
Telescoping Languages

or High Performance Computing for Dummies

Arun Chauhan

Rice University

Rice University April 7, 2003

Two True Stories

• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN

Rice University: Telescoping Languages April 7, 2003

Two True Stories
• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN

Rice University: Telescoping Languages April 7, 2003

Two True Stories
• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN

Rice University: Telescoping Languages April 7, 2003

Two True Stories
• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN

Rice University: Telescoping Languages April 7, 2003

Two True Stories
• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN

Rice University: Telescoping Languages April 7, 2003

Lessons

• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

Rice University: Telescoping Languages April 7, 2003

Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

Rice University: Telescoping Languages April 7, 2003

Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

Rice University: Telescoping Languages April 7, 2003

Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

Rice University: Telescoping Languages April 7, 2003

Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

Rice University: Telescoping Languages April 7, 2003

Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

Rice University: Telescoping Languages April 7, 2003

History Repeats

“It was our belief that if FORTRAN, during its first

months, were to translate any reasonable ‘scientific’

source program into an object program only half as fast

as its hand-coded counterpart, then acceptance of our

system would be in serious danger... I believe that had

we failed to produce efficient programs, the widespread

use of languages like FORTRAN would have been seri-

ously delayed.” –John Backus

Rice University: Telescoping Languages April 7, 2003

Pushing the Level Again

effective compilation

efficient compilation

Rice University: Telescoping Languages April 7, 2003

Pushing the Level Again

effective compilation

efficient compilation

Rice University: Telescoping Languages April 7, 2003

Pushing the Level Again

effective compilation

efficient compilation

Rice University: Telescoping Languages April 7, 2003

Fundamental Observation

• libraries are the key in optimizing high-level scripting

languages

a = x * y ⇒ a = MATMULT(x, y)

• libraries are high-level languages!

- a large effort in HPC is towards writing libraries

- domain-specific libraries make scripting languages useful and

popular

- high-level operations are largely “syntactic sugar”

Rice University: Telescoping Languages April 7, 2003

Fundamental Observation

• libraries are the key in optimizing high-level scripting

languages

a = x * y ⇒ a = MATMULT(x, y)

• libraries are high-level languages!

- a large effort in HPC is towards writing libraries

- domain-specific libraries make scripting languages useful and

popular

- high-level operations are largely “syntactic sugar”

Rice University: Telescoping Languages April 7, 2003

Libraries as Black Boxes

library compiler
library

binaries

user

program
compiler object code

Rice University: Telescoping Languages April 7, 2003

Libraries as Black Boxes

library compiler
library

binaries

user

program
compiler object code

Rice University: Telescoping Languages April 7, 2003

Whole Program Compilation

user

program

library

one

library

two

one.one

one.two

compiler object code

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ...)
choose optimized variant

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ...)
choose optimized variant

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ...)
choose optimized variant

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ...)
choose optimized variant

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ...)
choose optimized variant

Rice University: Telescoping Languages April 7, 2003

Telescoping Languages Approach

domain

library

language

building

compiler

script
script

translator

enhanced

language

compiler

optimized

object

program

Rice University: Telescoping Languages April 7, 2003

Challenges

• identifying specialization opportunities

- which kinds of specializations

- how many

• identifying high pay-off optimizations

- must be applicable in telescoping languages context

- should focus on these first

• enabling the library writer to express these

transformations

- guide the specialization

- describe equivalences (identities)

Rice University: Telescoping Languages April 7, 2003

Challenges

• identifying specialization opportunities

- which kinds of specializations

- how many

• identifying high pay-off optimizations

- must be applicable in telescoping languages context

- should focus on these first

• enabling the library writer to express these

transformations

- guide the specialization

- describe equivalences (identities)

Rice University: Telescoping Languages April 7, 2003

Challenges

• identifying specialization opportunities

- which kinds of specializations

- how many

• identifying high pay-off optimizations

- must be applicable in telescoping languages context

- should focus on these first

• enabling the library writer to express these

transformations

- guide the specialization

- describe equivalences (identities)

Rice University: Telescoping Languages April 7, 2003

Challenges

• identifying specialization opportunities

- which kinds of specializations

- how many

• identifying high pay-off optimizations

- must be applicable in telescoping languages context

- should focus on these first

• enabling the library writer to express these

transformations

- guide the specialization

- describe equivalences (identities)

Rice University: Telescoping Languages April 7, 2003

Example from ARPACK

function [V,H,f] = ArnoldiC (A,k,v);

n = length(v);

H = zeros(k);

V = zeros(n,k);

v = v/norm(v);

w = A*v;

alpha = v’*w;

. . .

for j = 2:k,

beta = norm(f);

v = f/beta;

. . .

end

Rice University: Telescoping Languages April 7, 2003

Example from ARPACK

function [V,H,f] = ArnoldiC (A,k,v);

n = length(v);

H = zeros(k);

V = zeros(n,k);

v = v/norm(v);

w = A*v;

alpha = v’*w;

. . .

for j = 2:k,

beta = norm(f);

v = f/beta;

. . .

end

Rice University: Telescoping Languages April 7, 2003

Inferring Types

• type ≡ <τ , δ, σ, ψ>

- τ = intrinsic type, e.g., int, real, complex, etc.

- δ = array dimensionality, 0 for scalars

- σ = δ-tuple of positive integers

- ψ = “shape” of an array

• type inference in general

- variable type = the “largest” set of values that preserves

meaning

• type inference for type-based specialization

- all valid configurations of types are needed

Rice University: Telescoping Languages April 7, 2003

Inferring Types

• type ≡ <τ , δ, σ, ψ>

- τ = intrinsic type, e.g., int, real, complex, etc.

- δ = array dimensionality, 0 for scalars

- σ = δ-tuple of positive integers

- ψ = “shape” of an array

• type inference in general

- variable type = the “largest” set of values that preserves

meaning

• type inference for type-based specialization

- all valid configurations of types are needed

Rice University: Telescoping Languages April 7, 2003

Inferring Types

• type ≡ <τ , δ, σ, ψ>

- τ = intrinsic type, e.g., int, real, complex, etc.

- δ = array dimensionality, 0 for scalars

- σ = δ-tuple of positive integers

- ψ = “shape” of an array

• type inference in general

- variable type = the “largest” set of values that preserves

meaning

• type inference for type-based specialization

- all valid configurations of types are needed

Rice University: Telescoping Languages April 7, 2003

Inferring Types

• type ≡ <τ , δ, σ, ψ>

- τ = intrinsic type, e.g., int, real, complex, etc.

- δ = array dimensionality, 0 for scalars

- σ = δ-tuple of positive integers

- ψ = “shape” of an array

• type inference in general

- variable type = the “largest” set of values that preserves

meaning

• type inference for type-based specialization

- all valid configurations of types are needed

Rice University: Telescoping Languages April 7, 2003

Formulating the Problem
(joint work with Cheryl McCosh)

v = v/norm(v);

w = A*v;

• each operation or function call imposes certain

“constraints” on the types of its arguments and

return values

• the type of a variable is the “smallest” one that

meets all the constraints

• incomparable types may give rise to multiple valid

configurations of variable types

Rice University: Telescoping Languages April 7, 2003

Solving the Problem

• the problem is hard to solve in general

• efficient solution is possible under certain conditions

• the idea is to reduce it to the clique problem

- a constraint defines a level

- clauses in a constraint are nodes at that level

- an edge whenever two clauses are “compatible”

- a clique defines a valid type configuration

• some type information must still be inferred

dynamically

- novel technique called slice hoisting

Rice University: Telescoping Languages April 7, 2003

Results: ARPACK

MATLAB prototype translated ARPACK

1

2

sp
ee

du
p

ARPACK: Type−specialized FORTRAN vs MATLAB
3200x3200
362x362

Rice University: Telescoping Languages April 7, 2003

Experimental Evaluation

Sun SPARC 336MHz SGI Origin Apple PowerBook G4 667MHz

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

tim
e

(s
ec

on
ds

)

jakes: Type−specialized FORTRAN vs MATLAB
MATLAB 6.x
MATLAB 5.3
FORTRAN

Rice University: Telescoping Languages April 7, 2003

Moving Beyond

• study of DSP applications

• library identities play a key role

• identified high-payoff well-known optimization

techniques

- vectorization caused 33 times speedup in one case!

- others: common subexpression elimination, constant

propagation, beating and dragging along

• discovered two novel optimizations

- procedure strength reduction

- procedure vectorization

Rice University: Telescoping Languages April 7, 2003

Procedure Strength Reduction

for i = 1:N

. . .

f (c1, c2, i, c3);

. . .

end

f init (c1, c2, c3);

for i = 1:N

. . .

f iter (i);

. . .

end

Rice University: Telescoping Languages April 7, 2003

Procedure Strength Reduction

for i = 1:N

. . .

f (c1, c2, i, c3);

. . .

end

f init (c1, c2, c3);

for i = 1:N

. . .

f iter (i);

. . .

end

Rice University: Telescoping Languages April 7, 2003

Procedure Strength Reduction

for i = 1:N

. . .

f (c1, c2, i, c3);

. . .

end

f init (c1, c2, c3);

for i = 1:N

. . .

f iter (i);

. . .

end

Rice University: Telescoping Languages April 7, 2003

Experimental Evaluation

jakes_mp1 newcodesig codesdhd whole program
0

0.5

1

1.5

2

2.5

3

3.5

sp
ee

du
p

speedups for top−level procedures in ctss relative to unoptimized

0 5 10 15 20 25

original

optimized

total time (in thousands of seconds)

distribution of the total execution time among top−level procedures in ctss

jakes_mp1
newcodesig
codesdhd

Rice University: Telescoping Languages April 7, 2003

Contributions

• demonstrating the viability of scripting languages for

library generation through the telescoping languages

approach

• specific technical contributions

- identification of high-payoff optimizations

- discovery of two new optimizations

- development of a novel type-inference algorithm

• telescoping infrastructure

- MATLAB compiler with C / FORTRAN library generator

Rice University: Telescoping Languages April 7, 2003

Future Directions
• annotation language to describe transformations

• techniques to speculatively optimize code

- database techniques

• time and space trade-offs in library generation

- AI techniques

• applying the ideas to automatic parallelization

• dynamically evolving systems like the computation

grid

• other domains

- VLSI design

Rice University: Telescoping Languages April 7, 2003

Past Work

• runtime execution model for irregular parallel

applications

• parallelization techniques for high performance

multimedia applications

• algorithmic techniques for parallel Cholesky

factorization on SMP

• parallelization of weather forecasting application for

an SMP

Rice University: Telescoping Languages April 7, 2003

Conclusion

• need to make a move towards high-level languages for

high-performance computing

• telescoping languages provide the compiler

technology to enable this move

• type-based speculative specialization a primary step

• a novel type-inference algorithm enables this step

• identified high-payoff optimizations

• discovered two new optimizations

http://www.cs.rice.edu/~achauhan/

Rice University: Telescoping Languages April 7, 2003

Bonus Material

Rice University: Telescoping Languages April 7, 2003

Procedure Vectorization

for i = 1:N

f (c1, c2, i, A[i]);

end

. . .

function f (a1, a2, a3, a4)

<body of f >

f vect (c1, c2, [1:N], A)

. . .

function f vect (a1, a2, a3, a4)

for i = 1:N

<body of f >

end

Rice University: Telescoping Languages April 7, 2003

Procedure Vectorization

for i = 1:N

f (c1, c2, i, A[i]);

end

. . .

function f (a1, a2, a3, a4)

<body of f >

f vect (c1, c2, [1:N], A)

. . .

function f vect (a1, a2, a3, a4)

for i = 1:N

<body of f >

end

Rice University: Telescoping Languages April 7, 2003

Procedure Vectorization

for i = 1:N

f (c1, c2, i, A[i]);

end

. . .

function f (a1, a2, a3, a4)

<body of f >

f vect (c1, c2, [1:N], A)

. . .

function f vect (a1, a2, a3, a4)

for i = 1:N

<body of f >

end

Rice University: Telescoping Languages April 7, 2003

