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Multi-level Parallelism in Software 
Getting the premises right

Software-level parallelism

Function-level (task) parallelism

Component-level parallelism

Loop-level (data) parallelism

Statement-level parallelism

• Multi-threaded builtin libraries

• Language constructs

• E.g., parfor

• Parallel third-party libraries

• E.g., GPUMat and StarP



Automatic Discovery of Multi-level Parallelism in MATLAB Arun Chauhan, Google Inc. and Indiana University

Motivation     Data-flow     Approach     Experiments     Granularity      Conclusion

Parallelism in MATLAB

‣ ILP for free, as always

‣ Carefully optimized libraries
‣ Multi-threaded (for data parallelism)

‣ Highly tuned (to utilize machine vector instructions)

‣ Language-level constructs
‣ Programmer identifies parallel loops

‣ Programmer identifies parallel tasks

‣ Programmer identifies GPU-bound statements
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Parallelism in MATLAB

‣ ILP for free, as always

‣ Carefully optimized libraries
‣ Multi-threaded (for data parallelism)

‣ Highly tuned (to utilize machine vector instructions)

‣ Language-level constructs
‣ Programmer identifies parallel loops

‣ Programmer identifies parallel tasks

‣ Programmer identifies GPU-bound statements

Reliance on programmers untenable

Wish to automate
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What is the Right Model of Parallelism?

‣ One that does not require programmers to write 
parallel code at all!

‣ But, at the system level:
‣ Need to exploit parallelism at all levels of hardware and 

software

‣ Need to match the parallelism in the application to the 
underlying hardware
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Data-flow computing …

+ ×

+÷

Already exists in 
hardware

Can be described 
procedurally

d ← a + b 
e ← b × c 
f ← d ÷ e 
g ← d + e + c

a b c

d

f g

c
d

e
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… at the Right Granularity
Macro Data-flow Computing

+ ×

+÷

A ← A + B 
E ← B × C 
F ← D ÷ E 
G ← D + E + C

A B C

D

F G

C
D

E

B

E

•Each operation a task in a task-
parallel library (Intel TBB)

•Low amortized creation and 
deletion cost

•The operation can be data-
parallel (multi-threaded)

•The operation could be an 
optimized and parallelized 
library function
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Data-flow Execution for MATLAB Programs

‣ Programmers do not need to think about it

‣ Great for legacy code

‣ Allows us to utilize the existing and already 
implemented modes of parallelism

‣ Makes use of the specialized libraries, incorporating 
specialized expert knowledge

‣ Has the potential to utilize all levels of parallelism 
afforded by modern hardware
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Data-flow Execution for MATLAB Programs

‣ Programmers do not need to think about it

‣ Great for legacy code

‣ Allows us to utilize the existing and already 
implemented modes of parallelism

‣ Makes use of the specialized libraries, incorporating 
specialized expert knowledge

‣ Has the potential to utilize all levels of parallelism 
afforded by modern hardware

All we need is automatic extraction!
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Challenges

‣ Right granularity for “operations”

‣ Memory
‣ Keep the footprint in check

‣ Minimize memory copies

‣ Programming
‣ Automatically generate data-flow-style execution from 

procedural description

‣ Respect all data- and control-dependencies

‣ Run-time
‣ Schedule operations smartly
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Approach

‣ Granularity

‣ Treat each array statement as an atomic data-flow operation, 
replicate scalar operations liberally

‣ Merge to coarsen the granularity without decreasing parallelism

‣ Memory

‣ Scalars are free, arrays are mutable (hybrid data-flow / procedural)

‣ Programming

‣ Compiler analysis to determine data and control dependencies

‣ Tasks can call libraries or be implemented as explicit loops

‣ Run-time

‣ Custom run-time around Intel Threading Building Blocks (TBB)
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Utilizing Parallelism at Multiple Levels

‣ Across operations

‣ Task parallelism (or statement-level parallelism)

‣ Within operations
‣ Use multi-threaded library operations

‣ Parallelize loops implied by array operations

‣ More parallelism …

‣ We handle one user function at a time
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Example:  Array Statements

2 Approach

The compiler and runtime system cooperate to manage the creation, execution
and destruction of tasks such that the control and data-dependencies of the
matlab programs are honoured. In this section, we discuss the design of each
major component.

2.1 Control Flow and Control Dependencies

Even though the analysis of matlab code is simplified due to the absence of
aliasing and pointers the interplay of data and control dependencies complicate
the problem of translating for dataflow-style execution. In the past, approaches
such as PDW [5] and gated SSA [6], have been proposed to handle data flow
through control constructs, which introduce extra synchronization and addi-
tional tasks to route the data correctly. We have designed a translation scheme
that avoids these costs. It involves solving two main problems:
1) Handling loops with unknown iteration counts (i.e., while-loops).
2) Handing data dependencies crossing iteration boundaries, including loop-

carried dependencies and dependencies flowing into or out of loop bodies.
Figure 1 shows a hypothetical example with a while-loop. Boxes represent

tasks. The graph in the middle is the standard data dependence graph. On the
right hand side is the equivalent static dataflow graph showing dependencies
between the static representations of the tasks. Edges with double arrows indi-
cate dependencies that cross the loop boundary. Two additional tasks have been
added, which are described later. There are three cases of data flow that can
occur with loops:
1) Data flowing from outside the loop into the loop body. In the Figure 1 de-

pendencies from S1 to S3 and S2 to S4. We consider partial array updates as
a use as well as def. Hence, the dependency S2 to S3 on account of b is also
such a case.

S0 z = rand(n,n);

S1 a = v + f;

S2 b = x + y;

while (c)

S3 b(:,i) = a ./ pi;

S4 z = b + z;

end

S5 V = z’;

S1 S2 S0

S3 S4

S5

Begin F

S1 Begin loopS2 S0

S3 S4

S5

Fig. 1: A hypothetical example (left), its data dependence graph (middle), and
static dataflow (right) graph.

MATLAB Code
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Example:  Array Statements

2 Approach

The compiler and runtime system cooperate to manage the creation, execution
and destruction of tasks such that the control and data-dependencies of the
matlab programs are honoured. In this section, we discuss the design of each
major component.

2.1 Control Flow and Control Dependencies

Even though the analysis of matlab code is simplified due to the absence of
aliasing and pointers the interplay of data and control dependencies complicate
the problem of translating for dataflow-style execution. In the past, approaches
such as PDW [5] and gated SSA [6], have been proposed to handle data flow
through control constructs, which introduce extra synchronization and addi-
tional tasks to route the data correctly. We have designed a translation scheme
that avoids these costs. It involves solving two main problems:
1) Handling loops with unknown iteration counts (i.e., while-loops).
2) Handing data dependencies crossing iteration boundaries, including loop-

carried dependencies and dependencies flowing into or out of loop bodies.
Figure 1 shows a hypothetical example with a while-loop. Boxes represent

tasks. The graph in the middle is the standard data dependence graph. On the
right hand side is the equivalent static dataflow graph showing dependencies
between the static representations of the tasks. Edges with double arrows indi-
cate dependencies that cross the loop boundary. Two additional tasks have been
added, which are described later. There are three cases of data flow that can
occur with loops:
1) Data flowing from outside the loop into the loop body. In the Figure 1 de-

pendencies from S1 to S3 and S2 to S4. We consider partial array updates as
a use as well as def. Hence, the dependency S2 to S3 on account of b is also
such a case.

S0 z = rand(n,n);

S1 a = v + f;

S2 b = x + y;

while (c)

S3 b(:,i) = a ./ pi;

S4 z = b + z;

end

S5 V = z’;

S1 S2 S0

S3 S4

S5

Begin F

S1 Begin loopS2 S0

S3 S4

S5

Fig. 1: A hypothetical example (left), its data dependence graph (middle), and
static dataflow (right) graph.

MATLAB Code

2 Approach

The compiler and runtime system cooperate to manage the creation, execution
and destruction of tasks such that the control and data-dependencies of the
matlab programs are honoured. In this section, we discuss the design of each
major component.

2.1 Control Flow and Control Dependencies

Even though the analysis of matlab code is simplified due to the absence of
aliasing and pointers the interplay of data and control dependencies complicate
the problem of translating for dataflow-style execution. In the past, approaches
such as PDW [5] and gated SSA [6], have been proposed to handle data flow
through control constructs, which introduce extra synchronization and addi-
tional tasks to route the data correctly. We have designed a translation scheme
that avoids these costs. It involves solving two main problems:
1) Handling loops with unknown iteration counts (i.e., while-loops).
2) Handing data dependencies crossing iteration boundaries, including loop-

carried dependencies and dependencies flowing into or out of loop bodies.
Figure 1 shows a hypothetical example with a while-loop. Boxes represent

tasks. The graph in the middle is the standard data dependence graph. On the
right hand side is the equivalent static dataflow graph showing dependencies
between the static representations of the tasks. Edges with double arrows indi-
cate dependencies that cross the loop boundary. Two additional tasks have been
added, which are described later. There are three cases of data flow that can
occur with loops:
1) Data flowing from outside the loop into the loop body. In the Figure 1 de-

pendencies from S1 to S3 and S2 to S4. We consider partial array updates as
a use as well as def. Hence, the dependency S2 to S3 on account of b is also
such a case.

S0 z = rand(n,n);

S1 a = v + f;

S2 b = x + y;

while (c)

S3 b(:,i) = a ./ pi;

S4 z = b + z;

end

S5 V = z’;

S2 S1 S0

S3 S4

S5

Begin F

S2 S1 S0

S3 S4

S5

Fig. 1: A hypothetical example (left), its data dependence graph (middle), and
static dataflow (right) graph.

Data dependencies
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Example:  Array Statements

2 Approach

The compiler and runtime system cooperate to manage the creation, execution
and destruction of tasks such that the control and data-dependencies of the
matlab programs are honoured. In this section, we discuss the design of each
major component.

2.1 Control Flow and Control Dependencies

Even though the analysis of matlab code is simplified due to the absence of
aliasing and pointers the interplay of data and control dependencies complicate
the problem of translating for dataflow-style execution. In the past, approaches
such as PDW [5] and gated SSA [6], have been proposed to handle data flow
through control constructs, which introduce extra synchronization and addi-
tional tasks to route the data correctly. We have designed a translation scheme
that avoids these costs. It involves solving two main problems:
1) Handling loops with unknown iteration counts (i.e., while-loops).
2) Handing data dependencies crossing iteration boundaries, including loop-

carried dependencies and dependencies flowing into or out of loop bodies.
Figure 1 shows a hypothetical example with a while-loop. Boxes represent

tasks. The graph in the middle is the standard data dependence graph. On the
right hand side is the equivalent static dataflow graph showing dependencies
between the static representations of the tasks. Edges with double arrows indi-
cate dependencies that cross the loop boundary. Two additional tasks have been
added, which are described later. There are three cases of data flow that can
occur with loops:
1) Data flowing from outside the loop into the loop body. In the Figure 1 de-

pendencies from S1 to S3 and S2 to S4. We consider partial array updates as
a use as well as def. Hence, the dependency S2 to S3 on account of b is also
such a case.

S0 z = rand(n,n);

S1 a = v + f;

S2 b = x + y;

while (c)

S3 b(:,i) = a ./ pi;

S4 z = b + z;

end

S5 V = z’;

S1 S2 S0

S3 S4

S5

Begin F

S1 Begin loopS2 S0

S3 S4

S5

Fig. 1: A hypothetical example (left), its data dependence graph (middle), and
static dataflow (right) graph.

MATLAB Code

2 Approach

The compiler and runtime system cooperate to manage the creation, execution
and destruction of tasks such that the control and data-dependencies of the
matlab programs are honoured. In this section, we discuss the design of each
major component.

2.1 Control Flow and Control Dependencies

Even though the analysis of matlab code is simplified due to the absence of
aliasing and pointers the interplay of data and control dependencies complicate
the problem of translating for dataflow-style execution. In the past, approaches
such as PDW [5] and gated SSA [6], have been proposed to handle data flow
through control constructs, which introduce extra synchronization and addi-
tional tasks to route the data correctly. We have designed a translation scheme
that avoids these costs. It involves solving two main problems:
1) Handling loops with unknown iteration counts (i.e., while-loops).
2) Handing data dependencies crossing iteration boundaries, including loop-

carried dependencies and dependencies flowing into or out of loop bodies.
Figure 1 shows a hypothetical example with a while-loop. Boxes represent

tasks. The graph in the middle is the standard data dependence graph. On the
right hand side is the equivalent static dataflow graph showing dependencies
between the static representations of the tasks. Edges with double arrows indi-
cate dependencies that cross the loop boundary. Two additional tasks have been
added, which are described later. There are three cases of data flow that can
occur with loops:
1) Data flowing from outside the loop into the loop body. In the Figure 1 de-

pendencies from S1 to S3 and S2 to S4. We consider partial array updates as
a use as well as def. Hence, the dependency S2 to S3 on account of b is also
such a case.

S0 z = rand(n,n);

S1 a = v + f;

S2 b = x + y;

while (c)

S3 b(:,i) = a ./ pi;

S4 z = b + z;

end

S5 V = z’;

S2 S1 S0

S3 S4

S5

Begin F

S2 S1 S0

S3 S4

S5

Fig. 1: A hypothetical example (left), its data dependence graph (middle), and
static dataflow (right) graph.

Data dependencies Static Data-flow graph

2 Approach

The compiler and runtime system cooperate to manage the creation, execution
and destruction of tasks such that the control and data-dependencies of the
matlab programs are honoured. In this section, we discuss the design of each
major component.

2.1 Control Flow and Control Dependencies

Even though the analysis of matlab code is simplified due to the absence of
aliasing and pointers the interplay of data and control dependencies complicate
the problem of translating for dataflow-style execution. In the past, approaches
such as PDW [5] and gated SSA [6], have been proposed to handle data flow
through control constructs, which introduce extra synchronization and addi-
tional tasks to route the data correctly. We have designed a translation scheme
that avoids these costs. It involves solving two main problems:
1) Handling loops with unknown iteration counts (i.e., while-loops).
2) Handing data dependencies crossing iteration boundaries, including loop-

carried dependencies and dependencies flowing into or out of loop bodies.
Figure 1 shows a hypothetical example with a while-loop. Boxes represent

tasks. The graph in the middle is the standard data dependence graph. On the
right hand side is the equivalent static dataflow graph showing dependencies
between the static representations of the tasks. Edges with double arrows indi-
cate dependencies that cross the loop boundary. Two additional tasks have been
added, which are described later. There are three cases of data flow that can
occur with loops:
1) Data flowing from outside the loop into the loop body. In the Figure 1 de-

pendencies from S1 to S3 and S2 to S4. We consider partial array updates as
a use as well as def. Hence, the dependency S2 to S3 on account of b is also
such a case.

S0 z = rand(n,n);

S1 a = v + f;

S2 b = x + y;

while (c)

S3 b(:,i) = a ./ pi;

S4 z = b + z;

end

S5 V = z’;

S2 S1 S0

S3 S4

S5

Begin F

S2 S1 S0

S3 S4

S5

c cc

c c

¬c

Fig. 1: A hypothetical example (left), its data dependence graph (middle), and
static dataflow (right) graph.



Arun Chauhan, Google Inc. and Indiana UniversityAutomatic Discovery of Multi-level Parallelism in MATLAB

Motivation     Data-flow     Approach     Experiments     Granularity      Conclusion

Example:  Array Statements (Modified)

2 Approach

The compiler and runtime system cooperate to manage the creation, execution
and destruction of tasks such that the control and data-dependencies of the
matlab programs are honoured. In this section, we discuss the design of each
major component.

2.1 Control Flow and Control Dependencies

Even though the analysis of matlab code is simplified due to the absence of
aliasing and pointers the interplay of data and control dependencies complicate
the problem of translating for dataflow-style execution. In the past, approaches
such as PDW [5] and gated SSA [6], have been proposed to handle data flow
through control constructs, which introduce extra synchronization and addi-
tional tasks to route the data correctly. We have designed a translation scheme
that avoids these costs. It involves solving two main problems:
1) Handling loops with unknown iteration counts (i.e., while-loops).
2) Handing data dependencies crossing iteration boundaries, including loop-

carried dependencies and dependencies flowing into or out of loop bodies.
Figure 1 shows a hypothetical example with a while-loop. Boxes represent

tasks. The graph in the middle is the standard data dependence graph. On the
right hand side is the equivalent static dataflow graph showing dependencies
between the static representations of the tasks. Brown colored edges indicate
dependencies that cross the loop boundary. Two additional tasks have been
added, which are described later. There are three cases of data flow that can
occur with loops:
1) Data flowing from outside the loop into the loop body. In the Figure 1 de-

pendencies from S1 to S3 and S2 to S4. We consider partial array updates as

S0 f = rand(n,n);

S1 a = v + f;

S2 b = x + y;

while (c)

S3 b(:,i) = a ./ pi;

S4 z = d + z;

end

S5 V = z’;

S0

S2 S1

S3 S4

S5

Begin F

Begin loop

S0

S2 S1

S3 S4

S5

cc
c

¬c

c c

Fig. 1: A hypothetical example (left), its data dependence graph (middle), and
static dataflow (right) graph in which some of the edges (labeled) are conditional.

2 Approach

The compiler and runtime system cooperate to manage the creation, execution
and destruction of tasks such that the control and data-dependencies of the
matlab programs are honoured. In this section, we discuss the design of each
major component.

2.1 Control Flow and Control Dependencies

Even though the analysis of matlab code is simplified due to the absence of
aliasing and pointers the interplay of data and control dependencies complicate
the problem of translating for dataflow-style execution. In the past, approaches
such as PDW [5] and gated SSA [6], have been proposed to handle data flow
through control constructs, which introduce extra synchronization and addi-
tional tasks to route the data correctly. We have designed a translation scheme
that avoids these costs. It involves solving two main problems:
1) Handling loops with unknown iteration counts (i.e., while-loops).
2) Handing data dependencies crossing iteration boundaries, including loop-

carried dependencies and dependencies flowing into or out of loop bodies.
Figure 1 shows a hypothetical example with a while-loop. Boxes represent

tasks. The graph in the middle is the standard data dependence graph. On the
right hand side is the equivalent static dataflow graph showing dependencies
between the static representations of the tasks. Brown colored edges indicate
dependencies that cross the loop boundary. Two additional tasks have been
added, which are described later. There are three cases of data flow that can
occur with loops:
1) Data flowing from outside the loop into the loop body. In the Figure 1 de-

pendencies from S1 to S3 and S2 to S4. We consider partial array updates as

S0 f = rand(n,n);

S1 a = v + f;

S2 b = x + y;

while (c)

S3 b(:,i) = a ./ pi;

S4 z = d + z;

end

S5 V = z’;

S0

S2 S1

S3 S4

S5

Begin F

Begin loop

S0

S2 S1

S3 S4

S5

cc
c

¬c

c c

Fig. 1: A hypothetical example (left), its data dependence graph (middle), and
static dataflow (right) graph in which some of the edges (labeled) are conditional.

2 Approach

The compiler and runtime system cooperate to manage the creation, execution
and destruction of tasks such that the control and data-dependencies of the
matlab programs are honoured. In this section, we discuss the design of each
major component.

2.1 Control Flow and Control Dependencies

Even though the analysis of matlab code is simplified due to the absence of
aliasing and pointers the interplay of data and control dependencies complicate
the problem of translating for dataflow-style execution. In the past, approaches
such as PDW [5] and gated SSA [6], have been proposed to handle data flow
through control constructs, which introduce extra synchronization and addi-
tional tasks to route the data correctly. We have designed a translation scheme
that avoids these costs. It involves solving two main problems:
1) Handling loops with unknown iteration counts (i.e., while-loops).
2) Handing data dependencies crossing iteration boundaries, including loop-

carried dependencies and dependencies flowing into or out of loop bodies.
Figure 1 shows a hypothetical example with a while-loop. Boxes represent

tasks. The graph in the middle is the standard data dependence graph. On the
right hand side is the equivalent static dataflow graph showing dependencies
between the static representations of the tasks. Brown colored edges indicate
dependencies that cross the loop boundary. Two additional tasks have been
added, which are described later. There are three cases of data flow that can
occur with loops:
1) Data flowing from outside the loop into the loop body. In the Figure 1 de-

pendencies from S1 to S3 and S2 to S4. We consider partial array updates as

S0 f = rand(n,n);

S1 a = v + f;

S2 b = x + y;

while (c)
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S4 z = d + z;

end

S5 V = z’;
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Fig. 1: A hypothetical example (left), its data dependence graph (middle), and
static dataflow (right) graph in which some of the edges (labeled) are conditional.
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number 10. The task identification step creates the static description of each type
of task. One or more statements of the original function, F , might be combined
into one task. Note that this is a static description because if those statements
happen to be inside a loop, multiple instances of those tasks will need to be
created to complete the execution. The step at line 12 and the loop at line 13
generate classes for tasks that are needed to account for certain dependencies and
to kickstart loops, as explained below. Finally a wrapper function to initialize
the task queue is generated at line number 16.

Figure 2 gives the high-level overview of the translation. The code in Fig-
ure 2.a) is decomposed into four tasks as shown in b) and the final generated
C++ code for Task 3 is shown in c). It is important to note that the code for
Tasks in b) is in SSA form and C++ code is generated directly from the SSA
form. In c), DoubleMat is the array data type defined in our runtime system. It
is a wrapper over the Armadillo mat type and amongst other things has support
for reference count based garbage collection. Lines 4—5 initialize the local ma-
trix object with the reference of inputs. Line 6 does the core computation. Lines
7—15 check the loop condition and accordingly pass data to next iteration task.

2.3 Dataflow Computation with Mutable Arrays

Adherence to single assignment semantics of the dataflow model removes all but
true dependencies. However, this incurs prohibitively high data-copying costs

n = length(v);
k = 500;
H = zeros(k,k);
V = zeros(n,k);
...
...
j = 2;
tmp4 = j <= k;
while(tmp4),
...
...
V(:,j) = v;
H(1:j,j) = h;
j = j + 1;
tmp4 = j <= k;

end

a) Example code

�!

Task 1

k$1 = 500;
H$1=zeros(k$1 ,k$1);
j$1 = 2;
tmp4$1=j$1 <=k$1;

Task 2

n$1 = length(v$0);
k$1 = 500;
V$1 = zeros(n$1 ,k$1);
j$1 = 2;
tmp4$1=j$1 <=k$1;

Task 3

V$1(:,j$2) = v$1;
j$3 = j$2 +1;
tmp4$3=j$3 <=k$1;

Task 4

H$1 (1:j$2 ,j$2)=h$1;
j$3 = j$2 +1;
tmp4$3=j$3 <=k$1;

b) Breakup into Tasks

!

1 task* CT6:: execute (){
2 i_vec tv;
3 task_map.erase(task_id );
4 DoubleMat v$1(v$1_data );
5 DoubleMat V$1(V$1_data );
6 V$1 ()( span(),j$2 -1) = v$1 ();
7 j$3 = j$2 + 1;
8 tmp4$3 = j$3 <= k$1;
9 if(tmp4$3 ){

10 tv = {0,0,0,j$3};
11 t1 = GetTask <CT6 >(6,tv);
12 t1->Add_V$1(V$1);
13 t1->Add_j$2(j$3);
14 t1->Add_k$1(k$1);
15 }
16 root_dec_ref_count ();
17 return NULL;
18 }

c) Generated Code

Fig. 2: High-Level overview of translation.
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Example: Accounting for Control Flow
Without any extra controller tasks

2 Fx$1 = zeros(n$0 , a$0);
3 drx$1 = zeros(n$0 , n$0);
4 x$1 = Fx$1(:, n$0);
5 G$1 = 1e-11;
6 t$1 = 1;
7 tmp1$1 = t$1 <=T$0;
8 while(tmp1$2)
10 k$2 = 1;
11 tmp2$2 = k$2 <= n$0;
12 while(tmp2$3)
14 j$3 = 1;
15 tmp3$3 = j$3 <= n$0;
16 while(tmp3$4)
18 Fx$5(:,k$3) = G$1;
19 j$5 = j$4 + 1;
20 tmp3$5 = j$5 <=n$0;

end
21 k$4 = k$3 + 1;
22 tmp2$4 = k$4 <= n$0;

end
23 tmp4$2 = t$2 == 2;
24 if(tmp4$2);
26 continue;

end
28 Fx$6(:, t) = G$1 * drx$1;
29 f$1 = Fx$6(:, k$3);
30 t$3 = t$2 + dT$0;
31 tmp1$3 = t$3 <= T$0;

end

Fig. 4: Sample program.
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Fig. 5: Control dependence graph. (CDG)

1 Algorithm: ComputeDepConditions

2 Input: CDG G, Source src, Destination dst, CFG cfg
3 Output: List of Predicates L
4 S  {c1, ..., ck, s1, ...sk} /* seq. of all cond. exprs enclosing src */

5 D  {c1, ..., ck, d1, ...dk} /* seq. of all cond. exprs enclosing dst */

6 L ¬(s1^, ...,^sk) ^ (c1^, ...,^sk)
7 for each n in {c1, ...ck} do
8 if (c ClearPath(src, n, dst, cfg)) then
9 L L ^ c

10 else
11 break;

Fig. 6: Compute the predicates list.

predicates. Statement A is control-dependent on statement B in a program, i↵
B controls the execution of A. Control dependence graph (CDG) encodes this
information and we use it to determine the predicates. Figure 4 gives a sample
program and Figure 5 gives its CDG. In the program, the statement numbers are
non-sequential as our compiler labels statements that way. The green nodes in
CDG represent compound statements and the pink nodes represent statements
that are control-dependent on the geeen nodes. Nodes 0 and 32 are the dummy
start and end node generated during conversion to CFG.

Algorithm 6 finds paths src ! dst such that given the predicates, no reach-
ing definition other than src reaches dst. In Step 4, we get all the conditional

2 Fx$1 = zeros(n$0 , a$0);
3 drx$1 = zeros(n$0 , n$0);
4 x$1 = Fx$1(:, n$0);
5 G$1 = 1e-11;
6 t$1 = 1;
7 tmp1$1 = t$1 <=T$0;
8 while(tmp1$2)
10 k$2 = 1;
11 tmp2$2 = k$2 <= n$0;
12 while(tmp2$3)
14 j$3 = 1;
15 tmp3$3 = j$3 <= n$0;
16 while(tmp3$4)
18 Fx$5(:,k$3) = G$1;
19 j$5 = j$4 + 1;
20 tmp3$5 = j$5 <=n$0;

end
21 k$4 = k$3 + 1;
22 tmp2$4 = k$4 <= n$0;

end
23 tmp4$2 = t$2 == 2;
24 if(tmp4$2);
26 continue;

end
28 Fx$6(:, t) = G$1 * drx$1;
29 f$1 = Fx$6(:, k$3);
30 t$3 = t$2 + dT$0;
31 tmp1$3 = t$3 <= T$0;

end

Fig. 4: Sample program.
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Fig. 5: Control dependence graph. (CDG)

1 Algorithm: ComputeDepConditions

2 Input: CDG G, Source src, Destination dst, CFG cfg
3 Output: List of Predicates L
4 S  {c1, ..., ck, s1, ...sk} /* seq. of all cond. exprs enclosing src */

5 D  {c1, ..., ck, d1, ...dk} /* seq. of all cond. exprs enclosing dst */

6 L ¬(s1^, ...,^sk) ^ (c1^, ...,^sk)
7 for each n in {c1, ...ck} do
8 if (c ClearPath(src, n, dst, cfg)) then
9 L L ^ c

10 else
11 break;

Fig. 6: Compute the predicates list.

predicates. Statement A is control-dependent on statement B in a program, i↵
B controls the execution of A. Control dependence graph (CDG) encodes this
information and we use it to determine the predicates. Figure 4 gives a sample
program and Figure 5 gives its CDG. In the program, the statement numbers are
non-sequential as our compiler labels statements that way. The green nodes in
CDG represent compound statements and the pink nodes represent statements
that are control-dependent on the geeen nodes. Nodes 0 and 32 are the dummy
start and end node generated during conversion to CFG.

Algorithm 6 finds paths src ! dst such that given the predicates, no reach-
ing definition other than src reaches dst. In Step 4, we get all the conditional

Control dependence graph
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Computing the Edge Conditions

2 Fx$1 = zeros(n$0 , a$0);
3 drx$1 = zeros(n$0 , n$0);
4 x$1 = Fx$1(:, n$0);
5 G$1 = 1e-11;
6 t$1 = 1;
7 tmp1$1 = t$1 <=T$0;
8 while(tmp1$2)
10 k$2 = 1;
11 tmp2$2 = k$2 <= n$0;
12 while(tmp2$3)
14 j$3 = 1;
15 tmp3$3 = j$3 <= n$0;
16 while(tmp3$4)
18 Fx$5(:,k$3) = G$1;
19 j$5 = j$4 + 1;
20 tmp3$5 = j$5 <=n$0;

end
21 k$4 = k$3 + 1;
22 tmp2$4 = k$4 <= n$0;

end
23 tmp4$2 = t$2 == 2;
24 if(tmp4$2);
26 continue;

end
28 Fx$6(:, t) = G$1 * drx$1;
29 f$1 = Fx$6(:, k$3);
30 t$3 = t$2 + dT$0;
31 tmp1$3 = t$3 <= T$0;

end

Fig. 4: Sample program.
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Fig. 5: Control dependence graph. (CDG)

1 Algorithm: ComputeDepConditions

2 Input: CDG G, Source src, Destination dst, CFG cfg
3 Output: Predicate Expression L
4 S  {c1, ..., ck, s1, ...sk} /* seq. of all cond. exprs enclosing src */

5 D  {c1, ..., ck, d1, ...dk} /* seq. of all cond. exprs enclosing dst */

6 L ¬(s1^, ...,^sk) ^ (c1^, ...,^ck)
7 for each n in {c1, ...ck} do
8 if (c ClearPath(src, n, dst, cfg)) then
9 L L ^ c

10 else
11 break;

Algorithm 2: Compute the predicate expression

B controls the execution of A. Control dependence graph (CDG) encodes this
information and we use it to determine the predicates. Figure 4 gives a sample
program and Figure 5 gives its CDG. In the program, the statement numbers are
non-sequential as our compiler labels statements that way. The green nodes in
CDG represent compound statements and the pink nodes represent statements
that are control-dependent on the geeen nodes. Nodes 0 and 32 are the dummy
start and end node generated during conversion to CFG.

Algorithm 2 finds paths src ! dst such that given the predicates, no reach-
ing definition other than src reaches dst. In Step 4, we get all the conditional
expressions controlling src and in Step 5, we get all the conditional expressions
controlling dst. Both steps could be achieved by doing DFS on the CDG starting
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Some Implementation Details

‣ Intel Threading Building Blocks (TBB) for tasks

‣ Task types

‣ Subclass tbb::task

‣ A type for each operation

‣ Concurrent hash-map for waiting tasks

‣ Created, but waiting for input

‣ Removed as soon as start running

‣ Atomic counters to track ready inputs

‣ Armadillo matrix library

‣ Readable C++ syntax

‣ Efficient implementation with expression templates
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Overall System
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Abstract

The popularity of MATLAB in scientific and engineering domains is tempered by its performance. Highly opti-
mized libraries, automatic thread-level parallelism for large computations within libraries, and loop-level parallel
constructs in the language are some of the ways in which the language implementers have tried to recoup the per-
formance. Greater potential for parallelism exists in typical MATLAB programs that remains unexploited. We discuss
our MathWorks-sponsored effort in automatically exploiting parallelism in MATLAB programs using a combination
of compile-time and run-time techniques. Our approach is inspired by data-flow-style computation and makes use
of some modern C++ libraries for generating highly readable code with support for data parallelism and GPUs.

1 Motivation and Design

Computing on modern high performance machines afford parallelism at multiple levels, from the vector instruc-
tions on a single core to multiple multi-core nodes connected through fast interconnects. Graphical Processing Units
(GPUs) add heterogeneity and scheduling complexity to the mix.

In order to shield non-expert users from the complexities and interactions of the various forms of parallelism
it is often wrapped inside libraries. The libraries are carefully optimized to make use of the vector instructions of
the underlying hardware, to use multiple threads when the amount of computation makes it worthwhile, and to
provide versions that might utilize accelerators, such as GPUs. Indeed, this is the dominant approach to parallelism
in MATLAB. With a few exceptions, such as having to specify the computations to be performed on GPUs, the
process is largely automatic for the users and, hence, highly attractive from the perspective of programmability.
However, it suffers from two major inefficiencies: the decisions about parallelism must be made inside libraries,
which are only locally optimal, at best; and parallelism across library functions is hard to exploit.

MATLAB source

Octave-based parsing

Type inference and SSA renaming

Task identification

C++ task generation

Custom run-time

C++ code
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Figure 1: System components.

Our primary motivation behind this work is to elim-
inate these inefficiencies without burdening the user
with additional code annotations, such as those re-
quired for using MATLAB parallel constructs. The high-
level nature of MATLAB makes code analysis sufficiently
accurate in the common cases that the compiler is able
to expose the parallelism that MATLAB libraries would
be unable to exploit and which would be non-trivial to
express with the repertoire of MATLAB’s parallel con-
structs. In order to make full use of the parallelism we
emit C++ code, instead of MATLAB, which lets us use
a custom run-time system combined with modern C++
libraries, such as Intel Threading Building Blocks (TBB)
for task scheduling, Armadillo for data-parallel matrix
operations, and Thrust or ArrayFire for GPUs1. The
MATLAB libraries continue to be available to the trans-
lated code. However, their lack of reentrance property prevents us from making concurrent calls to any single
MATLAB library function. Figure 1 shows the overall system.

Our computation model is inspired by coarse-grained data-flow computation [3], which is also implicit in
streaming applications and has been used in large practical systems, such as MillWheel at Google [1]. The wide
applicability of the model makes it a powerful mechanism to exploit parallelism at multiple levels and scales, in-
cluding heterogenous parallelism with GPUs.

1
http://www.threadingbuildingblocks.org, http://arma.sourceforge.net, http://docs.nvidia.com/cuda/thrust,

http://arrayfire.com/

1
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Experimental Setup

‣ Dual 16-core AMD Opteron 6380

‣ 2.5 GHz, 64 GB DDR3 memory, 16 MB L3 cache

‣ Cray Linux Environment 4.1.UP01

‣ GCC 4.8.1

‣ Armadillo C++ library version 4.000

‣ Intel MKL 11.0

‣ Median of 10 runs

‣ Studied several benchmarks, only some reported

‣ Studied code with large proportion of array operations



Arun Chauhan, Google Inc. and Indiana UniversityAutomatic Discovery of Multi-level Parallelism in MATLAB

Motivation     Data-flow     Approach     Experiments     Granularity      Conclusion

Performance and Concurrency
Sp

ee
du

p 
ov

er
 M

AT
LA

B

50 100 150
0

5

10

15

20

Input size

WaveCrossCov

 

 

Data−Parallel
(Task+Data)−Parallel

0.5 1 1.5 2

x 10
4

0

5

10

Input size

Wav1

 

 

Data−Parallel
(Task+Data)−Parallel

1000 1500 2000 2500
0

2

4

6

8

10

12

Input size

Gaussr

 

 

Data−Parallel
(Task+Data)−Parallel
(Task+Data)−Parallel coarse



Arun Chauhan, Google Inc. and Indiana UniversityAutomatic Discovery of Multi-level Parallelism in MATLAB

Motivation     Data-flow     Approach     Experiments     Granularity      Conclusion

Performance and Concurrency
Sp

ee
du

p 
ov

er
 M

AT
LA

B

50 100 150
0

5

10

15

20

Input size

WaveCrossCov

 

 

Data−Parallel
(Task+Data)−Parallel

0.5 1 1.5 2

x 10
4

0

5

10

Input size

Wav1

 

 

Data−Parallel
(Task+Data)−Parallel

1000 1500 2000 2500
0

2

4

6

8

10

12

Input size

Gaussr

 

 

Data−Parallel
(Task+Data)−Parallel
(Task+Data)−Parallel coarse

N
um

. o
f c

on
cu

rr
en

t 
ta

sk
s

1.0e+0  4.6e+4  9.3e+4  1.4e+5  1.8e+5 
0

20

40
WaveCrossCov

5.00e+4  5.05e+4  5.10e+4  5.15e+4  5.20e+4 
0

20

1.0e+0  2.1e+4  4.2e+4 
0

5

10
Wav1

4.40e+4  4.45e+4  4.50e+4  4.55e+4  4.60e+4 
0

5

1000 1500 2000 2500
0

2

4

6

8

10

12

Input size

Gaussr

 

 

Data−Parallel
(Task+Data)−Parallel
(Task+Data)−Parallel coarse



Arun Chauhan, Google Inc. and Indiana UniversityAutomatic Discovery of Multi-level Parallelism in MATLAB

Motivation     Data-flow     Approach     Experiments     Granularity      Conclusion

Performance and Concurrency (contd.)
Sp

ee
du

p 
ov

er
 M

AT
LA

B

3000 3500 4000 4500
0

1

2

3

4

5

Input size

NBody 3D

 

 

Data−Parallel
(Task+Data)−Parallel

3 3.5 4 4.5

x 10
4

0

2

4

6

Input size

Arnoldi

 

 

Data−Parallel
(Task+Data)−Parallel

N
um

. o
f c

on
cu

rr
en

t 
ta

sk
s 

1.0e+0  2.3e+2  4.5e+2 
0

20

40

NBody 3D

60 110 160 210
0

2

4
1.0e+0  6.3e+1  1.3e+2  1.9e+2 

0

1

2
Arnoldi

50 75 100
0

1

2



Arun Chauhan, Google Inc. and Indiana UniversityAutomatic Discovery of Multi-level Parallelism in MATLAB

Motivation     Data-flow     Approach     Experiments     Granularity      Conclusion

Task Efficiency on 16 Cores
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Task Granularity can have Dramatic Impact
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Challenges and Opportunities

‣ Problems

‣ Cost model for when and how much to coarsen

‣ Challenging to estimate the gains

‣ Should not sacrifice parallelism (not too much)

‣ Potential gains

‣ Reduced task creation and deletion overhead

‣ Improved data locality

‣ Also possible to fuse loops and scalarize array temporaries
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Cases to Consider

Automatic Parallelism through Macro Dataflow in MATLAB

Author1 Author2
Indiana University - Bloomington

{author1,author2}@cs.indiana.edu

Abstract
Dataflow computation model is a powerful paradigm that exploits
the inherent parallelism in a program. It is especially relevant
on modern machines that offer multiple avenues for paralleliz-
ing code. However, adopting this model has been challenging as
neither hardware- nor language-based approaches have had much
success in the past outside specialized contexts. We argue that
macro dataflow, where each dataflow operation is computation-
ally non-trivial, can be implemented effectively on contemporary
general-purpose hardware with the help of a runtime system em-
ploying a modern task-oriented library, such as Intel Threading
Building Blocks (TBB). In order to make this approach attractive
to community of scientific programmers, a strategy that enables
programs written in popular programming languages to execute as
dataflow computations is required.

We present a fully automatic compilation technique to translate
MATLAB programs to dynamic dataflow graphs that are capable
of handling unbounded structured control flow. These graphs are
executed on multicore machines in an event driven fashion with
the help of a runtime system built on top of Intel TBB. Array
statements in MATLAB naturally lead to coarse-grained tasks that
are translated to C++ code and executed in task-parallel fashion
using TBB. By letting each task itself be data parallel, we are able
to leverage existing data parallel libraries and utilize parallelism
at multiple levels. We use type inference to aid in the creation of
macro tasks with sufficient granularity. Our experiments on a set of
benchmarks show speedups of up to 18x using our approach, over
the original code on a machine with two 16-core processors.

1. Introduction
Merging nodes in the dataflow graph can improve performance as
it reduces the overhead per task. In Figure 1, different scenarios
under which merging of nodes can be done. In Figure 1a, node y

has in-degree of 1. Merging y with x is a no brainer as it would
not add any additional input dependency. In Figure 1b, there is an
opportunity to merge z with either x or y. In this case, merging with
either will introduce additional dependency for the resultant task.
This can potentially add to the wait time for the task at runtime,
as in our case, the resultant task would only execute when all the
inputs including the additional input because of the merging, would
be available. Similarly, in Figure 1c, merging of either y or z is
possible with x. Doing so would however inhibit parallelism as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c� ACM [to be supplied]. . . $10.00

x
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x

y1 y2

z

...

(d)

Figure 1: Merging of nodes in dataflow graphs

the result code would serialize the execution of the resultant tasks.
Figure 1d, portrays an interesting scenario. There is an indirect
path from x to z and also a direct path from x to z. In this case
merging z with x is illegal as it will introduce circular dependency.
The merging of nodes z and y is legal. It is also beneficial as it
results in increased granularity of the resultant task without adding
any additional dependencies ( ??? It can add to the wait-time of
the task though!! We can optimistically assume that at runtime, the
input from x would ’almost’ be ready when the merged node has
all other inputs available — Perhaps to make this decision based on
some heuristics).

In case of Figure 1b, we can opt for aggressive merging of
nodes. If at compile time, we can prove that node y always finishes
execution before node x either finishes or begins execution, we
could merge x and z. This would mean that the data required
for execution of the z-component of the node xz is available by
the time it is ready for execution. This would also mean that the
runtime system would have to be modified to allow tasks to begin
execution of contained statements as inputs become available. To
put it more formally, if the expected cumulative running time of all
predecessors of y and y would finish execution just before or while
node xz is executing.

X

p2preds(y)

executionT ime(p) + executionT ime(y)


X

p2preds(xy)

executionT ime(p)
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Properties

‣ No dependency violation

‣ No reduction in parallelism

‣ Prefer merging related tasks for improved locality
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Example: GaussR

0 G = 1e-11;

1 drx = Rx-Rx(k);

2 dry = Ry-Ry(k);

3 drz = Rz-Rz(k);

4 r_tmp1 = drx.*drx;

5 r_tmp2 = dry.*dry;

6 r_tmp3 = drz.*drz;

7 r = r_tmp1+r_tmp2+r_tmp3;

8 r(k) = 1.0;

9 M = m*m(k);

10 M(k) = 0.0;

11 f = G*(M./r);

12 r = sqrt(r);

13 drx = drx./r;

14 dry = dry./r;

15 drz = drz./r;

16 frx = f.*drx;

17 fry = f.*dry;

18 frz = f.*drz;

19 Fx(k) = mean(frx)*n;

20 Fy(k) = mean(fry)*n;

21 Fz(k) = mean(frz)*n;

(a) Sample program
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Take-away Message

‣ We use data-flow style of parallelism to be able to 
extract parallelism at all levels, automatically, from 
MATLAB

‣ We can extract parallelism that the libraries cannot 
utilize

‣ We utilize and build upon the existing modes of 
parallelism, instead of discarding them

‣ We can utilize software tools to create loop-level 
parallelism (e.g., using OpenMP)

‣ We would like to do better!
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