
Telescoping Languages

Domain Specific Languages for the Price of C
(or Fortran)

Arun Chauhan

Indiana University

Telescoping Languages DSLOpt, 2004-08-19

Collaborators
• Ken Kennedy

• Bradley Broom

• Keith Cooper

• Rob Fowler

• John Garvin

• Chuck Koelbel

• Cheryl McCosh

• John Mellor-Crummey

• Linda Torczon

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

A True Story

• The world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- readily tradeoff running time for development time

- often forced to rewrite programs in C

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

A True Story

• The world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- readily tradeoff running time for development time

- often forced to rewrite programs in C

• Linear algebra through MATLAB

- ARPACK prototyped in MATLAB

- recoded in Fortran for performance

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

A True Story

• The world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- readily tradeoff running time for development time

- often forced to rewrite programs in C

• Linear algebra through MATLAB

- ARPACK prototyped in MATLAB

- recoded in Fortran for performance

The productivity connection

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

The Performance Gap

Sun SPARC 336MHz SGI Origin Apple PowerBook G4 667MHz

1

2

3

4

5

6

7

8

9

10

11

12

13

14

tim
e

(s
ec

on
ds

)

jakes: Type−specialized FORTRAN vs MATLAB
MATLAB 6.x
FORTRAN

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

It’s the Compilers

“We did not regard language design as a difficult problem,

merely a simple prelude to the real problem: designing a

compiler that could produce efficient programs.”

–John Backus, the “Father of Fortran”

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

It’s the Compilers

“We did not regard language design as a difficult problem,

merely a simple prelude to the real problem: designing a

compiler that could produce efficient programs.”

–John Backus, the “Father of Fortran”

Effective and Efficient compilation

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

The Big Picture

Human-Computer Interface

pr
og

ra
m

m
in

g
la

ng
ua

ge
s

machine / assembly

C, Fortran

C++
Java

MATLAB, Python, R, functional

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Fundamental Observation

• Libraries are the key in optimizing high-level scripting languages

a = x * y ⇒ a = mclMtimes(x, y)

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Fundamental Observation

• Libraries are the key in optimizing high-level scripting languages

a = x * y ⇒ a = mclMtimes(x, y)

• Libraries practically define high-level scripting languages

- high-level operations are often “syntactic sugar”

* runtime libraries implement operations

- a large effort in HPC is toward writing libraries

- domain-specific libraries make scripting languages useful and popular

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Hierarchy of Libraries

run-time library

toolboxes

user-level librariesMATLAB

C, Fortran

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Libraries as Black Boxes

library compiler library binaries

user program compiler object code

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Libraries as Black Boxes

library compiler library binaries

user program compiler object code

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Whole Program Compilation

user program

library

one

library

two

one.one

one.two







































































compiler object code

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Motivating Example

procedure VMP (M, V, ... , s)

s = 1 s = ?context

for i = 1, s, N

{

...

}

VMPstride1 (M, V, ...) VMP (M, V, ...)

• Specialization

• Speculate contexts

- utilize library writers’ specialized knowledge

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

procedure VMP (C, Z, ... , s)

“expect s to often be 1”

write libraries

write annotations

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

procedure VMP (C, Z, ... , s)

“expect s to often be 1”

write libraries

write annotations

specialize code

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

procedure VMP (C, Z, ... , s)

“expect s to often be 1”

write libraries

write annotations

VMP (C, Z, ...)
specialize code

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

procedure VMP (C, Z, ... , s)

“expect s to often be 1”

write libraries

write annotations

VMP (C, Z, ...)
VMP1 (C, Z, ...)specialize code

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

procedure VMP (C, Z, ... , s)

“expect s to often be 1”

write libraries

write annotations

VMP (C, Z, ...)
VMP1 (C, Z, ...)

VMPstride1 (C, Z, ...)
specialize code

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

procedure VMP (C, Z, ... , s)

“expect s to often be 1”

write libraries

write annotations

VMP (C, Z, ...)
VMP1 (C, Z, ...)

VMPstride1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

procedure VMP (C, Z, ... , s)

“expect s to often be 1”

write libraries

write annotations

VMP (C, Z, ...)
VMP1 (C, Z, ...)

VMPstride1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP stride1 (C, Z, ...)
choose optimized variant

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Overall Telescoping System

lib+annot

script

variant DB KB

library

generator

script compiler C

vendor

compiler

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Overall Telescoping System

lib+annot

script

variant DB KB

library

generator

script compiler C

vendor

compiler

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Telescoping Languages Approach

• Pre-compile libraries to minimize end-user compilation time

• Annotate libraries to capture specialized knowledge of library

writers

• Generate specialized variants based on interesting contexts

• Link appropriate versions into the user script

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Telescoping Languages Approach

• Pre-compile libraries to minimize end-user compilation time

• Annotate libraries to capture specialized knowledge of library

writers

• Generate specialized variants based on interesting contexts

• Link appropriate versions into the user script

analogous to offline indexing by search engines

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Library Compiler: Some Issues

• Dealing with high-level scripting languages

- parsing and analyzing a library procedure written in a scripting language

- translating into an intermediate language (C, Fortran)

• High-level transformations

- identifying useful transformations

• Enabling the library writer to express library properties

- stating facts about library procedures

- describing specializations

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Inferring Types

• type ≡<τ , δ, σ, ψ>

- τ = intrinsic type, e.g., int, real, complex, etc.

- δ = array dimensionality, 0 for scalars

- σ = δ-tuple of positive integers

- ψ = “structure” of an array

• Examples

- x is scalar, integer

⇒ type of x =<int, 0, ⊥, ⊥>

- y is 3-D 10 × 5 × 20 dense array of reals

⇒ type of y =<real, 3, <10,5,20>, dense>

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Relevant Optimizations

“It is a capital mistake to theorize before one has data. In-

sensibly one begins to twist facts to suit theories, instead

of theories to suit facts.”

–Sir Arthur Conon Doyle in a A Scandal in Bohemia

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Study of DSP Applications

• MATLAB applications from the ECE department

- real applications being used in the DSP and image processing group

• Looked for high-level transformations

• Discovered

- two novel procedure-level optimizations

- relevance of several well known transformation techniques

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Procedure Strength Reduction

for i = 1:N

. . .

f (c1, c2, i, c3);

. . .

end

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Procedure Strength Reduction

for i = 1:N

. . .

f (c1, c2, i, c3);

. . .

end

f init (c1, c2, c3);

for i = 1:N

. . .

f iter (i);

. . .

end

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Speedup by PSR

jakes_mp1 newcodesig codesdhd whole program
0

0.5

1

1.5

2

2.5

3

3.5

sp
ee

du
p

speedups for top−level procedures in ctss relative to unoptimized

0 5 10 15 20 25

original

optimized

total time (in thousands of seconds)

distribution of the total execution time among top−level procedures in ctss

jakes_mp1
newcodesig
codesdhd

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Procedure Vectorization

for i = 1:N

α

f (c1, c2, i, A[i]);

β

end

. . .

function f (a1, a2, a3, a4)

<body of f >

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Procedure Vectorization

for i = 1:N

α

f (c1, c2, i, A[i]);

β

end

. . .

function f (a1, a2, a3, a4)

<body of f >

for i = 1:N

α

end

f vect (c1, c2, [1:N], A)

for i = 1:N

β

end

. . .

function f vect (a1, a2, a3, a4)

for i = 1:N

<body of f >

end

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Applying to jakes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

sp
ee

du
p

(f
or

 1
00

 it
er

at
io

ns
)

normalized original
optimized

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

High-payoff Optimizations

• Loop vectorization

• Library identities

• Common subexpression elimination

• Beating and dragging along

• Constant propagation

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

High-payoff Optimizations

• Loop vectorization

• Library identities

• Common subexpression elimination

• Beating and dragging along

• Constant propagation

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

High-payoff Optimizations

• Loop vectorization

• Library identities

• Common subexpression elimination

• Beating and dragging along

• Constant propagation

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Loop Vectorization

function z = jakes mp1 (blength, speed, bnumber, N Paths)

....

for k = 1:N Paths

....

xc = sqrt(2)*cos(omega*t step*j’) ...

+ 2*sum(cos(pi*np/Num osc).*cos(omega*cos(2*pi*np/N)*t step.*jp));

xs = 2*sum(sin(pi*np/Num osc).*cos(omega*cos(2*pi*np/N)*t step.*jp));

% for j = 1 : Num

% xc(j) = sqrt(2) * cos (omega * t step * j);

% xs(j) = 0;

% for n = 1 : Num osc

% cosine = cos(omega * cos(2 * pi * n / N) * t step * j);

% xc(j) = xc(j) + 2 * cos(pi * n / Num osc) * cosine;

% xs(j) = xs(j) + 2 * sin(pi * n / Num osc) * cosine;

% end

% end

....

end

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

High-payoff Optimizations

• Loop vectorization

• Library identities

• Common subexpression elimination

• Beating and dragging along

• Constant propagation

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Library Identities
function [s, r, j hist] = min sr1 (xt, h, m, alpha)

...

while ˜ok

...

invsr = change form inv (sr0, h, m, low rp);

big f = change form (xt-invsr, h, m);

...

while iter s < 3*m

...

invdr0 = change form inv (sr0, h, m, low rp);

sssdr = change form (invdr0, h, m);

...

end

...

invsr = change form inv (sr0, h, m, low rp);

big f = change form (xt-invsr, h, m);

...

while iter r < n1*n2

...

invdr0 = change form inv (sr0, h, m, low rp);

sssdr = change form (invdr0, h, m);

...

end

...

end

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

XML-based Language

• Enables library writers to express transformations of interest

• Can specify type-based specializations

• Powerful enough to specify library indentities

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

XML-based Language

• Enables library writers to express transformations of interest

• Can specify type-based specializations

• Powerful enough to specify library indentities

• Serves as a driver for the source-level optimization phase

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Example: Type-based Specialization
<specialization>

<context>

<type var="x" dims="0"/>

<type var="y" dims="0"/>

</context>

<match>

<simpleStmt>

<function> generic ADD </function>

<input> <var> x</var> <var> y</var> </input>

<output> <var> z</var> </output>

</simpleStmt>

</match>

<substitute>

<simpleStmt>

<function> scalar ADD </function>

<input> <var> x</var> <var> y</var> </input>

<output> <var> z</var> </output>

</simpleStmt>

</substitute>

</specialization>

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Overall Telescoping System

lib+annot

script

variant DB KB

library

generator

script compiler C

vendor

compiler

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Architecture of the Library Compiler

Parser and

Front-End

Type Infer.

Engine

Spl’n

Engine
Code Gen.

Annot.

Lib.

Opt. Specs

C

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Meanwhile, Elsewhere . . .
• Compiling MATLAB

- FALCON, MaJIC (UIUC, Cornell)

- MATCH (Northwestern)

• Parallelizing MATLAB

- CONLAB (Sweden), Otter (Oregon State), MENHIR (Irisa), . . .

- *P (MIT)

• Annotations

- Broadway (UT Austin)

• High-level programming systems

- POOMA, ROSE (LLNL)

• Automatic library generation

- ATLAS (UTK), FFTW (MIT)
Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Concluding Remarks

• Need to raise the level of interface with computers

- scripting languages raise the level of programming interface

• Scripting languages provide higher abstraction in programming

languages but incur performance penalties

• Libraries need to be at the core of a compilation strategy for

scripting languages

- speculative specialization

- incorporating expert knowledge of library writers

• Experience with MATLAB indicates that a library-centered

approach pays off

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Future Directions

• Parallel computation

- speculation or specification of data distribution?

- library identities

• Dynamically evolving systems (such as the computation grid)

- speculatively specializing on possible scenarios

- dynamically switching library versions

- pre-building schedules

- self-learning systems through feedback

• Library compilation ideas in other domains

- VLSI design

- component-based systems

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

Other Possible Directions

• Developing annotation language

• Refining techniques to speculatively optimize code

- database techniques

• Time and space trade-offs in library generation

- machine learning techniques

• Diversifying the source language systems

- R, Python, Perl, etc.

• Self-learning systems

- extracting general contexts from examples

- incorporating feedback through maintenance-mode runs

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

http://www.cs.indiana.edu/˜achauhan/

Telescoping Languages, Arun Chauhan, Indiana University DSLOpt, 2004-08-19

