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Abstract

Telescoping languages is a strategy to automatically gen-
erate highly-optimized domain-specific libraries. The key
idea is to create specialized variants of library procedures
through extensive offline processing. This paper describes
a telescoping system, called ARGen, which generates high-
performance Fortran or C libraries from prototype Matlab
code for the linear algebra library, ARPACK. ARGen uses
variable types to guide procedure specializations on possible
calling contexts. We show that type-based specializations
of generated libraries can lead to more than 50% speedup.

ARGen needs to infer Matlab types in order to speculate
on the possible variants of library procedures, as well as to
generate code. This paper develops an approach combining
static and dynamic type inference that includes a graph-
theoretic algorithm that is shown to be efficient under a set
of conditions that are easily met for most practical cases.
The ideas developed here provide a basis for building a more
general telescoping system for Matlab [22].

1 Introduction
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Figure 1: Overview of the telescoping languages approach.

The telescoping languages strategy is aimed at provid-
ing end-users interested in scientific applications the ability
to write high performance applications in high-level lan-
guages [20]. The key idea in achieving this is an extensive
offline processing of libraries to speculatively create special-
ized variants that have been optimized for specific calling

contexts. The generation of variants is driven by anno-
tations by the library writer as well as compiler analysis.
The approach has been designed to optimize numerical sci-
entific applications, written in high-level languages, and is
based on the observation that such programs spend almost
all their computation time inside libraries. Figure 1 depicts
the idea graphically.

In the course of our research on telescoping languages,
we discovered that our colleague Prof Dan Sorensen from
the Dept. of Computational and Applied Mathematics
(CAAM) used Matlab as a prototyping language for his
linear algebra library, ARPACK. Once the prototype was
completed, he and his student painstakingly translated it
into several different Fortran variants, specialized to ma-
trix class and data type, to achieve high performance. For
example, different Fortran versions were generated based
on whether an input array was complex or real, or whether
the array was symmetric or not. Software engineering lim-
its, imposed by the amount of programming effort involved,
prevented other desirable type-based specializations from
being implemented.

This observation about ARPACK motivated us to under-
take the development of ARGen—a telescoping library gen-
erator for ARPACK driven by type-based procedure spe-
cialization. Developers of ARPACK had a clear idea of the
types anticipated in the use of their libraries, which guided
them in translating the Matlab procedures into Fortran.
The same guidance provided to a library generator in the
form of annotations could make it possible to generate spe-
cialized variants of the library procedures automatically and
speculatively, for a variety of anticipated calling contexts.

In order to generate type-based specializations of a pro-
cedure, we must be able to infer Matlab variable types. In
particular, ARGen must be able to construct a type jump
function that maps the types of input parameters to a pro-
cedure to the types of output variables. These type jump
functions would be used in optimizing other libraries, or
end-user scripts, that call the library procedure. This pa-
per evaluates the utility of specializing libraries based on
variable types and describes a novel technique, combining
static and dynamic analyses, to infer the type information of
Matlab variables. The technique includes a static algorithm

1



that is efficient under assumptions that are reasonably met
for practical programs. The algorithm is able to discover
all valid configurations of variable types, paving the way to
generate specialized variants in the telescoping languages
framework. The number of variants can be pruned under
the directions of annotations by the library writer.

We start with a brief description of the ARPACK linear
algebra library.

2 ARPACK

ARPACK stands for ARnoldi PACKage [25]. It is a collec-
tion of Fortran 77 subroutines designed to solve large-scale
eigenvalue problems. ARPACK implements a variant of the
Arnoldi Process called IRAM. The Fortran subroutines are
specialized based on types XY where X can be:

• single precision real arithmetic,

• double precision real arithmetic,

• single precision complex arithmetic, or

• double precision complex arithmetic;

and Y can be:

• non-symmetric, or

• symmetric.

These types occur frequently and have the greatest need
for specialization. The developers of ARPACK saw the ben-
efit and necessity of having specialized subroutines based on
type, which motivates the work in this paper.

3 Matlab Types

In order to carry out specializations based on variable types
we need to first define the variable properties that are of in-
terest to us. In general, the properties should be such that
they can be encoded in the target language and the com-
piler for that language is able to leverage that information
for optimization. Since the focus of this work is on nu-
merical applications that are highly oriented towards array
manipulations we use the 4-tuple definition of a variable
type used by deRose [11]. We define a type to be a tuple
T = <τ , ρ, σ, ψ> where,

τ is the intrinsic type of the variable (e.g., integer, real,
complex);

ρ is the upper bound on the number of dimensions for
an array variable, also called the rank;

σ is the size of an array variable (undefined for a scalar),
in turn a tuple of size ρ; and

ψ is the “shape” of an array variable (undefined for a
scalar) (e.g., dense, triangular, symmetric, etc.).

3.1 Preliminary Background

We restrict ourselves to a core of the Matlab language that
is used by an overwhelming majority of scientific applica-
tions. This excludes dynamic evaluation of strings as code,
the rather primitive object oriented features, passing func-
tion handles as arguments, and structured types (although,
the last can be handled by a very simple extension of our
ideas).

To avoid coincidental sharing of names among unrelated
values, and hence types, of variables we assume that the
procedure has been SSA transformed [8]. Redefinition of a
section of an array results in a new array. Type inference
treats each SSA renamed variable as a distinct variable. A
post-pass recombines names as much as possible to avoid
copying.

The type of a variable depends on:

1. the operation that defines the variable, since in the
SSA form there is exactly one definition for each vari-
able; and

2. all the operations where a variable is used, since each
operation imposes certain restrictions on the types of
values it can accept.

The first causes forward propagation of variable properties
along the control flow, while the second causes backward
propagation. Formulating this problem as a dataflow frame-
work is not adequate for our purposes. Since a procedure
call can cause the type of a variable to be modified in ar-
bitrary ways, and since the control flow graph needs to be
traversed in both directions, a conventional dataflow solver
is not guaranteed to terminate. Further, the lattice induced
by the size of an array (σ) is infinite, with infinite chains
over a meet operation defined to be the max operation over
non-negative integers. This forces ad-hoc workarounds into
any dataflow solver built over it. Finally, we are inter-
ested in obtaining all possible configurations of valid types
for variables to trigger specialization. A dataflow solution
would be either too conservative or not produce all possible
values.

We propose using type jump functions akin to those used
in interprocedural compiler analyses [4, 15]. These type
jump functions summarize the transfer functions for library
procedures but restrict themselves to the types of the input
and output values. They are also used to summarize prop-
erties of the primitive operations. In high-level languages
operations are invariably syntactic sugar for library calls
to the runtime system and a major goal of the telescoping
languages strategy is to eliminate the difference between
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c = mlfMtimes (a, b)

σc = <1, 1> & σa = <1, 1> & σb = <1, 1> |

σc = <$1, $2> & σa = <1, 1> & σb = <$1, $2> |

σc = <$1, $2> & σa = <$1, $2> & σb = <1, 1> |

σc = <$1, $3> & σa = <$1, $2> & σb = <$2, $3> |

σc = <1, 1> & σa = <1, $1> & σb = <$1, 1>

Figure 2: Example of a constraint on the Matlab “*” operator
which is internally implemented as a call to the library function
called mlfMtimes. The $ variables are simply place holders for
integer values. The scope of a $ variable is the surrounding
conjunction (clause).

the two. All operations or procedures used in the proce-
dure being compiled are assumed to have been analyzed
and summarized.1

3.2 Propositional Formulation

An alternative to formulating the problem in a dataflow
framework is analyzing the whole procedure simultaneously
using propositional logic. The compiler determines the in-
formation that each individual operation or procedure call
gives about the variables involved and then combines that
information over the entire procedure.

The information from the operations is given in the form
of constraints on the types of variables involved in the op-
eration. Matlab operations, and typical library procedures,
are heavily overloaded. Therefore, a type constraint on an
operation needs to provide all possible type configurations
on the variables involved. The type configurations in a con-
straint are composed through logical disjunction and are
called clauses. Figure 2 shows an example of size constraints
on the Matlab multiplication operation, “*”.

The constraints are formed using a database of anno-
tations containing one entry per procedure or operation.
These annotations could either be derived out of the type
jump functions from a previous phase of the library analysis
or directly from library writer’s annotations, especially for
the cases where the source may not be available.

In a correct program, the type of a variable must satisfy
all the constraints on it imposed by all the operations that
can be feasibly executed in any run of the program. This
is equivalent to taking a conjunction of the constraints and
finding all possible type-configurations of variables that sat-
isfy the resulting boolean expression. It turns out that this
problem in the context of telescoping languages is a hard
one to solve even for straight line code. It is, in fact, NP-
hard.2 However, under certain conditions that occur most

1Recursion is handled later.
2The well known 3-SAT problem can be reduced to this problem.

frequently in practice, we can devise an efficient algorithm
to solve the problem. Section 4 describes such an algo-
rithm.

4 An Efficient Algorithm

We will start by describing the general algorithm for in-
ferring types, and then discuss how it can be applied to
inferring types in Matlab in the subsequent section.

First, there are a number of assumptions necessary for
this algorithm to perform correctly.

1. The compiler has correct code on input.3 Although
in some cases the compiler may be able to determine
that a procedure is incorrect (i.e., if it proves that the
whole-procedure constraints cannot be satisfied), prov-
ing correctness is not the responsibility of the compiler.

2. The number of input and output parameters in each
operation or procedure is bounded by a small constant.
This is important for the complexity of the algorithm
to remain small. This is a reasonable assumption, since
parameter lists do not grow with the size of the proce-
dure [7].

3. All global variables have been converted to input and
output parameters. Because of the previous assump-
tion the number of global variables must be small.
Well-written libraries rarely use global variables, so
this is not a major obstacle.

4. To form the operation constraints, the algorithm re-
quires the compiler to already have annotations, de-
scribed in the previous section, on all the operations
and procedures called in the procedure. The annota-
tions must be formulated so the clauses in each anno-
tation are mutually exclusive.

4.1 Reducing to the Clique Problem

After the constraints for each operation have been deter-
mined, the compiler needs to reason about them over the
whole procedure. That is, it needs to find all possible con-
figuration of types for the variables that satisfy the whole-
procedure constraint. By representing the operation con-
straints as nodes in a graph, the problem is reduced to that
of finding n-cliques, where n is the number of operations in
the procedure.

Figure 3 shows how the graph is constructed for size con-
straints. Each possible type configuration for that opera-
tion, or clause, is represented by a node at the level that

See appendix A.
3This is a reasonable assumption for Matlab programs since users

can develop and test their code in the Matlab interpreter before giving

them to the optimizing compiler.
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A = b + c

1a σA = <1, 1> & σb = <1, 1> & σc = <1, 1> |

1b σA = <$1, $2> & σb = <1, 1> & σc = <$1, $2> |

1c σA = <$1, $2> & σb = <$1, $2> & σc = <1, 1> |

1d σA = <$1, $2> & σb = <$1, $2> & σc = <$1, $2> |

E = c - d

2a σE = <1, 1> & σc = <1, 1> & σd = <1, 1> |

2b σE = <$3, $4> & σc = <1, 1> & σd = <$3, $4> |

2c σE = <$3, $4> & σc = <$3, $4> & σd = <3, 1> |

2d σE = <$3, $4> & σc = <$3, $4> & σd = <$3, $4> |

2d2c2b2a

1d1a 1b 1c

Figure 3: Example graph.

corresponds to its operation number. There is an edge from
one node to another if the expressions in the nodes do not
contradict one another. The only variable that appears in
both operations in the figure is c; therefore, c determines
if there is an edge from a node in one level to the next.
Without the presence of c, the graph would be complete.

The final graph has n levels, where n is the number of
operations or procedure calls. Each level has at most k

nodes, where k is lv and l is the number of entries in the
type lattice, which is assumed to be bounded by a small
constant, and v is the number of variables involved in the
operation. lv is the number of possible type configurations
for each variable in the operation corresponding to that
level, since there are l possibilities for each variable. Since
by definition, the clauses are mutually exclusive, there are
no edges between nodes on the same level.

Finding possible constraints over the entire procedure
corresponds to finding sets of clauses that do not contradict
each other such that there is one clause from each opera-
tion or procedure call. Having at least one clause from each
operation constraint is necessary because otherwise the set
of clauses would not hold over the entire procedure. On the
graph, this is exactly the problem of finding all n-cliques
(where n is the number of levels in the graph) such that each
cliques has one and only one node from each level. These
conditions are trivially met because there are no edges be-
tween nodes on the same level.

4.2 Description of the Algorithm

To describe the basic algorithm, we start with the simplest
case and assume the compiler is only analyzing straight-line
code where the type of each variable in each operation can
be determined by the types of the other variables in the
operation (i.e., no data dependence in inferring types). In
subsequent sections, we will expand the algorithm to handle
the general case.

Since the compiler is going to separately solve the equa-
tions in each clique, we need to show that the number of
cliques is manageable. Also, since the compiler can poten-
tially generate a variant for each clique, a large number of
possibilities would cause a blow-up in the number of vari-
ants. We need to show that the number of type configura-
tions is bounded by a small number and from this that the
total number of n-cliques is bounded by a small number.

Claim 4.1 In the absence of control flow with all variables
defined in terms of other variables, the number of possible
configurations of types is bounded by lp, where p is the num-
ber of input parameters and l is the size of the type lattice.

Proof: Since the types of all the variables are determined by
the types of other variables, all the types should ultimately
depend on the types of the inputs. Therefore, the total
number of possible configurations over all the variables is
just the number of possible configurations of the input pa-
rameters. This is lp since each parameter could take on l

types. 2

Claim 4.2 Given the previous claim, the number of n-
cliques is bounded by lp.

Proof (by contradiction): We start by assuming there
are two distinct cliques that represent the same type
assignment to the variables. The cliques must differ at at
least one level. Since the expressions in nodes of the same
level contradict each other, at least one variable in the
operation corresponding to that level must have a distinct
type. Therefore, the two cliques cannot have the same
type assignment to the variables. 2

Finding n-cliques is NP-Complete. However, we claim
that given the structure of the problem, there is an algo-
rithm that finds n-cliques in polynomial time.

The solution must take advantage of the specific proper-
ties of the problem. Figure 4 gives an iterative algorithm
for solving the problem. Figure 5 demonstrates the algo-
rithm on an example graph. In each step, the lighter nodes
and edges are part of one or more cliques.

The complexity of this algorithm is still exponential in
the worst case, since the loop starting on line 4 in figure 4
could iterate over an exponential number of cliques from
the previous step. With a limit on the number of cliques
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Figure 5: Example of clique-finding algorithm. Each row represents a level in the graph.

input: graph G

output: CurrCliques

initialize CurrCliques to be nodes on first level

1 for every level r in G after first

2 newCliques = empty

3 for every node n in r

4 for every clique c in CurrCliques

5 candidate = true

6 for every node q in c

7 candidate = candidate & edge?(n,q)

8 end for

9 if (candidate)

10 then newCliques = newCliques + clique(c, n)

11 end for

12 end for

13 CurrCliques = newCliques

14 end for

Figure 4: Iterative n-Clique finding algorithm.

at each step, the complexity is also limited. Because the
bound of lp only holds for the final number of cliques, we
need to find a bound on the number of intermediate cliques
to attain this limit. We, therefore, use the structure of the
problem to prove a bound of lp at all intermediate steps if
the levels are visited in program order.

Claim 4.3 Claim: The number of cliques at each step of
the clique-finding algorithm is bounded by lp if the levels are
in program order.

Proof: We have from above that on valid procedures (i.e.,
procedures whose variables are defined before they are
used) there is an upper bound of lp on the number of
cliques. At any operation or procedure call, the rest of the
code can be left off, and the remaining (beginning) code is
still valid. Therefore, since the algorithm is iterative and
only finds cliques over the levels it has already seen, if the
algorithm goes in the order of the operations, after every
iteration, the algorithm will have produced cliques on valid
code. The number of cliques after every iteration must be
bounded by lp. 2

With lp cliques after every iteration, the algorithm takes
klpn2 steps. where n is the number of operations, k is the
maximum number of nodes in a level, and p is the number
of input and output variables per operation. Therefore, the
overall time complexity is O(n2).

Each of the cliques represents a different type configu-
ration. However, the types of the variables satisfying each
clique have still not been determined. The equations in
each clique need to be solved to find the type allocations.
The compiler solves the equations using standard methods
in terms of the input parameters so that at runtime, the
types of all the variables can be easily inferred from the
additional information. However, it may be possible for the
compiler to infer exact types for some or all of the inputs
as well.

4.3 Annotation Issues

The algorithm assumes that any called procedure has al-
ready been analyzed. If it encounters one for which the
source code is not available and, therefore, has no annota-
tions, it simply ignores the call as it does not give any added
information. This degrades the analysis of the algorithm,
although it does not affect the correctness. In essence, it
says that the variables are unconstrained by the operation.
Recursive calls are treated as unanalyzed procedure calls.
While following the type information from the recursion to
a fixed point could lead to more exact information, we leave
this idea to be explored in future research.

One of the key ideas in telescoping languages is allow-
ing the compiler to utilize the knowledge of the library
writer through annotations. This information is important
in knowing what cases can and cannot occur in practice,
which the compiler alone may not be able to infer.

We assume the user-defined annotations concerning types
are in the same form as the operation constraints. The
compiler treats the user-defined annotations as constraints
on the procedure header, which corresponds to the zeroth
level in the graph. Any cliques occurring in the graph are
forced to have part of the user-defined annotations as one of
their nodes. This can greatly reduce the number of possi-
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ble cliques and, therefore, specialized variants the compiler
would have to generate, and in the case of shape, could
allow for finer optimization.

4.4 Control Flow

Loops as well as branch statements use control flow con-
structs. In the SSA representation φ functions represent a
merger of variable values under the assumption that every
control flow branch can be taken. As a result φ functions
also represent the meet operation for types.

The straight-line algorithm described in section 4 is easily
extended to handle new names introduced by the φ func-
tions. In terms of the algorithm, the φ node operations do
not constrain the variables types involved. Therefore, if the
variable defined by a φ function is never used it never ap-
pears in any constraint and does not affect the running time
of the algorithm. This means that we can get the benefit
of working with pruned SSA without requiring the code to
be in the pruned form.

The outcome of the φ nodes can affect sizes of variables
in the procedure when the φ variable is used. Therefore,
since the outcome of the φ operation may not be known
until runtime, variables defined by φ functions are treated
as input arguments to the procedure being analyzed. The
uses of the variable defined by the φ function may allow the
algorithm to determine the outcome of the φ function.

In the presence of control flow, the number of possible
cliques increases to lp+c where c is the number of φ func-
tions in pruned SSA form of the code. However, in most sci-
entific applications, the number of φ nodes is usually small,
and the procedures written in Matlab are also generally
small, so this should not be a serious limitation to the al-
gorithm.4 The algorithm still behaves correctly regardless
of the number of φ nodes.

The addition of control flow means a single input configu-
ration can map to multiple cliques. Therefore, the compiler
is not able to generate a specialized variant of the entire
procedure for the added cliques corresponding to decisions
from φ nodes. However, the compiler can generate special-
ized paths from the control flow points if it can determine
that optimizing would be beneficial. For example, the com-
piler would want to have separate paths if the outcome of
the φ node could either be real or complex, since keeping the
paths separate could allow for optimization opportunities.
Since this could cause an increase in the size of the code,
the compiler would have to be careful about how many
specialized paths are generated. An alternative would be
to allocate the meet of the possible types to the variable
defined by the φ node at the join point. There is a trade-off
introduced with this between reducing the number of copies

4The procedures from the Matlab development code for ARPACK

were typically under fifty lines of code.

and having the tightest information for optimization. Ul-
timately, the compiler could just allocate the meet of the
types to the variable on all paths.

4.5 The Result

The compiler ends up with a set of possible variable type
configurations over the analyzed procedure. For each pos-
sible configuration of types for the input parameters, the
compiler creates an individual specialized and optimized
variant. The appropriate variant will be linked directly with
the user script at script compilation time. In essence, the
compiler is producing type jump functions.

In generating the optimized variants, the compiler is able
to merge arrays treated as distinct by SSA if the compiler
infers that this is beneficial. The compiler can allocate a sin-
gle variable to have the meet of the types of all the variables
being merged. This avoids wasteful copying. However, if
the compiler can achieve better performance through opti-
mization by treating variables separately, it does not merge
them.

Now that the compiler has information about the inputs
and outputs to the analyzed procedure, it computes type
jump functions for the database.

5 Inferring T

The algorithm described in the previous section can easily
be applied to inferring Matlab types. The compiler infers
each element of T in a separate pass and then takes the cross
product of the different types to determine which variants
are necessary. It can handle types separately since, except
for ρ and σ, the types are independent of each other.

5.1 Inferring Rank and Size

Inferring sizes is slightly different from inferring the rest
of the types, since the problem is described by two lat-
tices. Because operators in Matlab have different meanings
depending on whether they are operating on scalars or ar-
rays, the primary information needed for inferring sizes is
whether the variables are scalars or arrays. Therefore, the
$ variables appearing the size constraints not only serve as
place-holders, but also determine whether the variable is a
scalar or an array. If a size that is not 1 appears in one
of the fields of σ for a variable in the constraint, it is as-
sumed by the compiler that that variable cannot be a scalar.
The constraints and annotations must enumerate all possi-
ble scalar versus array configurations. This means l = 2 for
inferring sizes in the algorithm. The solver determines the
actual values of the $ variables in terms of the unknowns,
and therefore works on the infinite integer lattice, where
the meet operation produces the maximum size. Forming
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constraints for the size-inference problem has already been
shown in section 3.

5.1.1 Dimensions

Recall from Section 3 that σ is a tuple consisting of ρ fields,
where each field is the size of the variable in the correspond-
ing dimension and ρ is an upper bound on the number of
dimensions. In order to infer σ, the compiler needs to first
determine ρ. The compiler only needs ρ to be an upper
bound, since size-inference will be able to tighten the num-
ber of dimensions by inferring that certain dimensions have
size 1.

To get the ρ information, the compiler performs a single
prepass over the code to see which dimensions are accessed
in which variables, either by direct subscripted accesses or
by operations. Some operations also require that the num-
ber of dimensions for the variable be limited.

When the prepass cannot determine a bound, the com-
piler creates a dummy dimension field in σ for the vari-
able, representing all dimensions that may behave differ-
ently from the rest. This handling of the extra dimensions
is valid since they are not accessed explicitly. Therefore,
they must have identical behavior.

5.1.2 Subscripted Array Accesses

When only part of an array is accessed in an operation,
there are no constraints on that array for that dimension.
The sizes of the other variables are, however, constrained
by the size of the part of the dimension accessed.

If the size of the array access is defined in terms of the
value of another variable, the compiler needs to account for
the fact that the value could make the access scalar. Fig-
ure 6 illustrates how the constraints are written to handle
this situation. The highlighted portions do not appear in
the actual constraint, but are left in to show the relation-
ship of the other variables to the piece of v accessed.

w = A * v(i:j,:)

σw = <1, 1> & σA = <1, 1> & σv(1:j,:) = < 1 , 1> |

σw = <j, $1> & σA = <1, 1> & σv(1:j,:) = < j , $1> |

σw = <$1,$2> & σA = <$1, $2> & σv(1:j,:) = < 1 , 1> |

σw = <$1,$2> & σA = <$1, j> & σv(1:j,:) = < j , $2> |

σw = <1, 1> & σA = <1, j> & σv(1:j,:) = < j , 1>

Figure 6: Handling subscripted array access.

Notice, that the resulting data dependencies could in-
crease the number of cliques and therefore, the complexity
since the value of the variable may not be known at library
compilation time. The procedures in Matlab are typically

small so this should not cause a problem in practice. How-
ever, if the compiler can determine that the subscript size is
greater than one, then it can add a constraint that forces the
variable to be non-scalar, reducing the number of cliques.
The algorithm still works correctly if the complexity in-
creases.

5.2 Intrinsic Types

The constraints on intrinsic types are similar to the con-
straints on size except that instead of working with infinite
numbers, the compiler operates on the intrinsic type lat-
tice. However, the lattice for intrinsic types is bigger (for
Matlab, there are 6 elements in the intrinsic type lattice),
and therefore, l is bigger. In practical cases, the number
of possible intrinsic types involved in operations should be
smaller than the entire lattice.

The constraints track the range of possible intrinsic types
for the variable on the lattice of possibilities. For example,
an input argument that is defined as type real could actu-
ally be of type int when called.

For the operation, A = B + C, some of the constraints
are:
...
(int ≤ τA ≤ int) &(⊥≤ τB ≤ int) &(⊥≤ τC ≤ int)|
(real ≤ τA ≤ real) &(⊥≤ τB ≤ real) &(⊥≤ τC ≤
real)|
...
Two constraint clauses are contradictory if a variable is in
both clauses and the ranges of possibilities for the variable’s
intrinsic type do not intersect.

Once the compiler has found the cliques, solving the equa-
tion within the cliques corresponds to taking the intersec-
tion of all ranges for each variable.

5.3 Shape

Inferring shapes is similar to inferring intrinsic types. For
shapes, however, the compiler needs to rely much more
heavily on the annotations. Because the compiler cannot
generate a specialized version for every possible shape, the
compiler simply generates the most general cases unless it
can infer that more specific cases are important either from
constraints, or from the user-defined annotations.

The shape lattice includes all possible combinations of
shape with ⊤ being the most general (dense) and ⊥ meaning
that the inferred shapes were infeasible. Some examples of
entries in the lattice include, sparse, sparse banded, sparse
symmetric, sparse symmetric banded, etc.
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x = ...

A(x) = ...

for i = 1:N

...

A = [A f(i)];

end

x1 = ...

A1(x1) = ...

σA1

1 = <x1>

for i1 = 1:N

...

σA1

2 = φ(σA1

1 , σA1

3 )

A1 = [A1 f(i1)];

σA1

3 = σA1

2 + <1>

end

⊲ x1 = ...

A1(x1) = ...

⊲ σA1

1 = <x1>

⊲ for i1 = 1:N

...

⊲ σA1

2 = φ(σA1

1 , σA1

3 )

A1 = [A1 f(i1)];

⊲ σA1

3 = σA1

2 + <1>

⊲ end

⊲ x1 = ...

⊲ σA1

1 = <x1>

⊲ for i1 = 1:N

⊲ σA1

2 = φ(σA1

1 , σA1

3 )

⊲ σA1

3 = σA1

2 + <1>

⊲ end

allocate(A1, σA1

3 )

A1(x1) = ...

for i1 = 1:N

...

A1 = [A1 f(i1)];

end

Initial code. SSA, σ statements. Identifying the slice. Hoisting the slice.

Figure 7: Slice hoisting applied to loops.

6 Slice Hoisting

Array size has the unique characteristic that it may be com-
puted at runtime, when it is not possible to compute it
statically. As long the size can be computed before the first
reference to the array no copying overhead need be incurred
since the array may be allocated dynamically.

In some cases, dynamic inference is unavoidable. For
example, the clique-finding algorithm could result in sym-
bolic values for sizes that are not known until runtime. An-
other case when this happens is in a statement such as
A(i,j) = b. The clique-finding algorithm ignores the left
hand side, however, Matlab semantics would cause the ar-
ray to be resized if the indices exceed the current size. In
both of these examples, σ depends on data values.

Control flow introduces φ functions in the SSA form.
Static size inference based in the algorithm of section 4
ignores the meet induced by the φ functions. In some cases
this can lead to incomplete inference forcing the compiler
to insert copy statements to preserve correctness, which can
be expensive for arrays.

To address these issues, we introduce a source level pro-
gram transformation called slice hoisting. Suppose we de-
note the size of an array A by a pseudo-variable, σA. After
every statement that could potentially alter A’s size, we add
a pseudo-statement expressing σA in terms of the current
σA and other known values. This is always possible since
the array’s size must be computable at runtime. Thus, for
the example statement earlier in this section we add the
statement σA = max(σA, <i, j>). Next, we perform
an SSA renaming of these pseudo-statements to assign a
unique name to every definition of the σ variables. This
keeps track of the current size at each reference of the array
that is needed to generate correct code. Then, we identify
the part of the code, called a slice, that computes the σ val-
ues for any given array. The slice could consist of control

structures, including loops. Finally we hoist the slice up to
before the first reference to the array in the procedure. The
hoisting process could involve splitting a loop or duplicat-
ing a control structure. Figure 7 shows an example of the
application of this technique to a loop.

At the end of this four-step process all the code that
was involved in determining the size of the array has been
moved to before the first reference to the array. There-
fore, the array can be dynamically allocated at this point
based on the computed size. Often the hoisted slice can
be evaluated completely statically, or replaced by a simple
symbolic value, based on constant propagation. Induction
variable analysis can also produce symbolic or constant val-
ues for variables computed inside loops [1]. In other cases,
the resulting code resembles an “inspector-executor” style
computation of size.

There are some rare cases when dependences can prevent
a slice from being hoisted. For example, when an array’s
value is used to change its size. In these situations the array
must be resized dynamically. Notice that the technique for
slice hoisting uses dependence information but does not rely
on its accuracy as long as it is conservative. In fact, a simple
SSA based dependence testing suffices for most cases. If
a more sophisticated dependence analysis is available the
technique automatically leverages it by enabling hoisting in
more cases.

Adding pseudo statements takes one pass over the pro-
gram and the φ functions. The time to identify slices is pro-
portional to the size of the SSA or the dependence graph.
Replicating control flow could lead to, in the worst case, a
doubling of the code size. In practice, this rarely happens.

7 Implementation Strategy

We are now ready to describe the implementation strategy
for type-based specialization. Figure 8 outlines the steps
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1. parse the Matlab procedure

2. build constraints using the annotation database

3. use the n-clique algorithm to statically infer types

4. transform the code for dynamic size inference us-
ing slice hoisting, wherever applicable

5. generate C / Fortran code for specialized variants

Figure 8: Implementation strategy for ARGen.

needed to specialize a Matlab procedure based on the types
of its input and output values.

MathWork Inc.’s mcc compiler generates C code that re-
sembles a parse tree of the Matlab code where every prim-
itive operation has been replaced by the call to a runtime
library procedure. There are software engineering benefits
to starting with this C code, instead of Matlab code. It not
only guards against the proprietary incremental develop-
ments of Matlab but also provides a uniform way to handle
primitive operations as well as user or domain-specific pro-
cedures. Another advantage is that we start with C code
that can be compiled and run correctly with any standard
C compiler. The generated code is in C, or equivalent For-
tran, with the calls to relevant specialized variants replac-
ing the calls to generic procedures wherever specialization
succeeds. The remaining cases, if any, are automatically
handled by the generic procedures. In this way, calls to
the runtime library for primitive operations, as well as to
any domain-specific or user defined library, can be handled
uniformly.

For a proof-of-concept implementation we have built a
system for inferring array sizes that parses Matlab directly.
The system reads the type jump functions, encoded as an-
notations in a propositional logic form, and builds con-
straints for all the operations and procedure calls in the
given Matlab procedure. Finally, it builds a graph, dis-
covers cliques using the algorithm in section 4, and solves
the cliques to determine array sizes. The solver in the cur-
rent form uses a simple substitution based algorithm, how-
ever, there are known techniques to build more sophisti-
cated solvers.

8 Experimental Evaluation

ARPACK libraries contain certain details that are not han-
dled by the proof-of-concept implementation. Therefore, we
carried out the type inference process and generated For-
tran code by hand, carefully performing only the steps that
the compiler is expected to perform.

config A config B config C

σA1 <1, 1> <1, 1> <$1, $1>
σv1 <1, 1> <$1, 1> <$1, 1>

σk1 <1, 1> <1, 1> <1, 1>
σv2 <1, 1> <$1, 1> <$1, 1>
σw1 <1, 1> <$1, 1> <$1, 1>
σα1 <1, 1> <1, 1> <1, 1>

σf1 <1, 1> <$1, 1> <$1, 1>
σc1 <1, 1> <1, 1> <1, 1>

σf2 <1, 1> <$1, 1> <$1, 1>
σα2 <1, 1> <1, 1> <1, 1>
σV1 <1,> <$1,> <$1,>

σf3 <$1, $1> <$1, $1> <$1, $1>

σβ1 <1, 1> <1, 1> <1, 1>
σv3 <$1, 1> <$1, 1> <$1, 1>
σV2 <$1,> <$1,> <$1,>
σw2 <$1, 1> <$1, 1> <$1, 1>

σh1 <j, 1> <j, 1> <j, 1>

σf4 <$1, 1> <$1, 1> <$1, 1>
σc2 <j, 1> <j, 1> <j, 1>

σf5 <$1, 1> <$1, 1> <$1, 1>

σh2 <j, 1> <j, $1> <j, 1>

function[V, H, f ] =
ArnoldiC(A1, k1, v1);

v2 = v1/norm(v1);
w1 = A1 ∗ v2;
α1 = v′

2 ∗ w1;
temp1 = v2 ∗ α1;
f1 = w1 − temp1;
c1 = v′

2 ∗ f1;
temp2 = v2 ∗ c1;
f2 = f1 − temp2;
α2 = α1 + c1;
V1(:, 1) = v2;
H1(1, 1) = α2;
for j = 2 : k1,

f3 = φ(f2, f5);
β1 = norm(f3);
v3 = f3/β1;
H2(j, j − 1) = β1;
V2(:, j) = v3;
w2 = A1 ∗ v3;
h1 = V2(:, 1 : j)′ ∗ w2;
temp3 = V2(:, 1 : j) ∗ h1;
f4 = w2 − temp3;
c2 = V2(:, 1 : j)′ ∗ f4;
temp4 = V2(:, 1 : j) ∗ c2;
f5 = f4 − temp4;
h2 = h1 + c2;
H3(1 : j, j) = h2;

end

Figure 9: The resulting size configurations for all the vari-
ables and the corresponding pruned SSA form of ArnoldiC.

Figure 9 shows the SSA form of the Matlab ArnoldiC—a
procedure from ARPACK—and the configurations result-
ing from performing the static size inference on it. Columns
two through four list the sizes corresponding to the different
configurations discovered by the size inference algorithm.
This is the result when no annotation is supplied on the
input parameters. It turns out that only the third configu-
ration (config C) was intended by the library writers since
A is always expected to be a matrix, never a scalar. An an-
notation on A, stating this fact, could automatically prune
the configurations.

Based on the configuration obtained above, we manually
generated Fortran code that used ATLAS-tuned BLAS for
matrix operations to simulate the code generated by AR-
Gen. The simulated code was specialized on shape (sym-
metric and non-symmetric) and intrinsic type (real and
complex) and compiled with -O3 optimization flag. In all
cases, the input matrix, A1 was the same real, sparse, ar-
ray from Matrix Market with 3074 entries [21]. k1 was set
to 30 and v1 to be a 362-length vector. These sizes con-
form to the requirements of configuration C in figure 9. We
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used version 6.1 for Matlab, which also uses ATLAS-tuned
BLAS at the bottom level. The runtimes were measured on
a 143 MHz SPARC processor.

Matlab 6.1 ARGen ARPACK
0

0.05

0.1

0.15

0.2
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0.3

0.35

0.4

se
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nd
s

Dense Non−Symmetric Double
Dense Symmetric Double
Sparse Non−Symmetric Double
Sparse Symmetric Double 
Sparse Symmetric Complex

Figure 10: ArnoldiC running times: Matlab, simulated AR-
Gen, and Fortran ARPACK.

Figure 10 shows a comparison of running times for the
original Matlab code and the hand-simulated versions. We
included the runtimes for Fortran ARPACK (dnaitr and
dsaitr subroutines) in order to demonstrate that the run-
ning times are in the same order of magnitude. The times
for Fortran ARPACK are not directly comparable since
they behave slightly differently from the Matlab version of
the code as the ARPACK developers added extra function-
ality to it when rewriting the code in Fortran.

The graph shows the value of type-based specialization.
There is an almost 50% speedup in going from a dense non-
symmetric representation to a sparse symmetric represen-
tation. This illustrates the importance of inferring the right
shape for a matrix, and using specialized library procedures
for that shape. Similarly, specializing on the intrinsic types
has a high payoff as seen from a 54% speed improvement
going from using libraries operating on complex types to
those specialized on real floating point numbers.

Finally, the performance gains in going from Fortran to
simulated ARGen reinforce the benefits of compiling Mat-
lab into a lower-level language.

Most other Matlab procedures in ARPACK are very
similar to ArnoldiC and we expect them to benefit from
the same type-based specializations. While slice-hoisting
was not applicable to ArnoldiC because all the variable
sizes could be inferred statically, many of the routines
in ARPACK have variable sizes that have control depen-
dences, where slice-hoisting will be valuable in performing
dynamic size inference.

9 Related Work

The FALCON compiler at the University of Illinois carried
out type inference for Matlab for generating code in For-
tran 90 [11, 10]. The 4-tuple definition of types in this paper
has been motivated from that work. However, the type in-
ference in the FALCON compiler, as well as in the more
recent MaJIC just-in-time compiler from the same group,
is based on dataflow analysis [3, 2]. As noted earlier, this
method is inadequate for the speculative specialization we
require.

Inferring types is a well studied problem in the program-
ming languages community. Almost all type inference in
that community is done in the context of functional lan-
guages. Further, type inference carried out in the world
of programming languages is usually targeted at proving
programs correct and presenting inferred types to the users
for possible debugging. We assume programs to be correct
and require library writers to annotate procedures includ-
ing, possibly, type information about the arguments or re-
turn values. In the functional world, type inference usually
does not treat numerical quantities or arrays in great detail.
Matlab, on the other hand, is an imperative language that
is heavily oriented towards array manipulation. We are not
interested the most general type of a variable, but all pos-
sible configurations of types of all the variables that would
allow the program to execute correctly in order to generate
specialized variants.

In spite of these broad differences it is instructive to com-
pare this work to some typical pieces of type inference work
in programming languages community.

The well known Hindley-Milner type systems can be
solved using standard unification-based algorithms [23].
These systems include a pure form of polymorphism. How-
ever, pure polymorphism is not sufficient to express the
type system of Matlab [5]. Since annotations could be arbi-
trary, the types need, in Cardelli’s words, “bounded quan-
tification”. Some recent work has explored combining con-
straints with the traditional type inference methods to han-
dle more elaborate type systems in the context of functional
languages (for example, see [27]). However, we do not know
of any application of these systems to handle indexed data
structures, such as arrays.

Flanagan used componential set-based analysis to infer
types for the purposes of debugging [13]. However, his sys-
tem does not handle the heavily overloaded operators found
in Matlab.

A strategy that has proved useful for arrays is the use
of dependent types for checking array bounds [30]. The
approach of Xi and Pfenning is also based on construct-
ing boolean constraints and solving them. However, we
have a somewhat different task of inferring array sizes in
the presence of very general types of annotations and also,
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potentially, making part of the inference at runtime.
In the functional world, type based specializations have

been used to optimize functional programs [16, 9, 24]. How-
ever, none of these seem to have used the kind of compre-
hensive annotation based approach to speculatively special-
ize libraries within the context of an elaborate telescoping
languages system as is proposed in this work.

Techniques proposed in this paper can produce code to
work with specialized libraries that are automatically tuned
for specific platforms or problems, for example, ATLAS and
FFTW [29, 14]. For example, specialized FFT routines can
be called directly if the input matrix size is known.

Constraint Logic Programming (CLP) has become pop-
ular recently [26, 17, 18]. CLP extends the purely syn-
tactic logic programming (typified by linear unification) by
adding semantic constraints over specific domains. Using
constraints over type domains would fall in the category of
Constraint Logic Programming. Some of the well known
CLP systems include CHIP [12], CLP(R) [19], Prolog-
III [6], and ECLiPSe [28]. While a general purpose CLP
system could be employed in solving the constraints within
our type inference system our algorithm utilizes the spe-
cific properties of the problem domain to operate within a
provably efficient time complexity.

10 Conclusion

We motivated the idea of speculative specialization of li-
braries based on types. This fits well within the telescoping
languages framework. In order to carry out the special-
ization of code written in a weakly typed high-level lan-
guage, like Matlab, it is necessary to infer types of vari-
ables. Moreover, the inference process needs to generate
all possible valid configurations of variable types based on
the acceptable types of input parameters to a library pro-
cedure. Each such valid combination induces a specialized
variant. In practice, the number of variants can be limited
by annotations by the library writer.

We formulated the inference problem using propositional
logic utilizing type jump functions encoded in the form of an
annotation database on library procedures. The database
is populated by the library compiler either through direct
analysis or a transcription of user provided annotations for
the procedures that are not analyzed (say, when the source
is not available). This formulation enables solving for all
possible type combinations simultaneously.

Type inference is carried out in two phases. The first
phase maps the constraints onto a graph and uses a clique-
finding approach to identify valid type combinations. This
phase also determines array ranks and shapes and intrinsic
types for all the variables. The second phase handles infer-
ence for array sizes, that could be not be handled by the
first, using a technique called slice hoisting.

Our study of the ARPACK linear algebra library demon-
strates the value of speculative type-based specialization.
Speculation allows us to generate highly optimized special-
ized variants at the library compilation (language genera-
tion) time.
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A NP-completeness of Type Infer-

ence for Straight Line Code

Operations on variables can impose certain constraints on
their types, including their ranks and intrinsic types. In
the absence of any other information it may be desirable to
generate these constraints at compile time, based upon the
properties of the operation, and deduce feasible combina-
tions for the variables. In the telescoping languages context
this can serve as a guide to specialize the program or proce-
dure. In a general case this problem is undecidable (halting
problem can be easily reduced to it). Even in the more
restricted case of straight line code (that has no branches)
this is a hard problem. The following theorem states this
for array ranks.

Theorem A.1 Inferring feasible (valid) rank combina-
tions for variables in a program without branches is NP-
complete.5

In order to prove the theorem we must show that the prob-
lem is in NP and that it is NP-hard. The problem can
be solved in polynomial time by a non-deterministic Turing
Machine by simply guessing feasible ranks for the variables
and verifying that the constraints imposed by all the state-
ments in the program are satisfied. The verification is easily
done in polynomial time for linear code. Thus, the problem
is, clearly, in NP.

We reduce 3-CNF SAT to this problem to complete the
proof. 3-CNF SAT is the problem of determining whether a
satisfying truth assignment to variables exists for a Boolean
expression in conjunctive normal form where each clause
consists of exactly three literals. The problem statement in
3-CNF is of the form

∧
xi1 ∨ xi2 ∨ xi3

where xi denotes a literal that could be a variable v or its
negation v̄.

Given a program statement f(A,B,C) there are some con-
straints imposed on the ranks of A, B, and C depending on
the function f. For example, the function f might impose
the constraint that if A and B both have rank 2 then C must
also have the rank 2. If we denote the rank of a variable V

by ρV then this translates to the constraint:

((ρA = 2) ∧ (ρB = 2)) ⇒ (ρC = 2)

Using the identity α ⇒ β ≡ ¬α ∨ β and de Morgan’s law,
this reduces to

¬(ρA = 2) ∨ ¬(ρB = 2) ∨ (ρC = 2)

5We use NP-completeness in the sense of algebraic complexity, not

bit complexity.

operation rank constraint clause
f1(a,b,c) ((ρa = 0) ∧ (ρb = 0)) ⇒ (ρc = 2) a ∨ b ∨ c

f2(a,b,c) ((ρa = 2) ∧ (ρb = 0)) ⇒ (ρc = 2) ā ∨ b ∨ c

f3(a,b,c) ((ρa = 0) ∧ (ρb = 2)) ⇒ (ρc = 2) a ∨ b̄ ∨ c

f4(a,b,c) ((ρa = 2) ∧ (ρb = 2)) ⇒ (ρc = 2) ā ∨ b̄ ∨ c

f5(a,b,c) ((ρa = 0) ∧ (ρb = 0)) ⇒ (ρc = 0) a ∨ b ∨ c̄

f6(a,b,c) ((ρa = 2) ∧ (ρb = 0)) ⇒ (ρc = 0) ā ∨ b ∨ c̄

f7(a,b,c) ((ρa = 0) ∧ (ρb = 2)) ⇒ (ρc = 0) a ∨ b̄ ∨ c̄

f8(a,b,c) ((ρa = 2) ∧ (ρb = 2)) ⇒ (ρc = 0) ā ∨ b̄ ∨ c̄

Figure 11: Table of operations along with their rank constraints
and the corresponding 3-CNF clauses.

Also, notice that to respect the constraints imposed by a
linear sequence of such program statements all of these con-
straints must be satisfied. In other words, the constraints
must be composed by conjunction.

Suppose that each variable in the program can only have
a rank of 0 or 2. In that case, the expression ¬(ρv = 2) is
equivalent to (ρv = 0). For every 3-CNF SAT variable v we
define a program variable v. The variable v is assigned true
iff the rank of v is 2. Thus, v corresponds to (ρv = 2) and
v̄ corresponds to ¬(ρv = 2) or (ρv = 0). In order to reduce
an instance of 3-CNF SAT into an instance of the problem
of inferring feasible rank combinations we write a program
that consists of a linear sequence of statements. Each state-
ment corresponds to a clause in 3-CNF SAT and imposes
a constraint that corresponds exactly to the clause. Fig-
ure 11 defines eight functions and the constraints imposed
by each of the functions that correspond to the 3-CNF for-
mula shown in the rightmost column. In a real program
these functions could correspond to library routines that
impose the indicated constraints on their arguments.

For each 3-CNF clause of the form x1 ∨ x2 ∨ x3 we write
a statement of the form fi(x1,x2,x3) where the function
fi is chosen according the table in figure 11. Clearly, this
construction is polynomial time and log space. We state,
without proof, the following lemma.

Lemma A.1 A given instance of 3-CNF SAT has a satis-
fying truth assignment iff the variables in the corresponding
program have a feasible combination of ranks.

The proof of the lemma is obvious. This completes the
reduction and, hence, the proof of the theorem. 2

Theorem A.1 has another implication. Proving a pro-
gram correct is undecidable in general. However, if the pro-
gram has no branches then the problem might seem “easy”.
The theorem indicates that if we must infer array ranks in
the absence of any other information then even this can be
a hard problem since for the program to be correct there
must be at least one feasible combination of variable ranks.
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Corollary A.2 Proving correctness of linear code (with-
out branches) in the presence of arbitrary operators is NP-
hard.

A similar result holds for intrinsic types and array shapes.

Corollary A.3 Inferring feasible (valid) intrinsic types or
array shapes for variables in a program without branches is
NP-complete.

It should be noted that these results hold only in a gener-
alized case of arbitrary operators. In particular, if operators
are not polymorphic or overloaded then the problems can
be solved in polynomial time. The results can be seen to
hold for any finite domain over which strict constraints can
be written. However, in most practical domains, the do-
main elements are arranged in a lattice and it is, usually,
permissible to substitute an element by another of lower
value (or vice versa). Thus, most practical operators and
functions impose inequality constraints on types instead of
strict equality. For example, a function that accepts a com-
plex number as an argument can also accept a real or an
integer (since the others can be type cast to complex). The
hardness result for straight line code does not necessarily
hold in such cases.
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