
Domain-Specific Type Inference for Library Generation in a
Telescoping Compiler

Cheryl McCosh
Rice University

Houston, TX 77005

chom@rice.edu

Arun Chauhan
Rice University

Houston, TX 77005

achauhan@rice.edu

Ken Kennedy
Rice University

Houston, TX 77005

ken@rice.edu

ABSTRACT
Telescoping languages is a strategy for allowing users to de-
velop code in high-level, domain-specific languages and still
achieve high performance. It uses extensive offline process-
ing of the library defining the language. This process spec-
ulatively determines the possible uses of the library subrou-
tines and generates variants specialized toward those uses.
LibGen is a telescoping-language system for generating high-
performance Fortran or C libraries with multiple specialized
variants from a single version of MATLAB prototype code.
LibGen uses variable types to guide specialization. Pre-
viously, we have shown that the generated code has com-
parable performance to hand-coded and optimized Fortran
libraries and that specialization on type is important for
achieving high performance.

In this paper, we describe the type inference system nec-
essary for LibGen to speculate on the possible variants of
library procedures and to generate code. We develop the
concept of type jump-functions, which describe the transfer
of type information through and across procedures. To com-
pute these type jump-functions, we develop a static type-
inference approach that uses a constraint-based formulation
and a graph-theoretical algorithm shown to be efficient un-
der conditions met in most practical cases.

1. INTRODUCTION
The productivity of the scientific computing community could
be dramatically improved if it were possible for applica-
tion developers to produce code by integrating components
in high-level, domain-specific scripting languages, such as
MATLAB. To this end, we have developed a framework,
called telescoping-languages, that makes this possible by
supporting high-level programming while achieving applica-
tion performance comparable to code written in lower-level
languages such as Fortran or C [22]. The framework accom-
plishes this by preprocessing the libraries that define the
language to produce efficient variants specialized for specific

domain
library

language
building
compiler

script script
translator

enhanced
language
compiler

optimized
object

program

Figure 1: Overview of the telescoping languages ap-

proach.

calling contexts. The compiler for user-developed scripts can
then replace calls to the general library subroutines with
calls to the appropriate variants given the specific calling
contexts. The strategy is shown pictorially in Figure 1.

In the process of our research, we have discovered that the
telescoping-language strategy can be applied to the task of
software library generation and maintenance. Library writ-
ers can develop and maintain a single version of their code in
a high-level language. The compiler is then responsible for
achieving high performance for the multiple possible uses
of the library. It generates several Fortran or C variants
specialized for the different possible calling contexts.

In previous work, we determined that type-based specializa-
tion was essential to achieve high performance, where the
“type” of an array variable is extended to include intrin-
sic type, size, dimensionality and sparsity pattern [6]. It is
therefore important to have numerous variants specialized
to the different possible types of input parameters to the
library routines. We showed that, if this is done, the library
procedures automatically generated from MATLAB proto-
type code had runtimes comparable those of the hand-coded
Fortran library. This paper elaborates the type inference
framework used to obtain these results.

Because the library-building compiler, LibGen, must ana-
lyze the library procedures without knowledge of the calling
context, during the type-inference phase, it generates type
jump-functions, which summarize the types of the local vari-
ables in a procedure in terms of the types of the inputs. A
variant for each possible configuration of input types is then
generated. In order to avoid code explosion, the type infer-
ence system must determine which variants might actually

occur in practice and lead to significant performance im-
provement.

Unfortunately, existing type-inference solutions for MAT-
LAB do not meet these needs. We, therefore, developed
a new approach that uses a propositional, constraint-based
formulation and a graph-theoretical algorithm to find the
solution. We show that the algorithm is efficient under rea-
sonable assumptions and that it discovers all valid config-
urations of variable types. The algorithm works well with
annotations from the library writer in that it can use the
annotations to tighten constraints on the variables. The
solution produced by the algorithm provides a basis for a
dynamic phase of type inference called slice hoisting [5] and
ultimately to the generation of specialized variants.

We begin with a brief discussion of the static type infer-
ence problem in MATLAB. We then introduce our imple-
mentation strategy and propositional formulation. This is
followed by a description of our solution, first for single pro-
cedures, then for the interprocedural problem. In Section 5,
we demonstrate how our solution can be applied to inferring
MATLAB types. We show the results of our experiments in
Section 6.

2. TYPE INFERENCE PROBLEM
Inferring types is important in realizing the goals of language
generation in telescoping languages. Type inference is nec-
essary for determining which operations are being called and
which variants should be generated. In MATLAB, type in-
ference is needed to translate to Fortran or C where types
are stated explicitly.

For the purposes of this paper, we restrict ourselves to a
core of the MATLAB language used in an overwhelming
majority of scientific applications. This excludes dynamic
evaluation of strings as code, the rather primitive object
oriented features, and structured types (although, the last
can be handled by a very simple extension of our ideas).

2.1 Features of MATLAB
MATLAB’s simplicity makes it popular among program-
mers, as is evidenced by the large number of licenses.1 How-
ever, some of the very features that make MATLAB a de-
sirable language for programming make it difficult for the
compiler to translate to lower-level languages. Some of these
features include:

1. MATLAB is weakly-typed. This makes inferring in-
trinsic types necessary to generate code in lower-level
languages, all of which require explicit typing.

2. Variables can change types in the middle of the pro-
gram, including arrays growing in the middle of a loop.
Inferring the maximum size of a loop would avoid re-
allocating the array at every iteration.

3. Operators are heavily overloaded. For example, the
∗ operation can refer to both matrix-matrix multipli-
cation and matrix scaling depending on the operand

1Mathworks quoted the number of licenses after 2001 to be
500,000

types. Determining whether a variable is a scalar or
an array is important both for determining which vari-
ant to call and in determining the types of the variables
defined by the statement.

4. All variables are treated as arrays, including scalars,
which are 1 × 1 arrays. Therefore, all variables have
array properties that must be inferred.

These features not only make type inference essential, they
also make it difficult to statically determine the tightest
types of the variables. Obviously, assuming every variable
to be the most general possible type would be correct, but
would not present enough optimization opportunities.

MATLAB’s features require that the notion of type be ex-
tended to include other properties of variables beyond intrin-
sic type in order to translate to efficient lower-level code.

2.2 Type Problems
In order to carry out specialization based on variable types,
we first define the variable properties that are of interest.
In general, the properties should be such that they can be
encoded in the target language and the compiler for that lan-
guage can leverage the information for optimization. They
should also reflect the power of the source language. Since
the focus of this work is on numerical applications highly
oriented towards array manipulations, we use the 4-tuple
definition of a variable type used by deRose [12]. We define
a type to be a tuple T = <τ , δ, σ, π> where,

τ is the intrinsic type of the variable (e.g., integer, real,
complex).

δ is the upper bound on the number of dimensions for an
array variable, also called the rank. A tighter bound
can be reached when the type inference system deter-
mines that the variable has a size of 1 in one or more
dimensions. δ will always be greater than 2.

σ is a tuple showing the maximum size of an array vari-
able in each possible dimension. σA =< 1, 1 > means
that A is a scalar.

π is the “pattern” of an array variable (e.g., dense, tri-
angular, symmetric, etc.).

This list can be extended as needed for other languages and
other problems.

To avoid coincidental sharing of names among unrelated val-
ues (and hence types) of variables, we assume that the func-
tion has been converted to SSA form [10] so that each use
of a variable refers to exactly one definition. Redefinition of
a section of an array results in a new array. Type inference
treats each SSA renamed variable as a distinct variable. A
post-pass recombines names as much as possible to avoid
copying.

In many cases, the library writer may have intended multiple
interpretations of the same MATLAB code. The overloaded
operators and weak typing are, in fact, one of the reasons

why MATLAB is an easy language to program. The com-
piler must account for all the intended possibilities.

In MATLAB programs, the type of a variable depends on:

1. the operation that defines the variable and

2. the operations that use the variable, since operations
impose type restrictions on their inputs.

The first causes forward propagation of variable properties
along the control flow, while the second causes backward
propagation. The type-inference system must infer types in
both direction to have the tightest outcome.

2.3 Type Jump-Functions
The LibGen compiler has the extra burden of inferring types
in the context of telescoping languages where the calling
context is unknown during library compilation. The type-
inference system must define the types in terms of the inputs
so that during script-compilation time when the calling con-
text is available, the correct types for the local variables are
known. To handle this, we define type jump-functions akin
to those used in interprocedural analysis [3, 16]. Return
type-jump-functions, which define the types of the outputs
in terms of the types of the inputs, handle the propagation
of type information across procedures.

3. ALGORITHMIC OVERVIEW
We define a type configuration to be a set of valid type as-
signments, one for each variable. The type-inference algo-
rithm must be able to infer all valid type configurations on a
given lattice for a given subroutine. Each type configuration
corresponds to a separate variant. Type configurations are
tabular representations of type jump-functions discussed in
the previous section.

3.1 Dataflow Frameworks
Telescoping languages proposes pre-compiling libraries be-
fore the calling-context is known. Therefore, MATLAB type-
inference systems such as FALCON and MaJIC will not suf-
fice, since FALCON relies on inlining to exactly determine
types, and MaJIC determines types, in part, during a just-
in-time compilation step. Moreover, both systems rely on
dataflow analysis that converges on a single type for each
variable.

There are two main difficulties to using a dataflow analysis
framework.

1. It is difficult, if not impossible, to determine that the
analysis halts on a given subroutine. This is partially
due to the fact that information flows in both direc-
tions, but also, the lattices for some of the components
of T do not meet the requirements for provable termi-
nation, specifically a finite-depth lattice.

2. The compiler must find all of the type solutions allowed
by the function. Therefore, dataflow analysis is ill-
suited for the problem, since if the analysis converges,
it converges to a single solution (as in FALCON) or to

a single general set of types. In the first case, there is
not enough specialization opportunity. In the second
case, the compiler generates more variants than neces-
sary for calling contexts that would never occur. For
example, one variable may prove to be complex only if
the input is complex. Therefore, a variant would not
be needed for the case where the input is real and the
variable is complex.

Rather than solving a dataflow framework, we propose using
a propositional formulation.

3.2 Propositional Formulation
We developed an alternative to the dataflow solution that
analyzes the whole procedure simultaneously rather than
iteratively. The compiler determines the information that
each individual operation or procedure call gives about the
types of the variables involved and then combines that infor-
mation over the entire procedure. Thus, forward and back-
ward inference occur simultaneously.

The information from the operations is given in the form of
propositional constraints on the types of variables involved
in the operation. MATLAB operations, and typical library
procedures, are heavily overloaded. Therefore, a type con-
straint on an operation needs to allow all possible valid type
configurations on the variables involved. The possible type
configurations in a constraint are composed through logi-
cal disjunction and are called clauses. Figure 2 shows an
example of size constraints on the MATLAB multiplication
operation, “*”. These clauses are defined to be mutually
exclusive. Thus, each clause represents a distinct type con-
figuration. The constraints are formed using a database of
return type-jump-functions containing one entry per proce-
dure or operation.

In a correct program, the type of a variable must satisfy all
the constraints imposed by all the operations that can fea-
sibly execute in any run of the program. This is equivalent
to taking a conjunction of the constraints over the func-
tion and finding all possible type configurations of variables
that satisfy the resulting boolean expression. This problem
is NP-hard.2 However, under certain conditions that oc-
cur most frequently in practice, we can devise an efficient
algorithm using the specific properties of the problem.

4. AN EFFICIENT ALGORITHM
We start by describing the general algorithm for inferring
types, and then discuss how to apply it to the type problems
for MATLAB in the subsequent section.

First, there are a number of assumptions necessary for this
algorithm to perform correctly.

1. The type-inference engine has valid code on input (i.e.,
all variables are defined before being used and the
types of the variables are consistent).3

2The well known 3-SAT problem can be reduced to this
problem.
3This is a reasonable assumption for MATLAB programs
since users can develop and test their code in the MATLAB
interpreter before giving them to the optimizing compiler.

c = mlfMtimes (a, b)

σc = <1, 1> & σa = <1, 1> & σb = <1, 1> |
σc = <$1, $2> & σa = <1, 1> & σb = <$1, $2> |
σc = <$1, $2> & σa = <$1, $2> & σb = <1, 1> |
σc = <$1, $3> & σa = <$1, $2> & σb = <$2, $3> |
σc = <1, 1> & σa = <1, $1> & σb = <$1, 1>

Figure 2: Example of a constraint for the size inference

problem on the MATLAB “*” operator which is inter-

nally implemented as a call to the library function called

mlfMtimes. The $-variables are simply place holders for

integer values representing sizes. Each $-variable is only

used for a single constraint. This constraint keeps track

of when a variable is a scalar or an array. If a $-variable

appears in the clause, it is assumed that the variable can-

not be a scalar, although $-variables may evaluate to 1.

The first clause states that the operation is scalar mul-

tiplication. This second and third clauses state that this

is a scaling operation. The fourth clause shows the op-

eration is matrix-matrix or matrix-vector multiplication.

The last clause gives the possibility that the operation is

the multiplication of two vectors. This last case is neces-

sary to keep track of the fact that c may be scalar. Oth-

erwise, if c were used later, the compiler would assume

it was not scalar and would make incorrect inferences

based on that assumption.

2. All global variables have been converted to input and
output parameters.

3. The number of input and output parameters in each
operation or procedure is bounded by a constant. This
property is important to limit the complexity. Param-
eter lists do not grow with the size of the procedure [8].
Also, few programmers use global variables excessively.

4. To form the operation constraints, the algorithm re-
quires the compiler to already have return type-jump-
functions on all the operations and procedures called
by the procedure.

4.1 Reducing to the Clique Problem
After the constraints for each operation have been deter-
mined, the compiler must reason about them over the whole
procedure. That is, it must find all possible type config-
urations that satisfy the whole-procedure constraint. By
representing the operation constraints as nodes in a graph,
the problem is reduced to finding n-cliques, where n is the
number of operations in the procedure.

Figure 3 shows a simple example of how the graph is con-
structed for size constraints. Each possible type configura-
tion for that operation, or clause, is represented by a node at
the level corresponding to its statement. There is an edge
from one node to another if the expressions in the nodes
do not contradict one another. There is no edge from 1b

to 2b since c cannot be both scalar and non-scalar. Note
that since each clause is mutually exclusive, there is no edge
between nodes on the same level.

The final graph has n levels, where n is the number of oper-
ations or procedure calls. Each level is bounded by lv nodes,

A = b + c

1a σA = <1, 1> & σb = <1, 1> & σc = <1, 1> |
1b σA = <$1, $2> & σb = <1, 1> & σc = <$1, $2> |
1c σA = <$1, $2> & σb = <$1, $2> & σc = <1, 1> |
1d σA = <$1, $2> & σb = <$1, $2> & σc = <$1, $2> |

E = c - d

2a σE = <1, 1> & σc = <1, 1> & σd = <1, 1> |
2b σE = <$3, $4> & σc = <1, 1> & σd = <$3, $4> |
2c σE = <$3, $4> & σc = <$3, $4> & σd = <3, 1> |
2d σE = <$3, $4> & σc = <$3, $4> & σd = <$3, $4> |

2d2c2b2a

1d1a 1b 1c

Figure 3: Example graph.

where l is the number of entries in the type lattice, which
is assumed to be bounded by a small constant, and v is the
number of variables involved in the operation, also assumed
to be small by the third assumption. lv is the number of pos-
sible type configurations for the variables in the operation
corresponding to that level, since there are l possibilities for
each variable. Since both l and v are assumed to be bounded
by small constants, lv is bounded by a constant.

Finding possible constraints over the entire procedure corre-
sponds to finding sets of clauses that do not contradict each
other such that there is one clause from each operation or
procedure call. Having at least one clause from each oper-
ation constraint is necessary since otherwise, the resulting
types will not hold over the entire procedure. On the graph,
this is exactly the problem of finding all n-cliques (where
n is the number of levels in the graph, and a clique is a
complete subgraph) such that each n-clique has exactly one
node from each level.

4.2 Description of the Algorithm
In order to show that using cliques to determine types is
viable, we must show that the number of type configurations
is bounded by a small number, and from this, that the total
number of n-cliques is bounded by a small number.

Let u-vars be defined as the smallest set of variables such
that all other variable types can be determined from the
types of the u-vars. U-vars represent the set of variables that
cannot be exactly determined statically (i.e., input types).4

For the simple case where all operations are input-dependent,
u is bounded above by the number of input parameters and
is therefore small.

We define a valid procedure to be a procedure with the

4The algorithm may be able to infer exact types for some
or all of the u-vars by their subsequent uses.

property that all definitions of variables occur lexically be-
fore any of their uses. In the case of control flow, φ nodes
ensure this property for correct code.

Theorem 4.1. The number of possible type configurations
is bounded by lu, where l is the size of the type lattice and u

is an upper bound on the number of u-vars.

Proof: By the definition of u-vars, all other variable types
excepting the u-vars can be statically determined in terms
of the types of the u-vars. Therefore, the total number of
possible configurations over all the variables is just the num-
ber of possible configurations of the u-var types. This is lu

since each u-var could potentially take on l types. 2

Theorem 4.2. The number of n-cliques is bounded by lu.

Proof (by contradiction): We start by assuming there are
two distinct cliques that represent the same type assignment
to the variables. The cliques must differ at least at one level.
Since expressions in nodes of the same level contradict each
other (hence, the need for the clauses to be mutually ex-
clusive), at least one variable must have a different type.
Therefore, the two cliques cannot have the same type as-
signment to the variables. 2

Finding n-cliques is NP-Complete. However, we claim that
given the structure of the problem, there is an algorithm
that finds n-cliques in polynomial time given a bound on u.

The solution must be able to take advantage of the specific
properties of the problem. Figure 4 gives a simple iterative
algorithm to achieve this. The algorithm starts with one
level and puts each node in that level in its own clique. For
each subsequent step, it compares each node in the current
level with each already formed clique. If the node has an
edge to every member of the clique, it forms a new clique
with the old clique. It does this until it reaches the last level.
Figure 5 demonstrates the algorithm on an example graph.
In each step, the lighter nodes and edges are part of one or
more cliques. Because this algorithm follows the structure
of the graph, it is easier to show that certain properties hold.

The loop starting on line 4 in Figure 4 iterates over the
cliques from the previous step. Because the bound of lu

only holds for the final number of cliques, we need to find
a bound on the number of intermediate cliques to limit the
complexity.

Theorem 4.3. The number of cliques at each step of the
iterative n-clique-finding algorithm is bounded by lu if the
levels are visited in program order.

Proof: We have from above that on valid procedures there
is an upper bound of lu on the number of cliques. At any
operation or procedure call, the rest of the code can be left
off and the remaining (beginning) code is still valid. There-
fore, since every iteration of the algorithm has processed
valid code, if the levels are in program order, after every

input: graph G

output: CurrCliques

initialize CurrCliques to be nodes on first level

1 for every level r in G after first

2 newCliques = empty

3 for every node n in r

4 for every clique c in CurrCliques

5 candidate = true

6 for every node q in c

7 candidate = candidate & edge?(n,q)

8 end for

9 if (candidate)

10 then newCliques = newCliques + clique(c, n)

11 end for

12 end for

13 CurrCliques = newCliques

14 end for

Figure 4: Iterative n-clique finding algorithm.

iteration, the algorithm will have produced cliques on valid
code. The number of cliques after every iteration must be
bounded by lu. 2

With lu cliques after every iteration, the n-clique-finding al-
gorithm takes lvlun2 steps, where n is the number of opera-
tions, lv is the maximum number of nodes in a level, and u is
the number undeterminable variables. Therefore, the over-
all time complexity is O(n2) if lu is bounded by a constant,
which is true when all operations are input dependent.

Of course, in MATLAB, not all operations are input depen-
dent. For some operations, the types of the outputs could
depend on the values of the inputs rather than the types.
This means that an operation could produce multiple out-
put types on a given set of input types. Variables defined
by such operations are u-vars.

Also, loops as well as branch statements use control-flow
constructs. In the SSA representation φ-functions represent
a merger of variable values under the assumption that every
control-flow branch can be taken. As a result, φ-functions
also represent the meet operation for types. The φ-nodes
themselves do not need to be dealt with explicitly by the
algorithm, but the introduction of a new variable defined by
the φ-node causes an u-var if used later in the program.

Both of these situations increase u to the number of inputs
and the number of variables defined by non-input-dependent
operations or φ-nodes in pruned SSA form.5 Although u

could now be as large as the number of operations and pro-
cedures in the function, in actuality, this number should still
remain small, since few operations are not input-dependent,
and the amount of control flow usually remains small. Note
that the algorithm works even without this assumption, but
the complexity could become exponential in the worst case.
If the amount of control flow does become large, the analy-

5We can get the benefit of working with pruned SSA with-
out requiring the code to be in the pruned form, since if a
variable is never used, it never appears in a constraint.

Figure 5: Example of n-clique-finding algorithm. Each row represents a level in the graph.

sis can split the graph at statements corresponding to join
points, and the cliques can be merged when the all the pieces
have been analyzed. This can greatly reduce the complexity.

4.3 Annotation Issues
One of the key ideas in telescoping languages is allowing
the compiler to utilize the knowledge of the library writer
through annotations. This information is important in know-
ing what cases can and cannot occur in practice, which the
compiler alone may not be able to infer.

The library writer can provide type information on the pa-
rameters of the procedure to be analyzed. In the absence
of source code, this will suffice for the return type jump-
function. These annotations can also greatly help the com-
piler in analyzing the procedure. The compiler treats these
annotations as constraints on the procedure header, which
corresponds to the zeroth level in the graph. Any cliques
occurring in the graph must have part of the user-defined
annotations as one of their nodes. Annotations can greatly
reduce the number of possible cliques and, therefore, spe-
cialized variants. They can also reduce the runtime of the
algorithm.

4.4 The Result
The compiler needs a set of possible type configurations.
Each clique represents a different type configuration. How-
ever, the equations in each clique still need to be solved to
determine the type configurations. The compiler solves the
equations using standard methods depending on the type
problem.

For each resulting type configuration over the input param-
eters, the compiler creates an individual specialized and op-
timized variant. The appropriate variant is linked directly
with the user script at script compilation time.

The compiler is not able to generate specialized variants for
the added cliques corresponding to decisions from φ nodes
and non-input-determined operations. However, the com-
piler can generate specialized paths from the control-flow
points and operations if it can determine that optimizing
would be beneficial. For example, the compiler would want
to have separate paths if the outcome of the φ node could
either be real or complex. Since this could cause an increase
in the size of the code, the compiler must be careful about
how many specialized paths are generated. Ultimately, the
compiler could allocate the meet of the types to the variable
on all paths unless the meet operation produces ⊥.

In generating the optimized variants, the compiler is able to
merge arrays treated as distinct by SSA if beneficial. The

type of the resulting array is the meet of the types of all the
variables being merged. This avoids wasteful copying.

Once the compiler has information about the inputs and
outputs to the analyzed procedure, it computes a return
type jump-function describing the library procedure. These
will help in inferring types for calling procedures.

4.5 Interprocedural Inference
When the algorithm encounters a procedure call or a built-
in operation, it looks in the database for the appropriate
return type jump-function to build the constraints at that
statement. Therefore, the algorithm assumes that these re-
turn type-jump-functions have already been computed for
every called procedure. Therefore, type inference must have
been performed in postorder on the call graph so that the
children of a node are analyzed before the node itself. If
the compiler encounters a procedure call for which there is
no type jump-function, it simply considers the variables un-
constrained by that statement. This degrades the analysis
of the algorithm, although it does not affect the correctness.
However, in the case of a cycle in the call graph or recursion,
tighter information can be gained by iterating over the cycle
until a fixed-point is reached. We have shown that a fixed-
point can be reached in a constant number of iterations.

5. INFERRING T
The algorithm described in the previous section can be ap-
plied to the type problems discussed in Section 2. The com-
piler infers each element of T in a separate pass and then
takes the cross product of the different types to determine
which variants are necessary. It can handle types separately
since, except for δ and σ, the types are independent of each
other, although knowing that a variable is scalar makes pat-
tern inference unnecessary.

5.1 Inferring Number of Dimensions and Size
Before size inference can occur, an upper bound on the num-
ber of dimensions of an array is needed to determine the
number of fields in σ. Only an upper bound is needed since
the size inference will determine the actual dimensionality by
inferring that some dimensions have size 1. Inferring dimen-
sionality involves a single pass over the code to determine
which dimensions of each variable are accessed explicitly or
are used by an operation. If an upper bound cannot be
determined (some operations have no limit on the number
of dimensions), a dummy field in the size tuple is used to
represent the sizes of dimensions beyond what is explicitly
referenced.

Forming constraints for the size-inference problem has al-
ready been shown in Figure 2. Because of the infinite depth

of the size lattice, the actual lattice used to determine com-
patibility consists of only information about whether the
variable is a scalar or not. This means l = 2 for inferring
sizes in the algorithm. Since many operators are overloaded
based on these properties, they are necessary for the algo-
rithm to make correct inferences. Since a variable cannot be
both a scalar and a non-scalar, two nodes are not compat-
ible if a variable is constrained to be a scalar in one node,
and a non-scalar in the other.

The algorithm constrains the actual sizes of the variables by
using $-variables. Since each $-variable can be used in mul-
tiple variable sizes, they capture the size relationships be-
tween the variables in a single operation. The fields in σ can
be defined to be constants, $-variables, or linear expressions
involving both. Thus far, these expressions are sufficient to
represent the size relationships between the variables.

Once cliques are found based on the scalar/non-scalar in-
formation, the actual sizes of the arrays in each dimension
are inferred by solving the equations from the nodes in the
clique using a variant of techniques used for solving linear
Diophantine equations. All the variable sizes are computed
in terms of the sizes of the u-vars (i.e., parameters, vari-
ables defined by φ nodes, etc.). The u-vars themselves may
be statically inferred. In some cases, it is determined that a
clique is invalid if there is no solution from the solver.

Through using a combination of two lattices, the algorithm
is able to avoid the problems caused by the infinite-depth
size-lattice. The dataflow framework is unable to track the
size relationships over the finite lattice, and therefore cannot
leverage benefit from such a split.

5.2 Inferring Intrinsic Type and Pattern
Intrinsic type and pattern inference differ only in the lattices
used. The problems of inferring intrinsic types and patterns
differ from inferring size in that the algorithm only operates
on single, finite lattices. Therefore, the constraints are for-
mulated differently. The constraints must restrict variables
to a range of types on the respective lattice. Using ranges
allows for values of types lower in the lattice than those de-
fined by the parameter type specifications to be accepted as
input. For example, an input argument that is defined as
type real could actually be of type int when called. It also
reduces the number of cliques, since each node in a level can
represent multiple possibilities.

For the operation, A = mean(x), the constraints are:
(real ≤ τA ≤ real) &(⊥≤ τx ≤ real)|
(comp ≤ τA ≤ comp) &(comp ≤ τx ≤ comp)

Two constraint clauses are not compatible if a variable is in
both clauses and its ranges do not intersect. The compiler
still needs mutual exclusivity for the algorithm to run prop-
erly. Also, since maintaining the input dependence property
is important in reducing the complexity, when possible, the
constraints are formulated so that the same input configu-
ration should give only one type of output.

Once the compiler has found the cliques, solving the equa-
tions corresponds to taking the intersection of all ranges for

each variable over the clique.

The lattices for the intrinsic type and shape problems in-
clude a topmost element which is the most general case, a ⊥,
which represents invalid types, and intermediate elements.
The meet between two elements is the top-most intersection
of their paths from the bottom element.

LibGen allows the library writer to extend the type inference
problem with new type problems not handled by size, shape
and intrinsic type. The new problems, like intrinsic type
and shape, must work on a single finite lattice. The library
writer extends the inference problem by including a new
base lattice for the new type problem.

6. EXPERIMENTAL EVALUATION
The algorithm discussed in this paper is currently being used
as part of LibGen, a telescoping compiler for library gener-
ation. LibGen generates specialized Fortran or C variants
based on the types inferred from the static analysis. The
type configurations inferred by the algorithm from the MAT-
LAB function ArnoldiC6 are shown in Figure 6. The SSA
form of ArnoldiC is used to show the relationship between
the variables and their types in the type configurations. The
type configurations shown can be exactly inferred given the
types of the inputs. For example, if A1 is non-scalar, then
the last type-configuration should be used. This last con-
figuration is, in fact, the only configuration intended by the
library writers. An annotation stating that the input A is
never scalar would have allowed the compiler to exactly infer
the single type-configuration.

These three configurations are the valid subset of the au-
tomatically inferred configurations. In our current version
of the compiler, we have not yet fully handled subscripted
array-accesses, which is necessary to get the tightest con-
straints. We anticipate that this will be in place before the
final submission deadline.

The actual number of inferred array types for both the size
problem and the intrinsic type problem is shown in Figure 7
along with the compile times for inferring the configurations,
including solving the cliques. The procedures used are all
under forty lines. This is typical of the MATLAB develop-
ment code, since programmers can describe their problems
more succinctly in MATLAB.7 All these procedures took
under five seconds to compile despite the variations in code
length and number of u-vars. The interprocedural solution
is also implemented in the current version of the compiler.
We show this with recursive code from a DSP library.

The compiler was run on a 1 GHz PowerPC G4 with the -g

option.

7. RELATED WORK
MCC is the MATLAB to C compiler provided by Math-
works. The MCC output makes the library calls that would
have been made by the interpreter. At the top level, the
variables are still treated as arrays of a general type.

6This function is from the ARPACK development code.
7The hand-coded ARPACK version corresponding to
ArnoldiC was over eighty pages long.

config A config B config C
σA1 <1, 1> <1, 1> <$1, $1>
σv1 <1, 1> <$1, 1> <$1, 1>
σk1 <1, 1> <1, 1> <1, 1>
σv2 <1, 1> <$1, 1> <$1, 1>
σw1 <1, 1> <$1, 1> <$1, 1>
σα1 <1, 1> <1, 1> <1, 1>
σf1 <1, 1> <$1, 1> <$1, 1>
σc1 <1, 1> <1, 1> <1, 1>
σf2 <1, 1> <$1, 1> <$1, 1>
σα2 <1, 1> <1, 1> <1, 1>
σV1 <1,> <$1,> <$1,>
σf3 <$1, $1> <$1, $1> <$1, $1>
σβ1 <1, 1> <1, 1> <1, 1>
σv3 <$1, 1> <$1, 1> <$1, 1>
σV2 <$1,> <$1,> <$1,>
σw2 <$1, 1> <$1, 1> <$1, 1>
σh1 <j, 1> <j, 1> <j, 1>
σf4 <$1, 1> <$1, 1> <$1, 1>
σc2 <j, 1> <j, 1> <j, 1>
σf5 <$1, 1> <$1, 1> <$1, 1>
σh2 <j, 1> <j, $1> <j, 1>

function[V, H, f] =
ArnoldiC(A1 , k1, v1);

v2 = v1/norm(v1);
w1 = A1 ∗ v2;
α1 = v′

2
∗ w1;

temp1 = v2 ∗ α1;
f1 = w1 − temp1;
c1 = v′

2
∗ f1;

temp2 = v2 ∗ c1;
f2 = f1 − temp2;
α2 = α1 + c1;
V1(:, 1) = v2;
H1(1, 1) = α2;
for j = 2 : k1,

f3 = φ(f2, f5);
β1 = norm(f3);
v3 = f3/β1;
H2(j, j − 1) = β1;
V2(:, j) = v3;
w2 = A1 ∗ v3;
h1 = V2(:, 1 : j)′ ∗ w2;
temp3 = V2(:, 1 : j) ∗ h1;
f4 = w2 − temp3;
c2 = V2(:, 1 : j)′ ∗ f4;
temp4 = V2(:, 1 : j) ∗ c2;
f5 = f4 − temp4;
h2 = h1 + c2;
H3(1 : j, j) = h2;

end

Figure 6: The resulting size configurations for all the

variables and the corresponding pruned SSA form of

ArnoldiC.

Name
Compile

Time
Lines

Size

Cliques

Intr

Cliques
LUfac.m 4.29 15 72 27
ArnoldiC.m 4.29 25 32 18
QRcgsF.m 4.29 32 200 27
rec.m1 4.29 13 131 27
rec.m2 ?? 13 6 6

Figure 7: Type Inference time in LibGen for MAT-

LAB Scripts

Type inference in FALCON and MaJIC from the University
of Illinois at Urbana-Champaign is based on dataflow analy-
sis [12, 11, 2, 1]. As noted earlier, this method is inadequate
for our purposes.

MAGICA, a MATLAB type inference system developed at
Northwestern, is able to infer array sizes in terms of compiler
unknowns for multiple dimensions [21]. It uses algebraic sys-
tems of equations solved in Mathematica. We are not aware
of any complexity results for this system. Also, MAGICA
only infers a single set of explicit types that it can guaran-
tee for all contexts. Otherwise, the array size is symbolic
and left until runtime. This will not suffice for the telescop-
ing compiler since it will not explicitly represent all possible
configurations of scalars and non-scalars.

Recently, Elphick et. al. used partial evaluation of MATLAB
code to help infer types [14]. For telescoping languages,
partial evaluation will not suffice for the library compiler
since it must guess about inputs before calling contexts are

known.

The programming languages community uses a more gen-
eral set of types in their type inference research. In partic-
ular, the issue of detailed arrays has been beyond the scope
of their research. One exception is the work done by Xi
and Pfenning [32] who use dependent types to check array
bounds. The bounds of what their system will type check
are more rigid. Several other areas have connections to our
analysis of MATLAB.

Hindley-Milner type inference is closely related to our work [23].
Hindley-Milner type inference uses schema extensions for
their principal types; we use type configurations.

The format of the lattices used for intrinsic type and pat-
tern induces the notion of subtyping [26, 24, 4]. Subtyping
with union and intersection types express similar properties
to those needed in telescoping languages [9, 28, 27, 25]. Us-
ing intersection types has not yet been made practical for
general purposes.

Techniques proposed in this paper can produce code to work
with specialized libraries that are automatically tuned for
specific platforms or problems such as ATLAS and FFTW [31,
15]. For example, specialized FFT routines can be called di-
rectly if the input matrix size is known.

Guyer and Lin have developed an annotation language for
guiding optimizations on libraries [17].

Constraint Logic Programming (CLP) [29, 18, 19] extends
the purely syntactic logic programming (typified by linear
unification) by adding semantic constraints over specific do-
mains. Some of the well-known CLP systems include CHIP [13],
CLP(R) [20], Prolog-III [7], and ECLiPSe [30]. While a gen-
eral purpose CLP system could be employed in solving the
constraints within our type-inference system, our algorithm
utilizes the properties of the problem to operate within a
provably efficient time complexity.

8. CONCLUSIONS
We motivated the idea of speculative specialization of li-
braries based on types, which fits well within the telescoping
languages framework. In order to carry out the specializa-
tion of code written in a weakly-typed, high-level language,
like MATLAB, it is necessary to infer types of variables.
Moreover, the inference process needs to generate all possi-
ble valid configurations of variable types based on the ac-
ceptable types of input parameters to a library procedure.
Each such valid combination induces a specialized variant.
In practice, the number of variants can be limited using an-
notations from the library writer.

We formulated the inference problem using propositional
logic utilizing return type-jump-functions. The result of the
formulation is a type jump-function that relates the types
of the local variables to the possible input types. The type-
inference system developed to do this is able to infer the
smallest set of possible type-configurations.

Using the type-inference algorithm developed in this paper,
we developed LibGen, a telescoping-language compiler that

specializes and generates libraries based on type from MAT-
LAB specification code. We have shown that the compiler
can perform type inference in reasonable time and, in pre-
vious work, that the generated code is comparable to that
of hand-coded Fortran libraries.

9. ACKNOWLEDGEMENTS
We thank Prof. Dan Sorensen for providing the motivation
behind this work and example code as well as time and sup-
port. We would also like to thank Prof. Robert Cartwright
and Prof. Walid Taha for their help with the related-work
section.

10. REFERENCES
[1] G. Almási. MaJIC: A Matlab Just-in-time Compiler.

PhD thesis, University of Illinois at
Urbana-Champaign, 2001.

[2] G. Almási and D. Padua. MaJIC: Compiling
MATLAB for speed and responsiveness. In
Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 294–303, June 2002.

[3] D. Callahan, K. D. Cooper, K. Kennedy, and
L. Torczon. Interprocedural constant propagation.
SIGPLAN Notices, 21(7):162–175, July 1986.

[4] L. Cardelli. A semantics of multiple inheritance.
Information and Computation, 76(2/3):138–164,
Feb./Mar. 1988.

[5] A. Chauhan and K. Kennedy. Slice-hoisting for
array-size inference in MATLAB. In Languages and
Compilers for Parallel Computing, 2003.

[6] A. Chauhan, C. McCosh, K. Kennedy, and R. Hanson.
Automatic type-driven library generation for
telescoping languages. In ACM/IEEE SC2003
Conference on High Performance Networking and
Computing (Supercomputing), Nov. 2003.

[7] A. Colmerauer. An introduction to Prolog-III.
Commun. ACM, 33(7):69–90, July 1990.

[8] K. D. Cooper and K. Kennedy. Interprocedural
side-effect analysis in linear time. In Proceedings of the
ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation, pages 57–66,
Atlanta, GA, June 1988.

[9] M. Coppo, M. Dezani-Ciancaglini, B. Venneri, c of,
and t Zeitschrift. ur mathematische logik und
grundlagen der mathematik, 1981.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13(4):451–490, Oct. 1991.

[11] L. DeRose and D. Padua. Techniques for the
translation of MATLAB programs into Fortran 90.
ACM Transactions on Programming Languages and
Systems, 21(2):286–323, Mar. 1999.

[12] L. A. DeRose. Compiler Techniques for Matlab
Programs. PhD thesis, University of Illinois at
Urbana-Champaign, 1996.

[13] M. Dincbas, P. V. Hentenryck, H. Simonis,
A. Aggoun, T. Graf, and F. Berthier. The constraint
logic programming language CHIP. In Proceedings of
the International Conference on Fifth Generation
Computer Systems FGCS-88, pages 693–702, Dec.
1988.

[14] D. Elphick, M. Leuschel, and S. Cox. Partial
evaluation of MATLAB. In Generative Programming
and Component Engineering (GPCE’03), Lecture
Notes in Computer Science, pages 344–363, 2003.

[15] M. Frigo and S. G. Johnson. FFTW: An adaptive
software architecture for the FFT. In Proceedings of
the IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 3, pages
1381–1384, May 1998.

[16] D. Grove and L. Torczon. Interprocedural constant
propagation: A study of jump function
implementations. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 90–99, June 1993.

[17] S. Guyer and C. Lin. An annotation language for
optimizing software libraries. In Proceedings of the
Second Conference on Domain-Specific Languages,
Mar. 1999.

[18] J. Jaffar and J.-L. Lassez. Constraint logic
programming. In Proceedings of ACM
SIGACT-SIGPLAN Symposium on the Principles of
Programming Languages, pages 111–119, 1987.

[19] J. Jaffar and M. J. Maher. Constraint logic
programming: A survey. Journal of Logic
Programming, 19/20:503–581, 1994.

[20] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The
CLP(R) language and system. ACM Transactions on
Programming Languages and Systems, 14(3):339–395,
July 1992. Also available as Technical Report, IBM
Research Division, RC 16292 (#72336), 1990.

[21] P. Joisha and P. Banerjee. Implementing an array
shape inference system for MATLAB. Technical
Report CPDC-TR-2002-10-003, Center for Parallel
and Distributed Computing, Department of Electrical
and Computer Engineering, Northwestern University,
Oct. 2002.

[22] K. Kennedy, B. Broom, K. Cooper, J. Dongarra,
R. Fowler, D. Gannon, L. Johnson,
J. Mellor-Crummey, and L. Torczon. Telescoping
Languages: A strategy for automatic generation of
scientific problem-solving systems from annotated
libraries. Journal of Parallel and Distributed
Computing, 61(12):1803–1826, Dec. 2001.

[23] R. Milner. A theory of type polymorphism in
programming languages. Journal of Computer and
System Sciences, 17(2):348–375, 1978.

[24] J. Mitchell. Type inference with simple types. Journal
of Functional Programming, pages 245–285, 1991.

[25] B. C. Pierce. Programming with Intersection Types
and Bounded Polymorphism. PhD thesis, 1991.

[26] J. Reynolds. Using category theory to design implicit
conversions and generic operators. In
Semantics-Directed Compiler Generation,
Springer-Verlag Lecture Notes in Computer Science,
pages 211–258, 1980.

[27] J. Reynolds. Design of the programming language
forsythe. Technical Report CMU-CS96 -146, Carnegie
Mellon University, June 1996.

[28] P. Salle. Une extension de la theorie des types en
-calcul. In Springer-Verlag, volume 62 of Lecture Notes
in Computer Science, pages 398–410, 1982.

[29] G. L. Steele. The Definition and Implementation of a
Computer Programming Language based on
Constraints. PhD thesis, M.I.T., 1980. AI-TR 595.

[30] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A
Platform for Constraint Logic Programming. William
Penney Laboratory, Imperial College, London, 1997.

[31] R. C. Whaley and J. J. Dongarra. Automatically
Tuned Linear Algebra Software. In Proceedings of SC:
High Performance Networking and Computing
Conference, Nov. 1998.

[32] H. Xi and F. Pfenning. Eliminating array bound
checking through dependent types. In Proceedings of
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 249–257,
June 1998.

	Introduction
	Type Inference Problem
	Features of MATLAB
	Type Problems
	Type Jump-Functions

	Algorithmic Overview
	Dataflow Frameworks
	Propositional Formulation

	An Efficient Algorithm
	Reducing to the Clique Problem
	Description of the Algorithm
	Annotation Issues
	The Result
	Interprocedural Inference

	Inferring T
	Inferring Number of Dimensions and Size
	Inferring Intrinsic Type and Pattern

	Experimental Evaluation
	Related Work
	Conclusions
	Acknowledgements
	REFERENCES

