
289

Integrated task and data parallel support for
dynamic applications

James M. Rehga,∗, Kathleen Knobea,
Umakishore Ramachandranb, Rishiyur S. Nikhila

and Arun Chauhanc

aCambridge Research Laboratory, Compaq Computer

Corporation, Cambridge, MA 02139, USA

E-mail: {rehg,knobe,nikhil}@crl.dec.com
b College of Computing, Georgia Institute of

Technology, Atlanta GA 30332, USA

E-mail: rama@cc.gatech.edu
c Computer Science Department, Rice University,

Houston, TX 77005, USA

E-mail: achauhan@cs.rice.edu

There is an emerging class of real-time interactive applica-
tions that require the dynamic integration of task and data
parallelism. An example is the Smart Kiosk, a free-standing
computer device that provides information and entertainment
to people in public spaces. The kiosk interface is computa-
tionally demanding: It employs vision and speech sensing
and an animated graphical talking face for output. The com-
putational demands of an interactive kiosk can vary widely
with the number of customers and the state of the interaction.
Unfortunately this makes it difficult to apply current tech-
niques for integrated task and data parallel computing, which
can produce optimal decompositions for static problems.

Using experimental results from a color-based people
tracking module, we demonstrate the existence of a small
number of distinct operating regimes in the kiosk applica-
tion. We refer to this type of program behavior asconstrained
dynamism. An application exhibiting constrained dynamism
can execute efficiently by dynamically switching among a
small number of statically determined fixed data parallel
strategies. We present a novel framework for integrating task
and data parallelism for applications that exhibit constrained
dynamism. Our solution has been implemented usingStam-
pede, a cluster programming system developed at the Cam-
bridge Research Laboratory.

* Corresponding author.

1. Introduction

There is an emerging class of real-time interactive
applications that require dynamic integration of task
and data parallelism for effective computation. The
Smart Kiosk system [22,5] under development at the
Cambridge Research Laboratory (CRL) is an example
which motivates this work. Kiosks provide public ac-
cess to information and entertainment. The CRL Smart
Kiosk supports natural, human-centered interaction. It
uses camera and microphone inputs to drive the behav-
ior of a graphical talking face which speaks to its cus-
tomers.

The CRL Smart Kiosk has features that we believe
are typical of an emerging class of scalable applica-
tions. It is both reactive and interactive, since it must
respond to changes in its environment as new cus-
tomers arrive and it must interact with multiple peo-
ple. It is computationally demanding due to the need
for real-time vision, speech, and graphics processing.
It is also highly scalable, both at the task level in sup-
porting a variable number of users and functions, and
at the data level in processing multiple video and audio
streams.

Effective utilization of the task and data parallelism
inherent in the CRL Smart Kiosk is critical for its suc-
cessful implementation on commodity hardware such
as clusters of SMPs. Unfortunately, existing techniques
for integrated task and data parallel computing [2,4,9,
19,3] are not well-suited to this type of application. As
an example of the current state-of-the-art, the system
described in [19] employs extensive off-line analysis
of the memory requirements, communication patterns
and scalability aspects of the tasks. This information is
then used to make a static determination of the ideal
distribution of work among processors.

In contrast, the computational requirements of even
simple vision algorithms for the kiosk are proportional
to the number of customers, which cannot be predicted
in advance. This variability has a direct influence on
the optimal resource assignment, as we demonstrate
in Section 6. Furthermore, computational requirements

Scientific Programming 7 (1999) 289–302
ISSN 1058-9244 / $8.00 1999, IOS Press. All rights reserved

290 J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications

that are unrelated to sensing tasks (such as database
access, remote content retrieval, and conversation with
the customer) will also vary as customers use the kiosk,
impacting the resources available for sensing. Some
previous work has been done on the dynamic integra-
tion of task and data parallelism for scientific applica-
tions [3]. However, that work focused on parallel nu-
merical algorithms such as can be found in ScaLA-
PACK.

In this paper, we describe a novel approach to the
dynamic integration of task and data parallelism for
interactive real-time applications like the CRL Smart
Kiosk. This work takes place within the context of
Stampede, a cluster programming system under de-
velopment at CRL. Stampede is aimed at making it
easy to program this emerging class of applications
on clusters of SMPs, the most economically attractive
scalable platform. Stampede provides a task-parallel
substrate: Dynamic cluster-wide threads together with
Space-Time Memory, a high-level, flexible mechanism
by which threads can communicate time-sequenced
data such as video frames.

We present a general framework for integrating data
parallelism into a task parallel substrate such as Stam-
pede. It is based on an architecture for embedding
data parallel decompositions into a task graph. The
architecture supports dynamic, on-line changes in the
data parallel strategy. We introduce a new notational
scheme for describing these embedded data parallel
architectures. In addition, we discuss an approach to
changing the data parallel strategy during execution in
response to changes in the application.

We show experimental results for a color-based
tracking task that demonstrate the existence of distinct
operating regimes in the kiosk application. Within each
regime, a different data parallel strategy is required
for optimal performance. We say that the kiosk ex-
hibits constrained dynamism, since the optimal strat-
egy changes during execution, but only at the bound-
aries of a small number of operating regimes. Our
framework for integrated task and data parallelism is
ideally suited to applications with constrained dynam-
ics.

In Section 2 we describe the CRL Smart Kiosk ap-
plication which provides the motivation for this re-
search. We present the Stampede system in Section 3.
Sections 4 and 5 form the core of paper. They con-
tain our framework for dynamic integration of task and
data parallelism. Experimental results demonstrating
the existence of constrained dynamism can be found in
Section 6.

2. The CRL Smart Kiosk: A dynamic multimedia
application

This work is motivated by the computational re-
quirements of a class of dynamic, interactive computer
vision applications. We introduce this class through a
specific example: A vision-based user-interface for a
Smart Kiosk [22,17] under development at the Cam-
bridge Research Laboratory. A Smart Kiosk is a free-
standing computerized device that is capable of inter-
acting with multiple people in a public environment,
providing information and entertainment.

Conventional kiosks, such as ATM machines, are
based on a touch-screen interface. The market for these
kiosks is currently growing rapidly. We are exploring a
social interface paradigm for kiosks. In this paradigm,
vision and speech sensing provide user input while a
graphical speaking agent provides the kiosk’s output.
Results from a recent public installation of our proto-
type kiosk can be found in [5]. A related kiosk appli-
cation is described in [7].

Fig. 1 shows a picture of the Smart Kiosk prototype.
The camera at the top of the device acquires images of
people standing in front of the kiosk display. The kiosk
employs vision techniques to track and identify peo-
ple based on their motion and clothing color [17]. The
estimated position of multiple users drives the behav-
ior of an animated graphical face, called DECface [21],
which occupies the upper left corner of the display.

Vision techniques support two kiosk behaviors which
are characteristic of public interactions between hu-
mans. First, the kiosk greets people as they approach
the display. Second, during an interaction with multiple

Fig. 1. The Smart Kiosk.

J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications 291

users DECface exhibits natural gaze behavior, glanc-
ing in each person’s direction on a regular basis. Future
versions of the kiosk will include speech processing
and face detection and recognition.

There is currently a great deal of interest in vision-
and speech-based user-interfaces (see the recent col-
lections [6,8]). We believe the Smart Kiosk to be rep-
resentative of a broad class of emerging applications in
surveillance, autonomous agents, and intelligent vehi-
cles and rooms.

2.1. Computational properties

A key attribute of the Smart Kiosk application is
the real-time processing and generation of multime-
dia data. Video and speech processing combined with
computer graphics rendering and speech synthesis are
critical components of a social interface. The number
and bandwidth of these data streams results in dramatic
computational requirements for the kiosk application.
However, there is both significant task parallelism as a
result of the loose coupling between data streams and
significant data parallelism within each data stream.
These sources of parallelism can be exploited to im-
prove performance. However, the complex data shar-
ing patterns between tasks in the application make the
development of a parallel implementation challenging.

One source of complexity arises when tasks share
streams of input data which they sample at different
rates. For example, a figure tracking task may need
to sample every frame in an image sequence in or-
der to accurately estimate the motion of a particular
user. A face recognition task, in contrast, could be run
much less frequently. Differences in these sampling
rates complicate the recycling and management of the
frame buffers that hold the video input data.

Fig. 2. Task graph for the color-based tracker. Circles denotetasks, implemented as threads. Cylindrical “pipes” denotechannelswhich hold
streams of data flowing between tasks.

The dynamics of the set of tasks that make up the
kiosk application is a second source of complexity.
These dynamics are a direct result of the interactive na-
ture of the application. A task such as face recognition,
for example, is only performed if a user has been de-
tected in the scene. Thus, whether a task in the appli-
cation is active or not can depend upon the state of the
external world and the inputs the system has received.
This variability also complicates frame buffer manage-
ment.

2.2. Color-based tracking example

The Smart Kiosk application can be viewed as a dy-
namic collection of tasks that process streams of input
data at different sampling rates. To explore this point
further, we focus on a subpart of the Smart Kiosk appli-
cation that tracks multiple people in an image sequence
based on the color of their shirts.

Fig. 2 shows the task graph for a color-based per-
son tracking algorithm taken from [17]. It was used in
our first Smart Kiosk prototype [22]. It tracks multi-
ple people in the vicinity of the kiosk by comparing
each video frame against a set of previously defined
histogram models of shirt colors. There are four dis-
tinct tasks:digitizer, change detection, histogram, and
target detection, which are shown as circular nodes in
the diagram. The inputs and outputs for these tasks
are shown as cylindrical “pipes”. For example, thehis-
togramtask reads video frames and writes color mod-
els (histograms). Thetarget detectiontask is based on
a modified version of the standard histogram intersec-
tion algorithm described in [20].

Fig. 3 illustrates the flow of data in the color tracker
by following a single image through the task graph.
Processing begins at thedigitizer task, which gener-
ates the video frame shown in Fig. 3(a). Thechange

292 J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications

Fig. 3. Data flow in the color tracker of Fig. 2 during a search for two models, corresponding to the two figures in the input frame (a). The final
output is the positions of the detected targets in (e). Intermediate results are shown in (b)–(d).

detectiontask subtracts a previously acquired back-
ground image from this frame to produce a motion
mask (b) showing the foreground objects and their
shadows. Similarly, thehistogram task produces a
color model (c) of the video frame (a). Fig. 3(c) shows
an 8 by 8 bin histogram of the normalized red and
green pixel values from the input frame, rendered as
an intensity image. The brightness of each square bin
reflects the number of pixels it contains.

Each instantiation of thetarget detectiontask com-
pares the image histogram in Fig. 3(c) to a previously
defined model histogram, resulting in a backprojection
image. There is a separate backprojection image for

each model. Fig. 3(d) shows the sum of the two back-
projection images for the two targets. Each pixel in a
backprojection image encodes the likelihood that its
corresponding image pixel belongs to a particular color
model. Connected component analysis and peak detec-
tion on the smoothed backprojection images results in
the detected positions of the two models, shown with
crosses in (e).

Parallelism at both the task and the data level are
visible in the diagram of Fig. 2. Task parallelism arises
when distinct tasks can be executed simultaneously. It
is most obvious in thechange detectionandhistogram
tasks, which have no data dependencies and can there-

J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications 293

fore be performed in parallel. It is also present in the
form of pipelining, where for example thehistogram
andtarget detectiontasks can be performed simultane-
ously on different frames of an image sequence.

Data parallelism occurs when a single task can be
replicated over distributed data. Thetarget detection
task is data parallel, since it performs the same opera-
tion for each color model in the application. The search
for a set of models can be performed in parallel by
multiple instances of thetarget detectiontask. For ex-
ample, Fig. 2 illustrates a parallel search for two mod-
els. Similarly, data parallelism at the pixel level can
be exploited in many image processing tasks, such as
change detectionor histogram, by subdividing a single
frame into regions and processing them in parallel.

In designing a parallel implementation of the color
tracker we could focus on task parallelism, data par-
allelism, or some combination of the two. Our experi-
mental results in Section 6 confirm our hypothesis that
in this application’s dynamic environment, we need to
combine task and data parallelism and, moreover, that
the combined structure must vary dynamically.

3. Stampede

In this section we briefly describe Stampede, is the
programming system within which we explore inte-
grated task and data parallelism. (A more detailed de-
scription may be found in [15,14,18].) Stampede is
currently based entirely on C library calls, i.e., it is im-
plemented as a run-time system, with calls from stan-
dard C.

Stampede extends the well-known POSIX dynamic
threads model [11] from SMPs to clusters of SMPs,
which constitute the most economically attractive scal-
able platform today. It provides various “shared-mem-
ory” facilities for threads to share data uniformly and
consistently across clusters.

More pertinent to the current discussion, Stam-
pede provides a high-level, concurrent, distributed
data structure calledSpace-Time Memory(STM) [18],
which allows threads to produce and consume time-
sequenced data in flexible ways, addressing the com-
plex “buffer management” problem that arises in man-
aging temporally indexed data streams as in the Smart
Kiosk application. There are four sources of this com-
plexity:

• Streams become temporally sparser as we move
up the analysis hierarchy, from low-level vision
processing tasks to high-level recognition tasks.

• Threads may not access items in strict stream or-
der.
• Threads may combine streams using temporal

correlation (e.g., stereo vision, or combining vi-
sion and sound).
• The hierarchy itself is dynamic, involving newly

created threads that may re-examine earlier data.

Traditional data structures such as streams, queues and
lists are not sufficiently expressive to handle these fea-
tures.

Stampede’s Space-Time Memory (STM) is our so-
lution to this problem. The key construct in STM is
thechannel, which is a location-transparent collection
of objects indexed by time. The API has operations to
create a channel dynamically, and for a thread toat-
tachanddetacha channel. Each attachment is known
as aconnection, and a thread may have connections to
multiple channels and even multiple connections to the
same channel.

Fig. 4 shows an overview of how channels are used.
A thread canputa data item into a channel via a given
output connection using the call:

spd_channel_put_item (o_connection, timestamp,
buf_p, buf_size, ...)

The item is described by the pointerbuf_p and its
buf_size in bytes. Although multiple channels may
contain items with the same timestamp at the same
time, a given channel can contain only one item with
a given timestamp. But this constraint does not imply
that items be put into the channel in increasing or con-
tiguous timestamp order. Indeed, to increase through-
put, a module may contain replicated threads that pull
items from a common input channel, process them, and
put items into a common output channel. Depending
on the relative speed of the threads and the particu-
lar events they recognize, it may happen that items are
placed into the output channel “out of order”. Chan-
nels can be created to hold a bounded or unbounded
number of items. Theput call takes an additional flag
that allows it to block or to return immediately with an
error code, if a bounded output channel is full.

A thread cangetan item from a channel via a given
connection using the call:

spd_channel_get_item (i_connection, timestamp,
& buf_p, & buf_size,
& timestamp_range, ...);

The timestamp can specify a particular value,
or it can be a wildcard requesting the newest/oldest

294 J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications

Fig. 4. Overview of Space-Time Memory channels in Stampede.

value currently in the channel, or the newest value
not previously gotten over any connection, etc. As in
the put call, a flag parameter specifies whether to
block if a suitable item is currently unavailable, or to
return immediately with an error code. The parame-
ters buf_p and buf_size can be used to pass in
a buffer to receive the item or, by passing NULL in
buf_p , the application can ask Stampede to allocate
a buffer. Thetimestamp_range parameter returns
the timestamp of the item returned, if available; if un-
available, it returns the timestamps of the “neighbor-
ing” available items, if any.

The put and get operations are atomic. Even
though a channel is a distributed data structure and
multiple threads across the cluster may simultaneously
be performing operations on the channel, these opera-
tions appear to all threads as if they occur in a particu-
lar serial order.

The semantics ofput and get are copy-in and
copy-out, respectively. Thus, after aput , a thread may
immediately safely re-use its buffer. Similarly, after a
successfulget , a client can safely modify the copy of
the object that it received without interfering with the
channel or with other threads. Of course, an application
can still pass a datum by reference – it merely passes
a reference to the object through STM, instead of the
datum itself. The notion of a “reference” can be based
on any of the “shared-memory” mechanisms supported
by Stampede, described in more detail in [14].

Puts and gets, with copying semantics, are of course
reminiscent of message-passing. However, unlike mes-
sage-passing, these are location-independent opera-
tions on a distributed data structure. These operations
are one-sided: there is no “destination” thread/process
in a put , nor any “source” thread/process in aget .
The abstraction is one of concurrently putting items

into and getting items from a temporally ordered col-
lection, not of communicating between processes.

A related conception of space-time memory has
been used in optimistic distributed discrete-event sim-
ulation [12,10]. In these systems, space-time memory
is used to allow a computation to roll-back to an ear-
lier state when events are received out of order. In con-
trast, we have proposed STM as a fundamental build-
ing block for a distributed application. Additional in-
formation about STM and related work can be found
in [18,15].

4. Integration of task and data parallelism

In this section, we address the integration of task and
data parallelism in the context of the Stampede sys-
tem. We will discuss both static and dynamic integra-
tion strategies, using the color tracker application from
Fig. 2 as an illustrative example.

For tasks like the color tracker there is a basic perfor-
mance tradeoff between latency (input to output time
per single frame) and throughput (output frames per
unit time). Since the digitizer can generate images sig-
nificantly faster than the downstream tasks can pro-
cess them, pipeline parallelism can be used to increase
throughput. Alternatively, a data parallel implementa-
tion of the target detection task can be used to remove
bottlenecks and reduce latency. The integration of task
and data parallelism makes it possible to address la-
tency and throughput in a single framework.

Task parallelism is captured in a natural fashion
by the task graph representation used in Space-Time
Memory.1 We introduce a framework for data parallel

1As a result, a task parallel implementation of an application can
be achieved simply by implementing it in Stampede and assigning
each task to a separate thread.

J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications 295

Fig. 5. Static data parallel architecture.

execution of a task in the STM environment. The basic
idea is to replace a node in the task graph with a data
parallel subgraph. This subgraph implements the work
of the original node using multiple worker nodes oper-
ating in parallel. Each worker performs the same task
as the original node but operates on a partition of the
data.

We will describe the general form of the data parallel
subgraph which can be applied to any potentially data
parallel node in the task graph. The details of its opera-
tion will depend upon the application. For example, the
color tracker operates on two data types, image frames
and target color models. The tracker data space can
be characterized as the cross product of frames, pix-
els in each frame, and models. Correspondingly, there
are three possible strategies for exploiting data paral-
lelism: distribute distinct whole frames, distribute parts
of the same frame (i.e., regions of pixels), and dis-
tribute models.

Distributing distinct frames increases throughput but
has no impact on per frame latency. Distributing re-
gions and models would reduce latency. In distribut-
ing parts of the same frame, each data parallel thread
searches in distinct regions of the frame for all of
the models. Alternatively, in distributing models, each
thread searches the entire frame for a distinct subset of
target models. Combinations of these two approaches
result in searching distinct regions of the frame for a
subset of the models.

4.1. Static data parallel architecture

As an introduction to our framework, we first con-
sider a static data parallel architecture. It has three ba-
sic components:splitter, worker, and joiner threads.
The structure is illustrated in Fig. 5. For some task T,
w data parallel worker threads execute the task concur-

rently, each on approximately onewth of the data. The
splitter thread reads from the input channels for task
T and converts thechunkof work specified by the in-
puts to T intow data parallel chunks, one for each of
the workers. The joiner combines thew partial results
from the workers into a single result, which it places
on T’s output channels. The splitter and joiner threads
provide the interface between the worker threads and
the rest of the task graph. They ensure that the data par-
allelism within T is not visible to the rest of the appli-
cation.

The extent of the data parallelism employed is de-
termined by the number of workers. A worker thread
is a parameterized version of the original thread which
has been designed to process a specific partition of
the data. In the color tracker example, workers process
fixed combinations of regions and models. Note that in
the case where whole frames are distributed the worker
threads can be direct copies of the original thread: The
splitter simply reads frames and distributes them to the
workers, and the joiner places the processed frames on
its output channel.

The data parallel approach of Fig. 5 isstatic in that
there is a fixed assignment of chunks to workers and a
fixed number of worker threads. Note however that the
splitter does not have to wait until one set of chunks has
been completed before sending the next set of chunks
to the workers.

4.2. Dynamic data parallel architecture

The static assignment of chunks to workers is unnec-
essarily restrictive. It limits the flexibility of the splitter
to respond to changes in the task and makes it difficult
to vary the number of workers. In the color tracking
application, for example, the splitter’s strategy should
vary with the number of targets, as we demonstrate ex-
perimentally in Section 6.

296 J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications

Fig. 6. Dynamic data parallel architecture.

Fig. 6 illustrates a dynamic data parallel architecture
that avoids the limitations of the static approach. Here
a singlework queueacts as the source of chunks for all
of the worker threads, supporting the dynamic assign-
ment of chunks based on worker availability. The work
queue provides load balancing in the situation where
the number of chunks does not equal the number of
workers. This strategy further minimizes latency when
the time to complete a chunk varies over time. It also
makes it easier to vary the number of worker threads,
w, during execution.

The splitter divides an item of work intoM chunks.
In contrast to the static case, we no longer require
M = w. In fact,M may vary with each item. In the
static case, the joiner knew the number of chunks for
each item and where to find them. Here the splitter
communicates its data parallel strategy for each item
(e.g., by frames, regions, models, or a combination) in-
cluding the number of chunks, to the joiner through the
controller queue.

The workers communicate with the joiner through
the done channelsillustrated in Fig. 6. The splitter
tags each chunk with its associated done channel (e.g.,
chunki goes to done channeli). This mechanism al-
lows any worker to process any chunk since the done
channels act as a sorting network for the results. After
receiving the strategy from the splitter, the joiner reads
the partial results from the appropriate done channels,
combines them, and outputs the complete result. Note
that the number of allocated done channels,d, is an up-
per bound on the number of chunks generated by split-
ter for any item.

In contrast to the static case, this architecture gives
the splitter the ability to dynamically alter its strategy
in response to changes in the task. A framework for
changing strategies is described in Section 4.4.

4.3. Data parallel notation

The generaldata parallel architectureabove is used
to transform a task parallel application into an inte-
grated task and data parallel version which is called
theDP application architecture. This process could be
specified by replacing one or more nodes in the orig-
inal task graph by the subgraph of Fig. 6. As a nota-
tion, this graphical representation quickly becomes un-
wieldy due to the visual complexity of the expanded
task graph. As an alternative, we introduce a newdata
parallel notationthat concisely describes the data par-
allel aspects of the DP application architecture. Using
our notation, the replacement of a node T by a data
parallel subgraph is written {w T d}. Here T identi-
fies the task,w indicates the number of workers, and
d indicates the number of done channels. For example,
{ 8 T 4} denotes a data parallel structure with 8 work-
ers and 4 done channels. The open and close brackets
can be thought of as representing the splitter and joiner
respectively.

Notice that this notation only specifies the DP ap-
plication architecture. It does not describe the strategy
used by the splitter in processing an item. For example,
it does not specify how many chunks an item will be
divided into or what those chunks correspond to. The
splitter can dynamically modify its strategy based on
the items it receives. It is constrained only by the num-
ber of available workers and done ports, as specified in
the notation. For instance, the number of done portsd
is an upper bound on the number of chunks.

Up to now we have viewed the general data parallel
architecture in Fig. 6 as a means ofreplicating a sin-
gle node in an existing task graph into multiple worker
nodes contained between a splitter and a joiner. Note,

J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications 297

however, that any single-entry/single-exit subgraph of
the original task graph can be replicated in the same
manner. We will use the termreplica to refer to such
a replicated subgraph. The entry node of a replica will
remove items from the work queue. The exit node will
put the result on the appropriate done channel. Each
replica is simply a copy of tasks and channels from the
original task graph that is designed to work on some
partition of the data.

In order to describe replicas using our data parallel
notation, we first need a method for specifying sub-
graphs. We denote the subgraph with entry node Ti and
exit node Tj as Ti::Tj. Then a DP application archi-
tecture containingw replicas of this subgraph can be
written {w Ti::Tj d}. Note that this form is not self-
contained, but assumes that the description of the sub-
graph from Ti to Tj is available from the original task
graph. For example, given Fig. 2 the color tracker can
be written T1::T5.

In our earlier discussion of replication we made
no distinction between replication within an SMP and
replication across nodes in the cluster. This distinction
has a critical effect on performance. It is expressed in
our data parallel notation as follows: The curly brack-
ets introduced above indicate that replicas are on dis-
tinct nodes. Alternatively, square brackets indicate that
replication occurs within a given SMP. An example of
the latter is [w T d]. Table 1 gives a summary of our no-
tation, including some examples of hierarchical repli-
cation which are described in Section 5.

4.4. Data parallel strategy

We have described the general data parallel archi-
tecture and a notation for specifying its use to create a
DP application architecture. In the context of the color
tracker, we have presented several data parallelstrate-
gieswhich our architecture supports (e.g., distributing
regions or models). We will now describe an approach
to changing the strategy on-line in response to changes
in the application.

We define thestateof the system to be the set of vari-
ables that determine the choice of data parallel strat-
egy. In the color tracker example, the state is simply
the number of people being tracked.

The key observation is that our class of applications
is not arbitrarily dynamic. It exhibits a characteristic
which we callconstrained dynamismthat is defined by
the following properties:

(1) Changes in state are infrequent. More precisely,
the number of items processed between state
changes is large.

(2) The number of distinct states is small.
(3) Changes in state can be detected.

The first property implies that the splitter will need
to change strategies infrequently. As a result, the over-
head associated with an on-line change in strategy can
be amortized over long sequences of processed items.
The second property implies that it is feasible to spec-
ify the optimal data parallel strategy for each state.
The optimal strategy for each state can be determined
through off-line analysis. This results in alook-up ta-
ble which can be used by the splitter during execu-
tion to select the correct data parallel strategy. The
third property ensures that the splitter can react to on-
line changes in the system state. For example, in the
color tracker application the splitter would be informed
whenever a person entered or left the scene and could
change strategies if necessary.

Note that measurements of the system state may de-
rive from computations performed by the application
on its inputs. This can result in latency between the
time at which the state changes and the time at which
the change becomes known to the splitter. For exam-
ple, in the color tracker the number of people in a given
frame is not known until after it has been processed! If
this number changed with each frame it would be im-
possible to select the optimal strategy. However, prop-
erty one ensures that on average only a small number
of items will be processed using a suboptimal strategy.
The color tracker possesses this property in most situ-
ations.

To summarize, we propose to enumerate all possible
states and for each state to determine the ideal data par-
allel strategy during off-line analysis. This information
is encoded in a look-up table. The splitter’s strategy is
based on the measured state. When the state changes,
the splitter interrogates the table to determine the best
strategy for the new state. The splitter adopts this strat-
egy until the next state change. The splitter communi-
cates the strategy it is using for each item to the joiner
via the control channel.

Finally, we note that although our presentation in
this section took place in the context of the Stam-
pede system, our approach to integrating task and
data parallelism is quite general. It is applicable to
any macro dataflow pipeline architecture, such as the
AVS\Expressvisualization system from Advanced Vi-
sual Systems, Inc. [1].

298 J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications

Table 1

Summary of data parallel notation

Example Interpretation

[w T d] Replication of task T within an SMP

w is the number of workers

d is the number of done channels

{w T d} Replication of task T across nodes of a cluster

[w Ti::Tj d] Replication of a subgraph within an SMP

Ti is the entry node of the subgraph

Tj is the exit node of the subgraph

{w1 [w2 T d2] d1} Hierarchical replication of a single task T

{w1 Ti: [w2 Tm::Tn d2] :Tj d1} Hierarchical replication of subgraph Tm to Tn
within a replication of subgraph Ti to Tj

5. Hierarchical decompositions

The approach to integrating data-parallel computa-
tions described in Section 4 has a natural, recursive ex-
tension. Networks of the form of Fig. 6 can be nested
recursively, creating layered replications. These more
complex topologies arise naturally from attempts to re-
duce latency or increase throughput by applying data
parallelism to bottle-neck tasks.

A particularly natural hierarchical decomposition
for the color tracker is shown in Fig. 7. This decompo-
sition is designed to improve both latency and through-
put in a cluster setting. We will introduce the general
idea of hierarchical decomposition through this exam-
ple. The figure illustrates the direct incorporation of
the data parallel notation into the task graph, thereby
specifying the integration of task and data parallelism.
Note that this is a self-contained description of the DP
application architecture.

In the example of Fig. 7, the digitizer creates a se-
quence of frames which are distributed across nodes
in the cluster. This distribution is denoted by the left
curly bracket, wherew1 is the number of nodes. Each
node will process approximately 1/w1 of the frames.
This outer replication addresses throughput. Notice
that since this replication does not divide up a given
item (i.e., frame) there is no need for a joiner task
or a controller channel. All of the outputs are sent to
a single done channel, in this case model locations.
This is denoted by the right curly bracket for which
d1 = 1. The STM will order the items on the done
channel based on their time-stamps, effectively acting
as a joiner in merging the outputs from distinct nodes.

All of the tasks contained within the outer curly
brackets in Fig. 7 are replicated across nodes in the

cluster. In Section 4.3 we observed that any single-
entry/single-exit subgraph can be replicated.2 Minor
modifications may be required to convert an arbitrary
subgraph to single-entry/single-exit form. In this ex-
ample, the original subgraph had two entry nodes, T2
and T3 (see Fig. 2). By adding theauxiliary nodeTa
(which is shaded in the figure) and an associated chan-
nel we can easily convert the original subgraph to sin-
gle entry form. This outer replication can be written
using our data parallel notation as {w1 Ta::T5 d1}.

Continuing with our example, we can further im-
prove performance by addressing the latency within
a node. This involves a further decomposition within
the replicated subgraph Ta::T5. The bottleneck for this
subgraph (and the color tracker as a whole) is the tar-
get detection task, T4. Pixel-level data parallelism in
this task can be exploited within each SMP. This re-
sults in the inner replication [w2 T4 d2] wherew2 and
d2 are the usual parameters. This replication is illus-
trated with square brackets in Fig. 7. The final result
is a hierarchical decomposition with two levels of data
parallelism. It can be written {w1 Ta: [w2 T4 d2] :T5 d1}.

Another example of a hierarchical decomposition,
which we will discuss further in Section 6, is T1: {w1

[w2 T4 d2] d1} :T5. This minimum latency solution dis-
tributes the single bottleneck task, T4, both across and
within nodes. It is interesting because while the outer
splitter sends items to a work queue as usual, the task
that reads those items is not an application task as in
the previous example. Instead, because the two repli-

2Although we require a single task at entry and exit of the repli-
cated subgraph, we allow multiple channels to the entry and from
the exit. These can be handled straightforwardly. For example, the
splitter can get an item from each of n channels and put one item that
is ann-tuple onto the work queue.

J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications 299

Fig. 7. Hierarchical decomposition of the color tracker in Fig. 2.

cations are tightly nested, the reader of the outer work
queue is another splitter which writes to an inner work
queue. One might think that this DP application ar-
chitecture is equivalent to one splitter withw1 * w2

workers. In reality this two level decomposition can be
much more effective due to the cost difference between
inter- and intra-node communication. For example, the
inner splitter communicates with itsw2 workers using
hardware shared memory, while the outer splitter uses
the cluster interconnect.

Finally, we note that the hierarchical examples in
this section demonstrate the flexibility of the data par-
allel notation introduced in Section 4.3. A summary of
this notation can be found in Table 1.

6. Experimental results

We implemented the color tracker application from
Section 2.2 within the Stampede framework and con-
ducted two sets of experiments. The goal of these ex-
periments was to demonstrate the need to vary the data
parallel strategy dynamically in order to obtain opti-
mum performance. We show that for both one and two
node (four and eight processor) implementations of
the color tracker, the optimal data parallel decomposi-
tion depends directly on the number of targets being
tracked. We establish this result by measuring the per-
formance of the application as a function of the strat-
egy and the number of models on two different DP ap-
plication architectures.

We conducted these experiments on a two node clus-
ter of AlphaServer 4100’s (four processor SMPs) in-
terconnected by Memory Channel and running DIG-
ITAL UNIX 4.0. STM channels were used to imple-
ment the communication between the splitter, worker,
and joiner threads in the general data parallel archi-
tecture of Fig. 6. In our current implementation these

threads are explicitly created at the application level.
In future work we plan to automate the generation of
these subgraphs using a high-level description of the
data parallel strategy.

6.1. SMP experiment

The first experiment focused on data parallel strate-
gies for the target detection task, T4, within a sin-
gle SMP. This task is the performance bottleneck in
the color tracker (see Fig. 2). The cost of target de-
tection results from the histogram backprojection al-
gorithm [20] which generates the back projection im-
ages depicted in Fig. 3(e). In histogram backprojection,
each pixel in the input image is compared to each of the
target models, which are specified by color histograms.
This comparison step results in a set of images, one for
each target, in which each pixel location has been la-
beled with the likelihood that it came from that target
model. After smoothing these images to reduce the ef-
fects of image noise, connected components analysis is
used to identify blobs corresponding to the location of
each target in the image.

In parallelizing the backprojection algorithm for a
single frame we can divide the data by target models
and by image regions. The number of target models
varies as customers appear and disappear. For a small
number of target models, distribution over regions is
the only option, but as the number of models increases
there is a choice. We would expect distributing over
regions to result in increased overhead over process-
ing whole frames. For example, there are certain set-
up costs involved in processing a region of pixels re-
gardless of its size. In addition, there are book-keeping
costs involved in partitioning a frame of pixel data into
regions for processing.

The DP application architecture used in this ex-
periment can be written [4 T4 d] (see Section 4.3),

300 J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications

Table 2

Timing results in seconds/frame for the target detection task, T4,
with one and eight target models

Total models

1 8

Partitions MP = 1 MP = 8 MP = 1

FP= 1 0.876 (1) 1.857 (8) 6.850 (1)

FP= 4 0.275 (4) 2.155 (32) 2.033 (4)

where there is one worker for each of four CPU’s and
the number of done channelsd equals the number of
chunks in the data parallel strategy. We implemented
four different strategies in order to explore the effect of
partitioning by models and partitioning by regions.

Table 2 gives the results for these trials. It shows the
total time to detect all targets in a single frame. There
were two regimes, in which the total number of mod-
els was one and eight. MP gives the number of parti-
tions of the models and FP the number of partitions of
the frames. The total number of chunks in each trial
(shown in parentheses) is the product of MP and FP.
For example, in the case MP= 8 and FP= 1 each
of eight chunks searched for a single model across the
entire frame.

In the case where the total number of models is
one (first column), we tested the sequential approach
of searching the entire frame in one chunk (FP= 1)
against the data parallel strategy of dividing the frame
across four chunks (FP= 4). The parallel approach
was faster, as expected, by more than a factor of three.

In the case of eight total models (second column) we
tested four combinations of two strategies, correspond-
ing to partitioning the data across models (MP= 8)
and across frames (FP= 4). The three parallel ap-
proaches corresponding to 8, 32, and 4 chunks were
each more than three times faster than the sequential
approach in the upper right of the table, which cor-
responds to a single chunk. As expected, the division
across models was faster (by 17 percent) than the di-
vision across pixels, presumably due to the increased
overhead in the region case.

The results in Table 2 indicate the need for a dy-
namic decomposition strategy. When the number of
models is small, partitioning frames is the only way
to obtain significant parallelism. For larger numbers
of models, the optimal decomposition is to partition
the models. This decision must be taken on-line as the
number of models changes in response to the appear-
ance and disappearance of people in the scene.

While these experiments do not reflect the cost of
looking up and implementing an on-line change in the

Table 3

Timing measurements for three decompositions of the target detec-
tion task on a two node cluster

Decomposition Latency Throughput

(secs) (frames/sec)

A: Outer – Frames 2.44 1.005

Inner – Regions

B: Outer – Models 1.44 0.935

Inner – Regions

C: Outer – Regions 1.62 0.862

Inner – Regions

data parallel strategy at each change of state, they do
include the overhead incurred by the controller channel
at each item.

6.2. Cluster experiment

We next examined the performance of data parallel
decompositions in a cluster setting. Using a two node
cluster we tested the decomposition {2 [4 T4 4] d} dis-
cussed at the end of Section 5. We implemented three
different data parallel strategies with respect to this DP
application architecture. In all three cases, the inner
(square bracket) partition was over pixels. Four image
regions were distributed to four worker threads within
each SMP. There were eight color models (targets).
The three strategies differed in the partitioning that was
done at the outer (curly bracket) level. The number of
replicas was two in all cases, since we were using a two
node cluster.

Timing results for decompositionsA, B, andC are
shown in Table 3. DecompositionA corresponds to
distributing frames at the outer level,B to distribut-
ing color models, andC to distributing regions. For
each decomposition, we measured average latency and
throughput. Latency was measured as the time (in sec-
onds) between the generation of a frame at the digi-
tizer and the receipt of the computed target positions
at the user-interface. Thus all latency numbers include
sequential task times before and after T4. To assess
throughput, we measured the time between the arrival
of successive outputs at the interface. The throughput
number reported in the table is the reciprocal of this
measured inter-arrival time.

These latency and throughput measurements are
steady-state measurements which exclude transients at
system start-up. For the latency measurements, we sent
single frames through the task graph, using a feed-
back mechanism to ensure that a new frame enters
the system only when the previous frame has been

J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications 301

processed. This is necessary to differentiate the time
spent processing an item from the time it spends in
channels waiting to be processed. The latter depends
on the rate at which frames are produced and the ef-
fectiveness of the thread scheduling mechanism, and
can be made arbitrarily large. For the throughput mea-
surements, we injected 20 input frames into the sys-
tem, which filled the channels to capacity, and recorded
inter-arrival times after the transient died out.

DecompositionA distributes frames at the outer
level in order to improve throughput and distributed
regions at the inner level. Thus latency remains as it
was in the single SMP case since in both cases each
frame is processed by a single node. So this case ex-
hibits the highest latencies in the table. The times are
similar to the single node implementation of this iden-
tical strategy which is reported in Table 2 in the cell
(FP = 4, MP = 1). This decomposition has the best
throughput.

DecompositionB distributes models at the outer
level in order to improve the latency of a given frame.
There is a small amount of overhead in merging the re-
sults so the throughput is slightly reduced. The latency
has improved significantly. However, it does not show
a speedup of two on two nodes because of the inter-
node communication required.

DecompositionC distributes regions instead of mod-
els at the outer level to improve latency. There is more
overhead in dividing regions vs. dividing models. Dis-
tributing regions at the outer level leads to less im-
provement in both latency and throughput than dis-
tributing models, when there are enough models to dis-
tribute. The difference in performance between these
two strategies is even more substantial here than in the
SMP case. This further underscores the importance of
dynamically choosing the optimal decomposition strat-
egy.

These results demonstrate that dynamic data parallel
strategies are required for optimal performance even
for a relatively simple vision algorithm. In this exam-
ple the optimal strategy depends upon the number of
targets. Below some threshold we should divide over
regions, above it we should divide over models.

The color tracker itself makes up only a small part of
the complete kiosk application. As additional vision,
speech, and graphics functionalities are implemented,
an even more complex set of dynamic choices will re-
sult.

7. Conclusions and future work

There is a class of emerging applications that re-
quires the integration of task and data parallelism. The
current state of the art in integrating task and data par-
allelism optimizes the decomposition for static prob-
lems. However, our applications are not well suited to
these techniques because they exhibit wide variability
over time.

The key insight that makes optimization of data par-
allel decompositions possible in our dynamically vary-
ing applications is that the wide variability is over
a small number of distinct regimes each of which is
amenable to static techniques. For example, in the case
of the color tracker, each regime corresponds to a spe-
cific number of people in front of the kiosk. We have
experimentally demonstrated that the optimal decom-
position varies dynamically even for fairly simple al-
gorithms such as the vision-based color tracker.

We have described and implemented a mechanism
for integrating task and data parallelism that can ef-
fectively exploit dynamically varying decompositions.
We have also introduced a notation for specifying DP
application architectures in this framework. A prelimi-
nary version of this work first appeared in [16].

Currently, the DP application architecture has only
been implemented directly at the application level. Our
next goal is to automate the generation of these archi-
tectures. The input to this process would include the
task graph, a data parallelism specification in our data
parallel notation, and parameterized splitter, worker,
and joiner methods. The abstraction would automati-
cally create the necessary channels and threads by in-
voking these application-provided methods to gener-
ate the structure depicted in Fig. 6. To change the data
parallel aspects of the application one would simply
change the data parallel specification and regenerate
the implementation.

The main source of inefficiency remaining in the
current system is thread scheduling. The system cur-
rently relies on pthreads to schedule tasks. But the
pthreads system does not understand the specific sched-
uling issues for STM based applications and can eas-
ily generate an inefficient schedule. Our approach
to scheduling and some experimental results are de-
scribed in [13].

References

[1] Advanced Visual Systems, Inc.International AVS Users
Conference and Exhibition, Boston, MA, annual from

302 J.M. Rehg et al. / Integrated task and data parallel support for dynamic applications

1992 to 1995. See the websites www.avs.com (AVS) and
www.iavsc.org (AVS user’s organization).

[2] R. Bagrodia, M. Chandy and M. Dhagat, UC: A set-based lan-
guage for data parallel programs,J. Parallel Distrib. Comput-
ing 28 (Aug. 1995), 186–201.

[3] S. Chakrabarti, J. Demmel and K. Yelick, Models and schedul-
ing algorithms for mixed data and task parallel programs,
J. Parallel Distrib. Computing47 (1997), 168–184.

[4] K.M. Chandy, I. Foster, K. Kennedy, C. Koelbel and C.-W.
Tseng, Integrated support for task and data parallelism,Intl.
J. Supercomputer Appl., 1994.

[5] A.D. Christian and B.L. Avery, Digital smart kiosk project,
in: ACM SIGCHI ’98, Los Angeles, CA, April 18–23, 1998,
pp. 155–162.

[6] R. Cipolla and A. Pentland, eds.,Computer Vision for Human-
Machine Interaction, Cambridge University Press, 1998.

[7] T. Darrell, G. Gordon, J. Woodfill and M. Harville, A virtual
mirror interface using real-time robust face tracking, in:Proc
of 3rd Intl. Conf. on Automatic Face and Gesture Recognition,
Nara, Japan, April 1998, pp. 616–621.

[8] Proc. of Third Intl. Conf. on Automatic Face and Gesture
Recognition, Nara, Japan, April 14–16, 1998, IEEE Computer
Society.

[9] I. Foster, D. Kohr, R. Krishnaiyer and A. Choudhary, A library-
based approach to task parallelism in a data-parallel language,
J. Parallel Distrib. Computing, 1996.

[10] K. Ghosh and R.M. Fujimoto, Parallel discrete event simulation
using space-time memory, in:20th International Conference
on Parallel Processing (ICPP), Aug. 1991.

[11] IEEE, Threads standard POSIX 1003.1c-1995 (also ISO/IEC
9945-1:1996), 1996.

[12] D.R. Jefferson, Virtual time,ACM Trans. Programming Lan-
guages and Systems7(3) (July 1985), 404–425.

[13] K. Knobe, J.M. Rehg, A. Chauhan, R.S. Nikhil and U. Ra-
machandran, Dynamic task and data parallelism using space-
time memory, Technical Report 98/10, Compaq Computer
Corp. Cambridge Research Lab, November 1998. Abstract
in: Proc. of Eighth Scalable Shared Memory Multiprocessors
Workshop, Atlanta, GA, May 1999.

[14] R.S. Nikhil, U. Ramachandran, J.M. Rehg, R.H. Halstead, Jr.,
C.F. Joerg and L. Kontothanassis, Stampede: A programming
system for emerging scalable interactive multimedia applica-
tions, in:Proc. Eleventh Intl. Wkshp. on Languages and Com-
pilers for Parallel Computing, Chapel Hill, NC, Aug. 7–9,
1998, pp. 95–109. See also Technical Report 98/1, Cambridge
Research Lab., Compaq Computer Corp.

[15] U. Ramachandran, R.S. Nikhil, N. Harel, J.M. Rehg and
K. Knobe, Space-time memory: A parallel programming ab-
straction for interactive multimedia applications, in:Proc. Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP), Atlanta, GA, May 1999, pp. 183–192.

[16] J.M. Rehg, K. Knobe, U. Ramachandran and R.S. Nikhil, Inte-
grated task and data parallel support for dynamic applications,
in: Fourth Workshop on Languages, Compilers, and Run-Time
Systems for Scalable Computers, D. O’Hallaron, ed., Pitts-
burgh, PA, May 28–30, 1998 (Springer), pp. 167–180.

[17] J.M. Rehg, M. Loughlin and K. Waters, Vision for a smart
kiosk, in:Computer Vision and Pattern Recognition, San Juan,
Puerto Rico, 1997, pp. 690–696.

[18] J.M. Rehg, U. Ramachandran , R.H. Halstead, Jr., C. Joerg,
L. Kontothanassis and R.S. Nikhil, Space-time memory: A par-
allel programming abstraction for dynamic vision applications,
Technical Report 97/2, Compaq Computer Corp. Cambridge
Research Lab, April 1997.

[19] J. Subhlok and G. Vondran, Optimal latency – throughput
tradeoffs for data parallel pipelines, in:Proc. 8th Symposium
on Parallel Algorithms and Architecture (SPAA), June 1996.

[20] M. Swain and D. Ballard, Color indexing,Intl J. Computer Vi-
sion7(1) (1991), 11–32.

[21] K. Waters and T. Levergood, An automatic lip-synchronization
algorithm for synthetic faces,Multimedia Tools and Applica-
tions1(4) (Nov. 1995), 349–366.

[22] K. Waters, J.M. Rehg, M. Loughlin, S.B. Kang and D. Ter-
zopoulos, Visual sensing of humans for active public inter-
faces, in:Computer Vision for Human-Machine Interaction,
R. Cipolla and A. Pentland, eds., Cambridge University Press,
1998, pp. 83–96.

