Domain Specific Languages
or
High Performance Computing for Dummies

Arun Chauhan
(work with Ken Kennedy)

PizzaTalk, Dept of Computer Science, Rice University, April 17th, 2000



What Is Domain Specific Language?

* Language that enables problems in a
specific domain to be described
succinctly and easily

» Supporting libraries to enable high level
operations to be treated as primitives

- E.g., Matlab®



Motivation

* Mathematics is the language of engineers
and scientists

+ They don't want to think in terms of
variables, types, declarations, loops,
caches, parentheses!

+ But, there is a shortage of programmers



Existing Technology

* High level scripting languages, like
Matlab®, Mathematica®, etc. provide
Domain Specific Libraries and primitive
operations

+ Great for writing small programs

* Try simulating an airplane or weather
forecasting model



Challenges

* Understanding the specification
- inferencing variable types
- dynamically varying types

* High-level or source-level transformations
- domain-specific identities

. Hcmdling libraries (and low-level transformations)

- don't treat libraries as black-boxes!

- apply low level transformations in application
context

PizzaTalk, April 17", 2000



Pre-conditions

+ Assume domain specific languages exist

* Programmer’s Time is more expensive
than CPU time

* Willing to compile scripts, as long as
compilation is quick

* Willing to spend large amounts of time on
compiling libraries

* High Performance the major objective
for generated code



Understanding the Specification:
First Step towards Compilation
* Compiling requires, at least:

- type and shape inferencing at compile time
- run-time resolution of ambiguities

- State of the art

- commercial compilers, e.g., MCC, MATCOM
- work by deRose and Padua (UIUC, 1995)

* Interesting, but not the focus of our
work

PizzaTalk, April 17", 2000



High-Level Transformations

AXBxC=(AxB)xC=Ax(BxC)

Ao X Bixoo X Cooop I X X .

(A1 X Bixon) % Conxao 20% + 20°= 8400

Asoxt X (Bixao X Copxno) 2 x20° = 800

W= (AT x ) — (B x W)

w=(q" xA)T - (B xw) 24 times reduction in cost

PizzaTalk, April 17", 2000



What does it Involve?

+ Vectorization of IOOPS (exposing high-level operations)

for i =1:N
xtemp = cos((i-1)*pi*x/L)
for ] =1:N
phi(k) = phi(k) + a1, )*xtemp*cos((j-1)* pi*y/L);
end
end

Lk

xtemp_se = cos((0:N-1)*pi*x/L);
phi(k) = phi(k) + xtemp_se*a* cos((0:N-1)*pi*y/L)’;

» Utilizing domain-specific identities
- this also applies to library calls

PizzaTalk, April 17", 2000



Specifying Domain Specific ldentities
Using Formal Systems

Ajay Menon and Keshav Pingali (Cornell)

- Define an abstract notation for matrices
and matrix operations

- Write axioms to encode identities
+ Convert code to the abstract notation
and use axioms for transforming code
» But:
- applied to a very limited domain

- efficiency issues
- interaction with low level transformations



Transforming the Libraries

+ Scripting language systems rely heavily
on libraries
* Vast domain-specific libraries are

available for domain-specific language
systems

* Current compilers treat libraries as black
boxes

+ But, libraries are a key component of
domain-specific language systems



Proposed Approach: Step 1

- Compute promising optimizations in a
library routine
- unit stride in matrix computations

- special cases subroutine VMP (C, A, B, M, N, S)
- shifted matrices real A(N), B(N), C(M), S
=1
- etc. doJ=1 N
c(1) = C(1) + A(9)*B(J)
=1 +S
enddo
end

- example drivers
- user annotations
- self-learning AI techniques?

PizzaTalk, April 17", 2000



Proposed Approach: Step 2

» Code specialization (partial evaluation)

subroutineVMP (C,A,B, M, N, )
real A(N), B(N), C(M), S S>0
| =1
doJ=1,N ‘
C()=C(l) + A(D)*B(J)
|=1+S S=0
enddo
end

subroutineVMP (C, A,B, M, N, S

real A(N), B(N), C(M), S

C(1:S*N-S+1:S) = C(1:S*N-S+1:5) + A(L:N)*B(1:N)
end

subroutineVMP (C,A,B,M, N, S
real A(N), B(N), C(M), S
C(1) =SUM(A(L:N)*B(1:N))

end

- trick is to recognize important conditions
- spend a lot of time tuning and optimizing

library routines

PizzaTalk, April 17", 2000




Proposed Approach: Step 3

- Construct efficient transfer functions

(also called jump functions)
* function: actual parameters - side-effects

- helps in rapidly choosing the right
combination of specialized library routines
- crucial to keep script compilation time low

PizzaTalk, April 17", 2000



Existing Technology

+ Well known techniques for whole program
analysis

* Known techniques to compute transfer
functions

+ Automatic tuning of libraries for specific
systems

- ATLAS (Jack Dongarra, UTK)



New Research

- Determining and propagating optimization
conditions to call sites (library
interfaces)

* Library annotation languages

- one recently proposed by Samuel Guyer and
Calvin Lin (UT Austin)

+ Describing high level identities

» Tying high level transformations with low
level transformations

- More ...



Conclusion

- Domain-Specific Scripting Languages are
highly attractive for end users
» Current compiler technology provides

many components needed for compiling
scripts for high performance computation

- But, many open issues remain

+ Scripts are also very relevant to GRID
computation!!



