis,” IBM T. J. Watson
Research Center, Yorktown Heights, NY, Comput. Sci. RC 4633
(#20 545), 1973.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L.
Mcinnes, S. Parker, and B. Smolinsky, “Toward a common com-
ponent architecture for high performance scientific computing,” in
Proc. High Performance Distributed Computing Conf., 1999, p. 13.

[3] P. G. Selinger, M. M. Astrahan, R. Chamberlain, R. A. Lorie, and T.
Price, “Access path selection in a relational database management
system,” in Proc. 1979 ACM SIGMOD Conf., 1979, pp. 23–34.

[4] R. A. Becker, J. M. Chambers, and A. R. Wilks, The New S Lan-
guage. London, U.K.: Chapman & Hall, 1988.

[5] A. Berlin and D. Weise, “Compiling scientific code using partial
evaluation,” IEEE Computer, vol. 23, no. 12, pp. 25–37, Dec. 1990.

[6] B. Broom, R. Fowler, and K. Kennedy, “KelpIO: A telescope-ready
domain-specific I/O library for irregular block-structured applica-
tions,” in Proc. 2001 IEEE Int. Symp. Cluster Computing and the
Grid, pp. 148–155. Joint best paper in the cluster computing cate-
gory.

[7] M. Burke and R. Cytron, “Interprocedural dependence analysis and
parallelization,” presented at the SIGPLAN ’86 Symp. Compiler
Construction, Palo Alto, CA.

[8] D. Callahan, J. Cocke, and K. Kennedy, “Analysis of interprocedural
side effects in a parallel programming environment,” J. Parallel Dis-
trib. Comput., vol. 5, no. 5, pp. 517–550, Oct. 1988.

[9] D. Callahan, K. Cooper, K. Kennedy, and L. Torczon, “Interproce-
dural constant propagation,” presented at the ACM SIGPLAN ’86
Symp. Compiler Construction, Palo Alto, CA.

[10] J. M. Chambers, Programming with Data. New York: Springer-
Verlag, 1998.

[11] J. M. Chambers and T. J. Hastie, Statistical Models in S. London,
U.K.: Chapman & Hall, 1992.

[12] A. Chauhan and K. Kennedy, “Optimizing strategies for telescoping
languages: Procedure strength reduction and procedure vectoriza-
tion,” presented at the 15th ACM Int. Conf. Supercomputing, Sor-
rento, Italy, 2001.

[13] , “Reduction in strength of procedures: An optimizing strategy
for telescoping languages,” presented at the 2001 Int. Conf. Super-
computing, Sorrento, Italy.

406 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

[14] , “Slice-hoisting for array-size inference in MATLAB,” pre-
sented at the 16th Workshop Languages and Compilers for Parallel
Computing (LCPC’03), College Station, TX.

[15] S. Chauveau and F. Bodin, “Menhir: An environment for high per-
formance MATLAB,” Sci. Program., vol. 7, pp. 303–312, 1999.

[16] H. Choi and R. Baraniuk, “Multiscale document segmentation using
wavelet-domain hidden Markov models,” presented at the IST/SPIE
12th Annu. Int. Symp. Electronic Imaging 2000, Science and Tech-
nology, San Jose, CA, 2000.

[17] D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C.-C. Lam, P.
Sadayappan, and J. Ramanujam, “Global communication optimiza-
tion for tensor contraction expressions under memory constraints,”
presented at the International Parallel and Distributed Processing
Symp., Nice, France, 2003.

[18] K. Cooper, M. W. Hall, and K. Kennedy, “Procedure cloning,” in
Proc. 1992 IEEE Int. Conf. Computer Language, pp. 96–105.

[19] , “A methodology for procedure cloning,” Comput. Lang., vol.
19, no. 2, pp. 105–117, Feb. 1993.

[20] K. Cooper, M. W. Hall, and L. Torczon, “An experiment with inline
substitution,” Softw. Pract. Exper., vol. 21, no. 6, pp. 581–601, Jun.
1991.

[21] K. Cooper, K. Kennedy, and L. Torczon, “The impact of interpro-
cedural analysis and optimization in the IR programming environ-
ment,” ACM Trans. Program. Lang. Syst., vol. 8, no. 4, pp. 491–523,
Oct. 1986.

[22] K. D. Cooper, M. W. Hall, and L. Torczon, “Unexpected side effects
of inline substitution,” ACM Lett. Program. Lang. Syst., vol. 1, no.
1, pp. 22–32, Mar. 1992.

[23] M. Crouse, R. Nowak, and R. Baraniuk, “Wavelet-based statistical
signal processing using hidden Markov models,” IEEE Trans. Signal
Process., vol. 46, no. 4, pp. 886–902, Apr. 1998.

[24] L. A. DeRose, “Compiler techniques for MATLAB programs,”
Ph.D. dissertation, Univ. Illinois, Urbana-Champaign, 1996.

[25] K.-A. Do, B. M. Broom, and S. Wen, “Geneclust,” in The Analysis of
Gene Expression Data: Methods and Software, G. Parmigiani, E. S.
Garrett, R. A. Irizarry, and S. L. Zeger, Eds. New York: Springer-
Verlag, 2003, to be published.

[26] K.-A. Do, B. M. Broom, and X. Wang, “Importance bootstrap resam-
pling for proportional hazards regression,” Commun. Stat. Theory
Methods, vol. 30, no. 10, pp. 2173–2188, Aug. 2001.

[27] D. R. Engler, “Interface compilation: Steps toward compiling
program interfaces as languages,” Softw. Eng., vol. 25, no. 3, pp.
387–400, 1999.

[28] R. E. Faith, L. S. Nyland, and J. F. Prins, “KHEPERA: A system for
rapid implementation of domain specific languages,” in Proc. Conf.
Domain-Specific Languages, 1997, pp. 243–255.

[29] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database System
Implementation. Upper Saddle River, NJ: Prentice-Hall, 2000.

[30] J. Garvin, “RCC: A compiler for the R language for statistical com-
puting,” M.S. thesis, Rice Univ., Houston, TX, 2004.

[31] S. Guyer and C. Lin, “An annotation language for optimizing
software libraries,” in Proc. 2nd Conf. Domain-Specific Languages,
1999, pp. 39–52.

[32] , “Broadway: A compiler for exploiting the domain-specific
semantics of software libraries,” Proc. IEEE, vol. 93, no. 2, pp.
342–357, Feb. 2005.

[33] B. Hahn, Essential MATLAB for Scientists and Engi-
neers. London, U.K.: Arnold, 1997.

[34] M. W. Hall, “Managing interprocedural optimization,” Ph.D. disser-
tation, Dept. Comput. Sci., Rice Univ., 1991.

[35] M. W. Hall, B. R. Murphy, S. P. Amarasinghe, S. Liao, and M.
S. Lam, “Interprocedural parallelization analysis: A case study,” in
Proc. 8th Workshop Languages and Compilers for Parallel Com-
puting, 1995, pp. 61–80.

[36] M. Hind, M. Burke, P. Carini, and S. Midkiff, “Interprocedural array
analysis: How much precision do we need?,” presented at the 3rd
Workshop Compilers for Parallel Computers, Vienna, Austria, 1992.

[37] E. N. Houstis and J. R. Rice, “The engineering of modern interfaces
for PDE solvers,” in Symbolic Computation: Applications to Sci-
entific Computing, E. N. Houstis, J. R. Rice, and R. Vichnevetsky,
Eds. Amsterdam, The Netherlands: North-Holland, 1992, pp.
89–94.

[38] R. Ihaka and R. Gentleman, “R: A language for data analysis and
graphics,” J. Comput. Graph. Stat., vol. 5, no. 3, pp. 299–314, 1996.

[39] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Greneration. New York: Prentice-Hall, 1993.

[40] S. P. Jones, A. Tolmach, and T. Hoare, “Playing by the rules:
Rewriting as a practical optimization technique in GHC,” in
Preliminary Proc. 2001 ACM SIGPLAN Haskell Workshop, pp.
203–233.

[41] K. Kennedy, B. Broom, K. Cooper, J. Dongarra, R. Fowler, D.
Gannon, L. Johnsson, J. Mellor-Crummey, and L. Torczon, “Tele-
scoping languages: A strategy for automatic generation of scientific
problem-solving systems from annotated libraries,” J. Parallel
Distrib. Comput., vol. 61, pp. 1803–1826, Dec. 2001.

[42] D. Lacey and O. de Moor, “Imperative program transformation by
rewriting,” in Lecture Notes in Computer Science, Compiler Con-
struction, R. Wilhelm, Ed. Heidelberg, Germany: Springer-Verlag,
2001, vol. 2027, pp. 52–68.

[43] N. Mateev, K. Pingali, P. Stodghill, and V. Kotlyar, “Next-generation
generic programming and its application to sparse matrix computa-
tions,” in Proc. Int. Conf. Supercomputing, 2000, pp. 88–99.

[44] C. McCosh, “Type-based specialization in a telescoping compiler for
ARPACK,” M.S. thesis, Rice Univ., Houston, TX, 2002.

[45] J. Mellor-Crummey, V. Adve, B. Broom, D. C. Miranda, R. Fowler,
G. Jin, K. Kennedy, and Q. Yi, “Advanced optimization strategies
in the rice dHPF compiler,” Concurrency: Practice and Experience,
vol. 14, no. 8–9, pp. 741–767, 2002.

[46] V. Menon and K. Pingali, “A case for source-level transformations in
MATLAB,” in Proc. 2nd Conf. Domain-Specific Languages, 1999,
pp. 53–65.

[47] , “High-level semantic optimization of numerical codes,” in
Proc. Int. Conf. Supercomputing 1999, pp. 434–443.

[48] E. Myers, “A precise inter-procedural data flow algorithm,” pre-
sented at the 8th Annu. ACM Symp. Principles of Programming
Languages, Williamsburg, VA, 1981.

[49] R. Neelamani, J. Rombery, H. Choi, R. Riedi, and R. Baraniuk,
“Multiscale image segmentation using joint texture and shape anal-
ysis,” presented at the Wavelet Applications in Signal and Image
Processing, San Diego, CA, 2000.

[50] “The Common Object Request Broker: Architecture and specifi-
cation version 2.0,” Object Management Group, Needham, MA,
1997.

[51] W. Pugh and T. Shpeisman, “SIPR: A new framework for gener-
ating efficient code for sparse matrix computations,” in Proc. 11th
Int. Workshop Languages and Compilers for Parallel Computing
(LCPC), 1999, pp. 213–229.

[52] M. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao, “Preliminary
results from a parallel MATLAB compiler,” in Proc. Int. Parallel
Processing Symp., 1998, pp. 81–87.

[53] S. Richardson and M. Ganapathi, “Interprocedural optimization: Ex-
perimental results,” Softw. Pract. Exper., vol. 19, no. 2, pp. 149–169,
Feb. 1989.

[54] L. De Rose and D. Padua, “Techniques for the translation of
MATLAB programs into Fortran 90,” ACM Trans. Program. Lang.
Syst., vol. 21, no. 2, pp. 286–323, Mar. 1999.

[55] S. Seres and M. Spivey, “Higher-order transformation of logic pro-
grams,” in Proc. 10th Int. Workshop, Logic Based Program Systhesis
and Transformation, 2000, pp. 57–68.

[56] R. Sessions, COM and DCOM: Microsoft’s Vision for Distributed
Objects. New York: Wiley, 1997.

[57] G. Sittampalam and O. de Moor, “Higher-order pattern matching for
automatically applying fusion transformations,” in Proc. 2nd Symp.
Programs as Data Objects (PADO-II), 2001, pp. 218–237.

[58] J. Stichnoth and T. Gross, “Code composition as an implementation
language for compilers,” in Proc. Conf. Domain-Specific Languages,
1997, pp. 119–131.

[59] P. F. Thall, J. J. Lee, C. H. Tseng, and E. H. Estey, “Accrual strategies
for phase I trials with delayed patient outcome,” Stat. Med., vol. 18,
pp. 1155–1169, 1999.

[60] P. F. Thall and K. E. Russell, “A strategy for dose-finding and safety
monitoring based on efficacy and adverse outcomes in phase I/II clin-
ical trials,” Biometrics, vol. 54, no. 1, pp. 251–264, Mar. 1998.

[61] P. F. Thall and H. G. Sung, “Some extensions and applications of
a Bayesian strategy for monitoring multiple outcomes in clinical
trials,” Stat. Med., vol. 17, pp. 1563–1580, 1998.

[62] M. Tofte and L. Birkedal, “A region inference algorithm,” Trans.
Program. Lang. Syst., vol. 20, no. 4, pp. 734–767, Jul. 1998.

[63] M. Tofte and J.-P. Talpin, “Region-based memory management,” Inf.
Comput., vol. 132, no. 2, pp. 109–176, 1997.

[64] R. Triolet, “Interprocedural analysis for program restructuring with
Parafrase,” Dept. Comput. Sci., Univ. Illinois, Urbana-Champaign,
CSRD Rep. 538, 1985.

KENNEDY et al.: TELESCOPING LANGUAGES: A SYSTEM FOR AUTOMATIC GENERATION OF DOMAIN LANGUAGES 407

[65] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography,” SIGPLAN Notices, vol. 35, no. 6, pp.
26–36, 2000.

[66] T. Veldhuizen, “Expression templates,” C++ Rep., vol. 7, no. 2, pp.
21–31, Jun. 1995.

[67] G. E. Weaver, K. S. McKinley, and C. C. Weems, “Score: A compiler
representation for heterogeneous systems,” presented at the 1996
Heterogeneous Computing Workshop, Honolulu, HI.

[68] C. Whaley and J. Dongarra, “Automatically tuned linear algebra soft-
ware,” presented at the Int. Conf. Supercomputing’98, Orlando, FL.

[69] S. Wolfram, The Mathematica Book. Cambridge, U.K.: Cam-
bridge Univ. Press, 1999.

Ken Kennedy (Fellow, IEEE) received the B.A.
(summa cum laude) and M.S. degrees in math-
ematics and the Ph.D. degree in computer sci-
ence from Rice University, Houston, TX, in 1967,
1969, and 1971, respectively.

He is the John and Ann Doerr University Pro-
fessor of Computer Science and Director of the
Center for High Performance Software Research
(HiPerSoft) at Rice University, Houston, TX.
He has supervised 36 Ph.D. dissertations and
published two books and over 190 technical arti-

cles on compilers and programming support software for high-performance
computer systems.

Prof. Kennedy is a Fellow of the Association for Computing Machinery
(1995) and the American Association for the Advancement of Science
(1994). He received the 1995 W. Wallace McDowell Award, the highest
research award of the IEEE Computer Society, in recognition of his
contributions to software for high-performance computation. In 1999,
he was named the third recipient of the ACM SIGPLAN Programming
Languages Achievement Award. He was elected to the National Academy
of Engineering in 1990.

Bradley Broom (Member, IEEE) received the B.Sc. (with first-class
honors) and Ph.D. degrees in computer science degree from the University
of Queensland, Brisbane, Australia, in 1983 and 1988, respectively.

He is an Associate Professor in the Department of Biostatistics and Ap-
plied Mathematics at the University of Texas M. D. Anderson Cancer Center,
Houston, TX. He is also the Associate Director of the Gulf Coast Center for
Computational Cancer Research, a joint initiative between M. D. Anderson
and Rice University, Houston, for promoting research into novel computa-
tional methods in cancer research.

Arun Chauhan received the B.Tech. degree in electrical engineering and
the M.Tech. degree in computer science from the Indian Institute of Tech-
nology (IIT), New Delhi, in 1991 and 1993, respectively, and the Ph.D. de-
gree in computer science from Rice University, Houston, TX, in 2003.

Between his M.S and Ph.D. degrees, he worked with HCL-Hewlett
Packard Ltd., India, in the Technical Consultancy Group and as a Se-
nior Scientific Officer at IIT on a project to parallelize a medium-range
weather-forecasting model. He is currently a Visiting Assistant Professor
at Indiana University, Bloomington. His research interests are in compilers,
high-level programming systems, high-performance computing, and grid
computing.

Dr. Chauhan is a Professional Member of the Association for Computing
Machinery.

Robert J. Fowler received the A.B. degree in physics from Harvard Uni-
versity, Cambridge, MA in 1971 and the M.S. and Ph.D. degrees from the
University of Washington, Seattle, in 1981 and 1985, respectively.

He is a Senior Research Scientist and Associate Director of the Center for
High Performance Software Research at Rice University. His research inter-
ests are in the area of high-performance distributed and parallel computing.
Specific interests include compilers and programming environments, archi-
tectures, operating systems, performance evaluation, and simulation.

John Garvin received the B.S. degree from Yale University, New Haven,
CT, in 2001 and the M.S. degree from Rice University, Houston, TX, in
2004. He is currently working toward the Ph.D. degree in the Department
of Computer Science at Rice University.

His research interests include compilation of high-level programming lan-
guages, high-performance compiler optimizations for scientific computa-
tion, and performance issues in biostatistics.

Charles Koelbel received the B.A. degree from Augustana College, Rock
Island, IL, in 1983 and the M.S. and Ph.D. degrees from Purdue University,
West Lafayette, IN, in 1985 and 1990, respectively.

From 1998 to 2001, he served as a Program Director at the National Sci-
ence Foundation, where he helped coordinate the Information Technology
Research program. He is currently a Research Scientist in the Computer
Science Department at Rice University, Houston, TX. He has contributed
to many research projects while at Rice, including the High Performance
FORTRAN Forum. He just completed serving on the National Academies
of Science committee studying the Future of Supercomputing. He is coau-
thor of The High Performance Fortran Handbook (Cambridge, MA: MIT
Press, 1993) and many papers and technical reports.

Cheryl McCosh received the B.S. degree in mathematics from the Univer-
sity of North Carolina, Chapel Hill, in 2000 and the M.S. degree in com-
puter science from Rice University, Houston, TX, in 2003. She is currently
working toward the Ph.D. degree in computer science at Rice University
under the direction of Prof. K. Kennedy.

Her current research interests include high-performance computing, com-
ponent integration, and domain-specific languages.

John Mellor-Crummey received the B.S.E. degree magna cum laude in
electrical engineering and computer science from Princeton University,
Princeton, NJ, in 1984 and the M.S. and Ph.D. degrees in computer science
from the University of Rochester, Rochester, NY, in 1986 and 1989,
respectively.

In 1989, he joined Rice University, Houston, TX, where he holds the rank
of Associate Professor and Senior Faculty Fellow in both the Department of
Computer Science and the Department of Electrical and Computer Engi-
neering. Since 2002, he has been Deputy Director of the Center for High
Performance Software Research. His research focuses on compiler, tool and
runtime library support for high-performance computing.

Dr. Mellor-Crummey is a Member of the Association for Computing Ma-
chinery, the IEEE Computer Society, Tau Beta Pi, and Phi Beta Kappa.

408 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

	toc
	Telescoping Languages: A System for Automatic Generation of Doma
	KEN KENNEDY, FELLOW, IEEE, BRADLEY BROOM, MEMBER, IEEE, ARUN CHA
	I. I NTRODUCTION
	II. T ELESCOPING L ANGUAGES: G OALS, I MPLEMENTATION, AND A PPLI

	Fig.€1. Telescoping languages.
	A. Sample Applications of Telescoping Languages
	B. Implementation Overview
	III. S CRIPTING L ANGUAGE T RANSLATION
	A. Preliminary Studies
	MATLAB Optimization: As a prelude to our work on the use of MATL
	S Optimization: In collaboration with biostatistical researchers

	Fig.€2. Importance of type-based specialization.
	B. Generating Base Language Programs
	C. Type Analysis

	Fig.€3. Accuracy of type analysis.
	IV. L IBRARY A NALYSIS AND P REPARATION IN P ALOMAR

	Fig.€4. Library analysis and preparation with Palomar.
	A. Abstract Properties and Their Propagation
	B. Constructing a High-Level Transformation System
	Procedure Transformations: The first high-level transformation s

	Fig.€5. Applying procedure vectorization to $% \tt jakes$ _ $\tt m
	Fig.€6. Applying procedure strength reduction to procedures call
	User-Specified Transformations: User-specified high-level transf

	Fig.€7. Performance improvements due to procedure strength reduc
	C. Context-Driven Specialization
	Minimizing the Number of Variants: Previous work on whole-progra
	Variant Generation and Specialization: We plan to base the gener

	D. Implementation Status
	MATLAB Compiler: We have developed a rudimentary compiler for MA
	RCC: The R language [38] is a modernized version of the award-

	Fig.€8. Performance of RCC-generated code versus the R interpret
	Palomar: Our preliminary research has led to the development of

	Fig.€9. Organization of the first Palomar prototype system.
	V. A PPLICATIONS
	A. MATLAB for Signal Processing
	B. Library Maintenance Using LibGen

	Fig.€10. LibGen versus hand-coded ARPACK on dense symmetric matr
	Fig.€11. LibGen versus hand-coded ARPACK on sparse symmetric mat
	C. Computationally Intensive Statistics
	D. Image Processing
	E. Component Integration and Parallel MATLAB
	VI. R ELATED W ORK
	VII. C ONCLUSION
	F. Allen, Interprocedural Data Flow Analysis, IBM T. J. Watson R
	R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. Mcinne
	P. G. Selinger, M. M. Astrahan, R. Chamberlain, R. A. Lorie, and
	R. A. Becker, J. M. Chambers, and A. R. Wilks, The New S Languag
	A. Berlin and D. Weise, Compiling scientific code using partial
	B. Broom, R. Fowler, and K. Kennedy, KelpIO: A telescope-ready d
	M. Burke and R. Cytron, Interprocedural dependence analysis and
	D. Callahan, J. Cocke, and K. Kennedy, Analysis of interprocedur
	D. Callahan, K. Cooper, K. Kennedy, and L. Torczon, Interprocedu
	J. M. Chambers, Programming with Data . New York: Springer-Verla
	J. M. Chambers and T. J. Hastie, Statistical Models in S . Londo
	A. Chauhan and K. Kennedy, Optimizing strategies for telescoping
	S. Chauveau and F. Bodin, Menhir: An environment for high perfor
	H. Choi and R. Baraniuk, Multiscale document segmentation using
	D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C.-C. Lam, P.
	K. Cooper, M. W. Hall, and K. Kennedy, Procedure cloning, in Pro
	K. Cooper, M. W. Hall, and L. Torczon, An experiment with inline
	K. Cooper, K. Kennedy, and L. Torczon, The impact of interproced
	K. D. Cooper, M. W. Hall, and L. Torczon, Unexpected side effect
	M. Crouse, R. Nowak, and R. Baraniuk, Wavelet-based statistical
	L. A. DeRose, Compiler techniques for MATLAB programs, Ph.D. dis
	K.-A. Do, B. M. Broom, and S. Wen, Geneclust, in The Analysis of
	K.-A. Do, B. M. Broom, and X. Wang, Importance bootstrap resampl
	D. R. Engler, Interface compilation: Steps toward compiling prog
	R. E. Faith, L. S. Nyland, and J. F. Prins, KHEPERA: A system fo
	H. Garcia-Molina, J. D. Ullman, and J. Widom, Database System Im
	J. Garvin, RCC: A compiler for the R language for statistical co
	S. Guyer and C. Lin, An annotation language for optimizing softw
	B. Hahn, Essential MATLAB for Scientists and Engineers . London,
	M. W. Hall, Managing interprocedural optimization, Ph.D. dissert
	M. W. Hall, B. R. Murphy, S. P. Amarasinghe, S. Liao, and M. S.
	M. Hind, M. Burke, P. Carini, and S. Midkiff, Interprocedural ar
	E. N. Houstis and J. R. Rice, The engineering of modern interfac
	R. Ihaka and R. Gentleman, R: A language for data analysis and g
	N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation an
	S. P. Jones, A. Tolmach, and T. Hoare, Playing by the rules: Rew
	K. Kennedy, B. Broom, K. Cooper, J. Dongarra, R. Fowler, D. Gann
	D. Lacey and O. de Moor, Imperative program transformation by re
	N. Mateev, K. Pingali, P. Stodghill, and V. Kotlyar, Next-genera
	C. McCosh, Type-based specialization in a telescoping compiler f
	J. Mellor-Crummey, V. Adve, B. Broom, D. C. Miranda, R. Fowler,
	V. Menon and K. Pingali, A case for source-level transformations
	E. Myers, A precise inter-procedural data flow algorithm, presen
	R. Neelamani, J. Rombery, H. Choi, R. Riedi, and R. Baraniuk, Mu

	The Common Object Request Broker: Architecture and specification
	W. Pugh and T. Shpeisman, SIPR: A new framework for generating e
	M. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao, Preliminary re
	S. Richardson and M. Ganapathi, Interprocedural optimization: Ex
	L. De Rose and D. Padua, Techniques for the translation of MATLA
	S. Seres and M. Spivey, Higher-order transformation of logic pro
	R. Sessions, COM and DCOM: Microsoft's Vision for Distributed Ob
	G. Sittampalam and O. de Moor, Higher-order pattern matching for
	J. Stichnoth and T. Gross, Code composition as an implementation
	P. F. Thall, J. J. Lee, C. H. Tseng, and E. H. Estey, Accrual st
	P. F. Thall and K. E. Russell, A strategy for dose-finding and s
	P. F. Thall and H. G. Sung, Some extensions and applications of
	M. Tofte and L. Birkedal, A region inference algorithm, Trans. P
	M. Tofte and J.-P. Talpin, Region-based memory management, Inf.
	R. Triolet, Interprocedural analysis for program restructuring w
	A. van Deursen, P. Klint, and J. Visser, Domain-specific languag
	T. Veldhuizen, Expression templates, C++ Rep., vol. 7, no. 2, p
	G. E. Weaver, K. S. McKinley, and C. C. Weems, Score: A compiler
	C. Whaley and J. Dongarra, Automatically tuned linear algebra so
	S. Wolfram, The Mathematica Book . Cambridge, U.K.: Cambridge Un

