
A Compiler Driven Execution Model for Irregular Applications

Arun Chauhan
Dept of Computer Science

Rice University
Houston, TX 77005

achauhan@cs.rice.edu

Kathleen Knobe
Cambridge Research Lab.
Compaq Computer Corp.
Cambridge, MA 02139

knobe@crl.dec.com

Abstract

Current parallelizing compiler technology does not han-
dle irregular applications effectively. Approaches in the
past have either focused on specific irregular applica-
tions to generate good code, or relied on fall-back generic
techniques that are less efficient. This work proposes a
compiler-driven approach that makes use of a novel run-
time execution model for a cluster of computers. The
model consists of data-flow style workers to enable load-
balancing, and HPF-style data-blocking (or tiling) to di-
vide computations into units of work. The run-time system
is loosely based on Space-Time Memory abstraction devel-
oped at Compaq’s Cambridge Research Lab, which enables
blocks to be addressed totally independently of their physi-
cal location.

The model has several advantages. It allows a high de-
gree of concurrency and high flexibility in scheduling com-
putations. In some cases where a traditional compiler opti-
mization (like loop fusion) can not be performed statically,
this framework may lead to a natural dynamic equivalent.
Use of workers enables good automatic load-balancing,
while an advanced hierarchical design can achieve local-
ity and computational scalability. We plan to leverage the
dHPF compiler work at Rice University for a compiler
front-end. Finally, the model is scalable in terms of space
usage since space is required for only the currently relevant
data blocks. The whole array may never exist at one time.
Scalability in computation is being studied using hierarchi-
cal mapping of the model onto the underlying topology of a
cluster.

We have developed this new approach via studying how
it would work with two representative applications: blocked
Cholesky factorization and Molecular Dynamics. In the pa-
per we will detail the approach and provide evidence of its
effectiveness on these two applications.

1. Introduction

Data parallel programming style has been very popular
with the scientific community. It provides a programming
paradigm that has become well understood. Several soft-
ware tools developed over the years have made data-parallel
style of programming easier and attractive. However, most
of these tools – especially parallelizing compilers – have
only been able to handle applications that fall in the class
of regular applications. These applications exhibit regular
patterns of computation and data access. This makes it pos-
sible for parallelizing compilers to reason about them, even
in the presence of symbolic constants, and parallelize them
effectively.

The applications that fall inirregular class exhibit data
access patterns that are impossible to resolve at compile
time. This usually gets manifested in source code in the
form of index arrays that are used to access data arrays. Cur-
rent compilers fail to handle such cases efficiently. More-
over, it is not easy to express data-parallelism in such appli-
cations.

This paper presents an execution model that aims to al-
leviate these problems. The motivation for the design of
this model came from the experience of using Space-Time
Memory [1] for an integrated task and data-parallel ap-
proach for multimedia applications [2, 3, 4]. With the in-
creasing availability of high-speed low-latency networks,
design choices that were earlier infeasible, may now be-
come possible. Some such choices get reflected implicitly
in the proposed model. Section 2 describes the execution
model and its implementation. Section 3 discusses the use
of the model for two representative applications. Section 4
describes the idea behind compiler integration of the execu-
tion model. Finally, the paper concludes with the discussion
of current status and future work.

2. The Execution Model

Two properties characterize irregular applications:

1



• indirect data access patterns, and

• unpredictable computation requirements for a data
sub-domain.

Any execution model that attempts to handle irregular ap-
plications must address these two issues.

We assume a specific class of applications. In particular,
we assume the following:

• data-domain is amenable to block decomposition;

• computation can be partitioned based on the above
block decomposition;

• there is sufficient block-level parallelism;

• data-dependencies between blocks can be determined
either at compile-time or run-time;

• there is a simple mapping from data sub-domain to the
iteration sub-space that generates that sub-domain.

While the above conditions might appear too restrictive, it
turns out that several important scientific applications obey
them.

The central idea is to decompose the data-domain into
blocks and then decompose computation based on the
blocked data decomposition. This results in a set of com-
putational pieces ofwork, each dependent on a set of one or
more data blocks ordata items. At any time a global work-
queue contains all pieces of work that are ready to be com-
puted. A piece of work is ready to be computed when all
the data-blocks required for its computation are available.
This resolution is done by a component of the run-time sys-
tem calledenabler. With each piece of work are associated
a set of input blocks and the computation to be performed.
A set of identical workers, one for each physical processor,
repeatedly obtain a piece of work from the queue, perform
the associated computation and write the resulting data into
a datarepository. All data needed for a computation is read
from this data repository.

2.1. High-Level Design

Figure 1 shows the overall structure of the execution
model.

Data Repository The data repository contains all the data
items that are currentlylive. Each data item is ad-
dressed by a global tuple that consists of array name
and other attributes, as explained later in this section.
The address is calleditem-ID. Inputs needed for a com-
putation are read from the repository, and all the out-
put generated as a result goes into the repository. A
data-item is never replaced in the repository; new val-
ues generate new data-items with new item-IDs. This

Ready Queue Finished Work

Enabler

Parameterized Code

Data Repository

Run-time System

W

Application

1 W2 W3 W4

Figure 1. Logical structure of the Execution
Model. Wi indicates the ith worker.

eliminates all but true data dependencies. As a data-
item becomes “garbage” its space is reclaimed by the
run-time system.

Work Queue The work queue containswork ordersthat
are ready to be executed.Executinga work-order
means doing the computation indicated in it. A work-
order is a complete specification of a computation in-
cluding a label to identify a parameterized code block,
and a list of all inputs in the form of data item-IDs. All
the inputs needed for a work order in the work queue
are guaranteed to be available in the data repository.

Workers All workers are identical workhorses that repeat-
edly obtain work orders from the work queue and ex-
ecute them. Normally, there would be one worker for
each available processor. Depending on the type of
computation involved, as implied by the work-order, a
worker invokes an appropriate piece of parameterized
code in the application.

Finished Work Finished Work is a list of work-orders that
have been executed. This serves as a mechanism to

2



indicate the completion of a computation to the run-
time system, and in particular, to the enabler.

Enabler The enabler is an active component of the run-
time system. It is responsible for resolving data-
dependencies at run-time. As soon as all the incoming
data-items for a piece of work become available, the
enabler generates a work-order and adds it to the work
queue. An alternative way of looking at this function is
that all the work-orders ever needed in the application
exist in some virtual space and the enabler “enables”
a work-order by moving it to the work queue when
all the required input data for the work-order becomes
available. In this sense, the enabler generates data-flow
type computation pattern at the global level.

As described above, the model has serious potential bot-
tlenecks in central work-queue. Locality is another impor-
tant concern. Apart from the inherent gains in locality due
to blocking, there needs to be a more sophisticated mecha-
nism to exploit locality. These issues will be discussed in
more details in section 8.

2.2. Implementation

As mentioned earlier, one inspiration for this model
came from our experience with the Space-Time Memory
(STM) system that was originally developed for multime-
dia applications. However, the current model is entirely dif-
ferent from STM. The primitives constituting the program-
ming interface are radically different from those of STM.
This results from the fact that scientific applications face
issues that are different from the ones face by multimedia
applications.

There are two major components of the proposed execu-
tion model:

1. compiler, and

2. run-time system.

Important components of the run-time system were de-
scribed in 2.1 and figure 1. The run-time system has been
implemented on top of the lower levels of Stampede [5] that
are based on either a distributed object layer or a message
massing layer.

Data Repository.Data repository is essentially an associa-
tive memory. It provides associative look-up based on data
item-ID. Each item-ID can be an arbitrary tuple of scalar
values, however, the size of the tuple is fixed for an appli-
cation. This size is conveyed to the run-time once in the
beginning. Notice that each data-item is a subsection of an
array. Given our assumptions about the application, there
must be a simple mapping from a given array sub-section

loop1: do i = 1, 1000
do j = 1, 1000

C(i, j) = C(i, j) * D(i, j)
enddo

enddo

loop 2: do i = 1, 1000
do j = 1, 1000

A(i, j) = B(i, j) + C(i, j)
enddo

enddo

Figure 2. Example code to illustrate the Exe-
cution Model.

to the iteration sub-space of the loop that generates the sec-
tion. Moreover, since we restrict ourselves to rectangular
sections, each data-item can be identified by the first iter-
ation vector in the sequence that generates the data-item.
Along with the array name and a loop-identifier, this itera-
tion vector can be combined to form a unique data item-ID.
For example, consider the code segment in figure 2. Assum-
ing that the block size is 10x10, data item that corresponds
to array section A(1:10,11:21) generated in loop 2, could be
identified with a tuple of the form<array name, loop label,
{loop-vector}>. For this data-item the item-ID would then
be<’A’, 2, {1,11}>.

With each data item are associated two attributes: the
item ID and agarbage ref-count. Item ID, described above,
consists of a tuple that identifies the data item globally. The
garbage ref-count indicates the number of times a data-item
will be read before it becomes garbage. This number is
specified by the application whenever a new data-item is
created and written into the data repository. Subsequently,
every time the data-item is read, its garbage ref-count is
decremented. As soon as the count reaches zero, its space
can be reclaimed. This is possible because a data-item is
never modified. An important result of this mechanism is
that arrays never reside at any central place and only the
“live” data ever exist in the system. Moreover, the data-
items are distributed across processors, thus making the de-
sign highly scalable with respect to space requirements.

Work Queue. Logically, there is a single shared queue
from which all workers read work-orders. This greatly sim-
plifies the logic that each worker must implement and also
provides opportunities to tune the actual implementation ac-
cording to the underlying architecture. Currently, the work-
queue is implemented as a physically single work-queue.
To be scalable, it needs to be hierarchical in structure that

3



matches with the underlying topology of the network. How-
ever, any such implementation details are hidden from the
top level model. The idea of hierarchical queues is dis-
cussed in more details in section 8.
Workers. Usually, there would be one worker per proces-
sor. Each worker is a simple driver that obtains a work-order
from the work-queue, reads all the input data needed to ex-
ecute that work-order and then invokes the appropriate code
segment to perform the associated computation. This pro-
vides a load-balanced execution model. The code that gets
invoked from within a worker is generated by the compiler.
It is nothing but a parameterized version of a code segment
in the original source that has been transformed to work on
blocks of data. Currently this is done by hand. However,
the worker itself is completely independent of the specific
application and is a part of the pre-compiled run-time sys-
tem.
Finished Work. Finished Work is the list of work-orders
that have been executed. The enabler uses this information
to resolve dependencies and add new work-orders to the
work-queue. Dependencies are conveyed to the run-time
system “on the fly” through theinsert WO call, as would
become clearer in 2.3.
Enabler. Analogous to the garbage ref-count for a data-
item, anenabling ref-countis associated with each work-
order. It refers to the number of inputs a work-order needs
for it to be executed. When a data-item is computed, it trig-
gers one or more work-orders that would use that data-item.
This information is conveyed to the enabler for each work-
order thus triggered. The enabler determines if all the inputs
for that work-order are ready; if so, it places the work-order
in the ready queue.

2.3. Programming Interface

Compiler-transformed application code interacts with
the run-time system through a set of library calls. The calls
can be divided into three broad categories:

registration calls These are a set of functions that are
called once in the beginning of the program. They are
used to convey application specific information to the
run-time system. This includes size of the item-ID tu-
ple and pointers to various code segments used to exe-
cute work-orders.

execution related callsThe central part of the Application
Programming Interface (API) is the set of functions
that read and write data from the repository. Work-
ers implicitly call parameterized code segments. These
code segments use the data repository related API calls
to exchange data with the repository. Finally, another
API call enables the code segments to convey to the
run-time system the completion of a work-order as

well as further work-orders that directly depend on the
data produced.

support functions There is a set of support functions
that serve primarily to “construct” and “de-construct”
work-orders, item-IDs, etc.

register dItem t
function convey the tuple size and other attributes

that constitute the item-ID to the run-time
system

arguments The function takes the number of fields in
the tuple and maximum value for each field
of the tuple. Each tuple field is restricted to
scalar values – the maximum value is used
to compress each field into minimum num-
ber of bits.

register executor
function convey the code segments (represented by

function pointers) to the run-time system
arguments The sole argument is a pointer to a func-

tion.
read data

function read data from repository; each read decre-
ments the garbage ref-count associated
with the data-item

arguments Work-order and pointers to buffers to read
all the required data for the work-order.

write data
function write data to repository

arguments Pointer to the buffer containing data, the
item-ID for the data-item, and the garbage
ref-count. The ref-count allows the run-
time system to reclaim space when the
data-item is no longer live.

insert WO
function generate a new work-order (that may not

be ready to be executed yet)
arguments Item-ID of a newly generated data-item

and the total enabling count for the work-
order. The enabling count (analogous to
the garbage ref-count) enables the run-time
system to decide when all the inputs be-
come ready for a work-order and move it
to the ready queue.

Table 1. Major API functions along with their
important arguments.

Table 1 lists the main API functions along with a brief
description of their arguments and their functionality. One
important observation is that even though the API is target-
ted at compiler generated codes, it is simple to use. This has

4



two advantages: it enables testing applications without any
compiler support and it keeps the code-generation phase in
the compiler simple. A somewhat more complex require-
ment of the compiler is transforming the source code seg-
ments into data-flow type parameterized functions.

Most API functions are self-explanatory, however,
insert WO merits some elaboration. The dependence in-
formation for a work-order gets conveyed to the run-time
system throughinsert WO call. The function is called
whenever a new data-item is generated that would be used
in a subsequent work-order. It is called once for each such
work-order. Each call also conveys one of the inputs to
the specified work-order, i.e., the data-item just generated.
The enabler maintains information about partly ready work-
orders. Once all inputs for a work-order have been con-
veyed to it throughinsert WO calls, the work-order is
moved to the ready queue.

3. Applying the Model

3.1. Cholesky Factorization

Cholesky factorization is not completely irregular, but
does exhibit complicated communication patterns as well
as characteristics that make it difficult to load-balance. This
provides a useful test-bed for the Execution Model.

The problem of Cholesky factorization is to decompose
a given symmetric positive definite matrix,M , into a lower
triangular matrix,L, so thatM = L.LT . Figure 3 shows
the basic, right-looking, Cholesky factorization algorithm
as well as the blocked version of the same algorithm; the
blocked version reduces to the basic one for a block size of
unity. This is a well known blocked-Cholesky algorithm.
Even though the computation and the data reference pat-
terns are completely predictable, it is hard to come up with a
static data distribution that would lead to good load-balance
and keep communication patterns simple. This was the mo-
tivation behind using our Execution Model to implement
Cholesky factorization.

Figure 4 shows the computation pattern of two initial it-
erations. Notice that in each iteration there are three distinct
types of operations:

1. simple Cholesky factorization of the topmost triangu-
lar block in the left column,

2. multiplication operation for all the remaining blocks in
the leftmost column, and

3. “update” operation for all the blocks in the remaining
triangular matrix.

The algorithm then proceeds to the next iteration by repeat-
ing similar three-step computations on the smaller triangu-

lar matrix that results by ignoring the leftmost column of
blocks.

subroutine simple Cholesky (M)
// Assuming the matrix, M, is NxN.
// Cholesky is computed in place.
// Only the lower triangular part is used.
do k = 1, N

M(k,k) = sqrt(M(k,k))
do i = k+1, N

M(i,k) = M(i,k) / M(k,k)
enddo
do j = k+1, N

do i = j, N
M(i,j) = M(i,j) - M(k,i)*M(k,j)

enddo
enddo

enddo

subroutine blocked Cholesky (M)
// assuming the matrix, M, is TxT blocks.
// Cholesky is computed in place.
// Only the lower triangular part is used.
// M(i,j) refers to block (i,j).
// Arithmetic operators are matrix operations.
do k = 1, T

call simpleCholesky(M(k,k))
do i = k+1, T

M(i,k) = M(i,k) * inv(M(k,k))
enddo
do j = k+1, T

do i = j, T
M(i,j) = M(i,j) - M(k,i)*M(k,j)

enddo
enddo

enddo

Figure 3. Cholesky factorization.

Similarly shaded areas in the figure indicate similar
and independentcomputations. Thick arrows between the
shaded areas show data dependencies between these re-
gions. Parallelism exists at several levels:

1. all blocks shaded similarly can be processed in paral-
lel;

2. many blocks in the shaded area corresponding to the
next step become ready to compute even before the
previous area has been completely computed; the com-
putation for those blocks can be performed concur-
rently;

5



Iteration 1

Iteration 2

Figure 4. Computation pattern in the first two
iterations of blocked Cholesky factorization.

3. computation for the next iteration can be started even
before the previous iteration has finished.

Our execution model is capable of exposing, and using,
all three levels of parallelisms. The simplest way to map
this application onto the execution model is to consider each
block of matrix as a data-item. Further, recall that new val-
ues for a matrix block give rise to new data-items in our
model – a data-item is never modified. The work-orders nat-
urally correspond to the computations for data-items. There
are three types of work-orders for the three types of compu-
tations.

Figure 5 illustrates the transformed Cholesky factoriza-
tion code to use the proposed execution model. For the sake
of clarity, the figure omits several details and presents the
transformations for only the initialization code and one type
of computation in pseudo-code form.

subroutine main Cholesky (M)
register itemtype tuple size as 3 // 3 is the max loop nest depth
register type1 computation
register type2 computation
register type3 computation

end subroutine

subroutine type 1 computation (work order W)
Matrix A
call readdata(A, W)
call simpleCholesky (A)
let k = row and column of the block A
let n = number of blocks along a dimension in the original matrix
garbageref count = n - k // A is used by (n-k) type-2 computations
call write data(A, garbageref count)
do i = k+1, n

let ID computed = item ID for block A
let ID 2compute = item ID for block (i,k)
enablecount = 2 // two inputs needed for type 2 computation
call insertWO (enablecount, ID computed, ID2compute)

enddo
end subroutine

Figure 5. Transformed Cholesky factorization
to use the proposed execution model.

3.2. Molecular Dynamics

Molecular Dynamics is an application that simulates a
system of a large number of molecules evolving in time
under the influence of mutual electro-static forces. The
algorithm starts out by initializing particle velocities and
forces and building a list of interactions consisting of pairs
of “neighboring” particles as defined by a threshold radius.
Rest of the algorithm iterates inside a time-step loop. First,
the algorithm updates particle coordinates. It then iterates
over all pairs of interactions and updates the mutual electro-
static forces. Next, the new particle velocities are computed
based on updated forces. Finally, the total kinetic energy
and average velocity of the system are computed through
a global sum operation. This completes one iteration of
the algorithm. Clearly, the complexity of each iteration is
bounded by the number of interaction pairs and the number
of particles. Every fixed number of iterations the algorithm
recomputes the list of neighbors. This is aO(n2) operation,
wheren is the number of particles. The high-level pseudo-
code is shown in figure 6.

This non-hierarchical N-body simulation code provides
a good example of highly irregular application. It is hard to
parallelize using conventional mechanisms. To parallelize
this application using our execution model, we make the
following observations.

• There are three types of computations involved: force

6



program moldyn
build neighbor list
initialize particle coordinates, velocities, and forces
for t = 1, MAX TIMESTEP do

if (mod(t,20) .eq. 0) then
re-build neighbor list

endif
for each pair of neighbors do

update forces
enddo
for each particle do

update velocity
enddo
compute system’s kinetic energy
compute average velocity

enddo
end program

Figure 6. Pseudo-code for Molecular Dynam-
ics.

computation that is per interaction pair; velocity com-
putation that is per particle; and global sums (kinetic
energy and average velocity) that translate to reduction
operations.

• Updating the neighbor list involves all-to-all commu-
nication of particle coordinates.

• All data is associated with particles and none is asso-
ciated with an interaction pair.

Based on the above observations one possible strategy is
as follows. Each force computation or velocity computation
is treated as a work-order. Each particle is treated as a data-
item with the particle attributes (velocity, coordinates,and
force) being the data. Computation of forces, velocities,
and coordinates can, thus, be easily performed within the
worker driven execution model described earlier. To com-
pute the global sum for computing kinetic energy and ve-
locity average, work-orders are created to compute partial
sums. Each worker computes the partial sum using as many
values as it can. Finally, a single work-order is created that
has as many inputs as the number of processors, to compute
the final value. Notice that this final sum can be carried out
by any one processor while the others can proceed to start
computations for the next iteration without waiting. This
strategy allows concurrency to be exploited across compu-
tational phases within a single time-step as well as across
time-steps. This effect is similar to what the model achieved
for Cholesky factorization.

The only step that now remains to be parallelized is the
re-computation of neighbors. Unfortunately, this is the bot-
tleneck in this algorithm and it remains the bottleneck in
parallelization too. This step involves large amounts of
communications. One way to ameliorate the situation is to
exploit locality. The other is to use a better algorithm.

3.3. Hierarchical N-body Simulation

Hierarchical N-body algorithm is a big improvement
over the straightforward algorithm used in Molecular Dy-
namics. The best known adaptive methods achieveO(n)
time complexity, wheren is the number of bodies. We are
in the process of evaluating an adaptive N-body code using
our execution model.

4. Compiler

HPF is among the most popular of the several data-
parallel programming models. It has been highly studied
and there is a good compiler support available for HPF
at research as well as commercial level. One big advan-
tage of HPF paradigm is that it enables the application
writer to think and program in the well understood se-
quential way. Secondly, a number of applications have al-
ready been ported to HPF, which provide useful compara-
tive benchmarks. Finally, the compiler development effort
at Rice University has resulted in an extensive infrastruc-
ture for HPF compilation that we intend to utilize to test our
ideas. For these reasons, even though the proposed execu-
tion model would work with most parallelizing compilers
and data-parallel environments, HPF is our preferred envi-
ronment.

The proposed model involves re-writing the source code
and inserting calls to the run-time API with appropriate pa-
rameters. This is a tedious process to do by hand, and there-
fore, also prone to errors. Current compiler technology is
capable of handling these transformations. The missing link
is to characterize applications that would benefit from this
model and encode it as a compiler algorithm. This would
enable a parallelizing compiler to transform the source for
using this run-time system only when it is profitable to do
so.

5. Current Status

Current implementation of the run-time system is on top
of the lower layers of Stampede. This uses Stampede’s
channelmechanism to implement data repository, and a
separate Stampede thread to implement the “enabler”. Each
worker is a Stampede thread, one per physical processor.
Although, for the sake of efficiency, all threads on a single

7



SMP run in the same address space, the run-time system is
independent of this fact.

Cholesky factorization has been written and tested on
this system. Molecular Dynamics is at an advanced stage
of porting. We hope to evaluate these two applications and
have some performance results ready by the time of the
workshop.

From the past experience with Stampede, and with some
preliminary performance measurements, our estimate is that
certain Stampede related primitives used in implementing
the run-time system are too inefficient. There are several
characteristics of our execution model that allow a much
more efficient implementation of these primitives.

• While Stampede supports a sophisticated garbage col-
lection mechanism that is scheduled periodically in the
background, this is not needed for our purposes. All
the data-items have well known lives that are com-
pletely determined by the garbage reference counts.
This would enable several optimizations by getting rid
of certain overheads related to garbage collection.

• Many underlying data structures being used by Stam-
pede are tuned for streaming multimedia applications.
In particular, they are well suited for sequential access.
In scientific applications, the accesses are fairly ran-
dom. We believe that re-tooling these underlying data
structures can lead to significant performance gains.

• The current implementation of enabler mechanism re-
sides completely above the Stampede layer. Since, it is
really a lower level functionality, by pushing it down,
some improvements in performance are possible.

• Finally, the entire Stampede layer, that is itself built
on top of an underlying message passing or distributed
object layer, introduces unnecessary overheads. One
immediate goal after the rapid prototyping stage is to
bypass this layer completely and implement the run-
time system directly over the underlying layers.

Apart from these immediate measures, the future work
section discusses other ideas that can lead to far reach-
ing performance benefits in the long run and that can help
strengthen the execution model.

6. Related Work

One of the pioneering works to handle irregular appli-
cations automatically was done as the CHAOS project at
University of Maryland [6]. The system consisted of a run-
time library that provided primitives to resolve data loca-
tions at run-time. Data could be “re-mapped” at run-time
to improve load-balance. Inspector-executor strategy was

utilized to compute communication requirements for a loop
and arrive at an optimized communication schedule.

The inspector-executor strategy has inherent overhead in
that a computation loop must be executed, without the com-
putation part, as a pre-processing step. In addition, a two-
step process is necessary to compute the location of a piece
of memory. As a result, load-balancing must be traded off
against data re-distribution and re-computing communica-
tion schedules.

Some work on encoding irregular applications in HPF
was done by Charlie Hu et al.[7]. They succeeded in encod-
ing adaptive hierarchical N-body problem in HPF by using
space-filling curves . However, they did not get very good
performance with available compilers. A later study by
Collin McCurdy and John Mellor-Crummey[8] found that
to achieve acceptable performance with HPF encoded N-
body code it was necessary to useextrinsic procedures –
a mechanism to slip into lower levels of programming that
destroys the abstract HPF programming paradigm.

The SMARTS project at Los Alamos National Labora-
tory [9] is similar in that it attempts to achieve higher par-
allelization by scheduling iteration sub-spaces or “iterates”
independently. This has the flavor of data-flow type com-
putations, but they do not address irregular applications.
Moreover, their work is restricted to a single SMP, so the
data addressing issue has not yet been handled.

The work that does address the data addressing issue
is the LINDA project at Yale University [10]. LINDA
has a very general tuple-based resource addressing mech-
anism. However, unlike the model presented in this pa-
per, LINDA’s API is intended to be directly used by the
application writer and it aims to provide a general parallel-
programming model. As a result there are issues related to
protection, aliases, etc that do not arise in our case. In ad-
dition, the primitives supported by LINDA are quite differ-
ent reflecting the difference in desired goals. For example,
it provides a mechanism to look up tuples based on wild-
cards; this is a generality not required by our system, thus
simplifying its implementation.

7. Conclusion

We have presented an execution model for irregular ap-
plications. The model works by combining HPF-style data
parallel compiler with a run-time system support to pro-
vide a software layer that enables automatic handling of
irregular applications that have been very hard to handle
so far. Two key elements of the model are location inde-
pendent tuple based mechanism to address data, and data-
flow style worker based run-time system for automatic load-
balancing. The model works seamlessly both within a SMP
and across a cluster of them.

8



We have evaluated our model in the context of two appli-
cations: Cholesky factorization and Molecular Dynamics.
At present we address a restricted class of irregular appli-
cations whose computation can be blocked and that exhibit
sufficient parallelism at the block level. Some important
scientific applications fall in this category.

Our immediate future goals are to do extensive perfor-
mance evaluations on these and other applications, and ad-
dress the issues of locality, automatic code generation, and
scalability.

8. Future Work

There are two important aspects of the execution model
that need to be addressed in future:

• Hierarchical model to enhance data-locality and make
the model scalable.

• Compiler algorithms to integrate the system with HPF
compiler.

Performance of the run-time system is the key in making
the system practical. One important consideration is data
locality. The issue of locality arises at two levels: avail-
ability of data on local processor as against obtaining them
remotely; making maximum use of the local memory cache.

To address the first, one possible approach is to design
a hierarchical system that takes into account the underlying
network topology. The hierarchical system would imple-
ment a cache system for data-repository. The cache would
store local copies of the data that is read. As all the data
is read-only, cache coherency would not be an issue. How-
ever, keeping the garbage reference counts consistent is an
issue that needs to be solved.

To make optimal use of cache, it is desirable to make as
much use as possible of the data once read from memory,
before it is discarded. This points to some strategy to or-
der work-orders is a way that reuses data that is already in
cache. Such a strategy would use multi-level work queues.

Not only would a hierarchical design address the issues
of scalability and locality, it would also allow the model
to be used on a heterogeneous cluster of machines. These
enhancements would leave the API unchanged and hence
still provide a simple view to the application. This enables
experimenting with and tuning the run-time system without
requiring any change at the compiler-end.

At the compiler-end, we need an algorithm for evaluating
and transforming applications to use the execution model.
The idea is that the user would program in HPF as usual,
while the compiler evaluates the applicability of the run-
time system for the application. Admittedly, this is an am-
bitious goal; as an intermediate step, we may have to relax
our goals and seek the help of special compiler directives
for semi-automatic handling.

9. Acknowledgments

We thank Collin McCurdy and John Mellor-Crummey
for making their code available; thanks to Charlie Hu for the
HPF version of hierarchical N-body code. Shamik Sharma,
from University of Maryland, wrote the original Molecu-
lar Dynamics code. Finally, we would like to thank Com-
paq Computer Corp.’s Cambridge Research Lab for making
their facilities available.

References

[1] U. Ramachandran, R. S. Nikhil, N. Harel, J. M. Rehg,
and K. Knobe, “Space-Time Memory: A parallel pro-
gramming abstraction for interactive multimedia ap-
plications,” inProceedings of ACM SIGPLAN Sympo-
sium on Principles and Practices of Parallel Program-
ming, May 1999.

[2] K. Knobe, J. M. Rehg, A. Chauhan, R. S. Nikhil,
and U. Ramachandran, “Dynamic task and data paral-
lelism using Space-Time Memory,” Tech. Rep. 98/10,
Compaq Computer Corp., Cambridge Research Lab,
Nov. 1998.

[3] K. Knobe, J. M. Rehg, R. S. Nikhil, U. Ramachan-
dran, and A. Chauhan, “Integrated task and data par-
allel support for dynamic applications,”Scientific Pro-
gramming, vol. 7, pp. 289–302, 1999.

[4] K. Knobe, J. M. Rehg, A. Chauhan, R. S. Nikhil, and
U. Ramachandran, “Scheduling constrained dynamic
applications on clusters,” inProceedings of the ACM /
IEEE SC Conference on High Performance Network-
ing and Computing, Nov. 1999.

[5] R. S. Nikhil, U. Ramachandran, J. M. Rehg,
J. R. H. Halstead, C. F. Joerg, and L. Kontothanas-
sis, “Stampede: A programming system for emerg-
ing scalable interactive multimedia applications,” in
Eleventh International Workshop on Languages and
Compilers for Parallel Computing, Aug. 1998.

[6] S. Sharma, R. Ponnusamy, B. Moon, Y.-S. Hwang,
R. Das, and J. Saltz, “Run-time and compile-time sup-
port for adaptive irregular problems,” inProceedings
of the ACM / IEEE SC Conference on High Perfor-
mance Networking and Computing, Nov. 1994.

[7] Y. C. Hu, S. L. Johnsson, and S.-H. Teng, “High per-
formance Fortran for highly irregular problems,” in
Proceedings of ACM SIGPLAN Symposium on Prin-
ciples and Practices of Parallel Programming, June
1997.

9



[8] C. McCurdy and J. Mellor-Crummey, “An evaluation
of computing paradigms for N-body simulations on
distributed memory architectures,” inProceedings of
ACM SIGPLAN Symposium on Principles and Prac-
tices of Parallel Programming, May 1999.

[9] S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger,
A. Malony, S. Shendey, R. Oldehoeft, and S. Smith,
“SMARTS: Exploiting temporal locality and paral-
lelism through vertical execution,” inProceedings of
ACM-SIGARCH International Conference on Super-
computing, 1999.

[10] N. J. Carriero, Jr.,Implementation of Tuple Space
Machines. PhD thesis, Yale University, Dec. 1987.
YALEU/DCS/RR-567.

10


