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“What our community should really aim for is 
the development of a curriculum that turns our 
subject into the fourth R—as in ’rogramming—of 
our education systems.
…
A form of mathematics can be used as a full- 
fledged programming language, just like Turing 
Machines.”

Matthias Felleisen and Shriram Krishnamurthy
Communications of the ACM, Jul 2009

“A New Kind of Science”
Stephen Wolfram

“Computing is as fundamental as the physical, 
life, and social sciences.”

Peter J. Denning and Paul S. Rosenbloom
Communications of the ACM, Sep 2009
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Programming
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Programming

“Why can’t you be like the Math 
Department, which only needs a 
blackboard and wastepaper basket?  
Better still, like the Department of 
Philosophy.  That doesn’t even need 
a wastepaper basket …”

Arthur C . Clarke
3001: The Final Odyssey
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Computers are for Computing and ...

Computers as general-purpose tools

• communication, navigation, data collection, 
entertainment, etc.

Computers as computing tools

• problem solving 

• data processing and analysis



High Level Programming, Arun Chauhan, Rochester 2009-11-30

Overview

Motivation

Rethinking program analysis

Rescuing parallel programmers

Concluding remarks
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Rethinking Program Analysis
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Problem

Nice programming languages

• domain-specific

• often dynamically typed and interpreted

Poor performance

• inefficient use of computing resources

• inefficient use of energy
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“It is a capital mistake to theorize before one 
has data. Insensibly one begins to twist facts to 
suit theories, instead of theories to suit facts.”

Sir Arthur Conon Doyle 
A Scandal in Bohemia
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Example 1: BLAS
A+A∗B′ + 2∗(A+B)′∗A + (x+y)∗x′

A+A∗B′ + 2∗A′∗A + 2∗B′∗A + x∗x′ + y∗x′

copy(A,tmp0);
gemm(1,A,B,1,tmp0);
copy(A,tmp1);
axpy(1,B,1,tmp1);
gemm(2,tmp1,A,1,tmp0);
copy(x,tmp1);
axpy(1,y,1,tmp1);
ger(1,tmp1,x,tmp0);

gemm(1,A,B,1,tmp0); 
ger(1,x,x,tmp0);
ger(1,y,x,tmp0);
gemm(2,A,A,1,tmp0); 
gemm(2,B,A,1,tmp0);
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Example1: BLAS
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Lessons

Minimize buffer copies

Combine as many simple operations as 
possible into a single BLAS call

Work on data-flow graph

• simple algorithm within basic blocks

• expanded to work globally (intra-procedurally)
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Example 1: BLAS
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Example 1: BLAS
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Results
POHLL (IPDPS) 2007, McFarlin and Chauhan
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Results
POHLL (IPDPS) 2007, McFarlin and Chauhan
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Example 2: Subscripts

m = f(1).*(n(c,c,c)) +
    f(2).*(n(c,c,u)+n(c,c,d)+n(c,u,c)+n(c,d,c)
          +n(u,c,c)+n(d,c,c)) + 
    f(3).*(n(c,u,u)+n(c,u,d)+n(c,d,u)+n(c,d,d)
          +n(u,c,u)+n(u,c,d)+n(d,c,u)+n(d,c,d)
          +n(u,u,c)+n(u,d,c)+n(d,u,c)+n(d,d,c)) +
    f(4).*(n(u,u,u)+n(u,u,d)+n(u,d,u)+n(u,d,d)
          +n(d,u,u)+n(d,u,d)+n(d,d,u)+n(d,d,d));
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Enabling Technology

Type Inference
• infer base types, and array sizes
Leverage MATLAB / Octave interpreter
• “concretely interpreted partial evaluation” to combine 

type inference and constant propagation+folding
• type transfer functions encoded within MATLAB
Potential for spectacular improvements
• 100x on biology code (electron !-scope image-proc.)
• 1.5x on math code (ODE solver)

HiPC 2009, Shei, Chauhan, and Shaw
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Type Inference Through 
Concrete Interpretation

x = 10.5;
y = [1, 2; 3, 4];
y = x * y + a;

Example Code
⇥

x$1 = 10.5;
y$1 = [1, 2; 3, 4];
t$1 = x$1 * y$1;
y$2 = t$1 + a$1; �

BT_x$1 = ’d’;
x$1 = 10.5;
BT_y$1 = BXF_vertcat( ...

BXF_horzcat(’i’, ’i’), ...
BXF_horzcat(’i’, ’i’) ...

);
y$1 = [1, 2; 3, 4];
BT_t$1 = ...
BXF_product(BT_x$1, BT_y$1);

t$1 = x$1 * y$1;
BT_y$2 = ...
BXF_sum(BT_t$1, BT_a$1);

y$2 = t$1 + a$1; �

x$1 = 10.5;
y$1 = [1, 2; 3, 4];
t$1 = x$1 * y$1;
BT_y$2 =...
BXF_sum(BT_t$1, BT_a$1);

y$2 = t$1 + a$1;

After SSA & flattening With type disambiguation code After partial evaluation

Fig. 4. A simple example illustrating type inference through concrete interpretation.

procedure and, thus, may embody any valid MATLAB
computation.

Figure 4 illustrates the process with an example for
base types. The variable x is initialized to a scalar, y to
a constant matrix containing integer values, and finally
y is updated with a value computed from x, y, and a.
After all the complex expressions have been completely
simplified (flattened) and the program has been trans-
formed into the SSA form the compiler is ready to insert
type disambiguation functions. In the SSA form each
variable name is suffixed with a “subscript” separated
by a $ symbol. The right box in the figure shows the
resulting code, which has been slightly simplified for
clarity. The characters ’i’ and ’d’ are used to denote
integer and double base types, respectively. The
prefix BT_ is used to form variable names for base types.

Algorithm: Infer Types

1) ⇤ statements of the form ⇥ = f(�), insert a
corresponding statement ⇥⌧ = fBXF(�⌧ ) immedi-
ately preceding original statement, where ⇥ is a
list of return variables and � a list of procedure
arguments. ⇥⌧ and �⌧ are lists of type variables,
and fBXF is a type transfer function.

2) Use slice-hoisting to split loops that involve com-
puting type variables such that separate loops
compute type variables, whenever possible.

3) Perform concrete partial evaluation of the resulting
code.

4) Leave any unevaluated type disambiguation code
for run-time evaluation. Type variables may be
used to perform checks and run-time optimization.
Unused type variables are eliminated by a subse-
quent dead-code elimination pass.

Fig. 5. Type inference algorithm.

Names starting with BXF_ are the base type transfer
functions, one for each operation, that compute the types
of the results using the types, and possibly values, of the
operands.

After doing a pass of partial evaluation on the resulting
code all types get fully resolved, except that of y$2,
since it depends on the type of a$1, which is unknown.
The code for computing t_y$2 automatically gets left
behind, to be executed at run-time. We refer to this
as automatic run-time fallback. If the type information
of y$2 is never used in the remainder of the code to
perform any optimization then a subsequent dead code
elimination pass eliminates the call to BXF_product.

The process of inserting and evaluating the type-
disambiguation functions is essentially unchanged for
inferring sizes. In fact, a major advantage of this ap-
proach is that the fundamental process is independent
of the specific definition of type. Any variable property
that is amenable to propagation in a data-flow style can
be computed through the partial evaluation technique
outlined above. Sometimes, it is necessary to split loops
to make it possible to partially evaluate array sizes [6].

Control-flow in the code causes the SSA form to have
⇤-functions, which are handled by a natural extension
of type disambiguation to ⇤-functions. A ⇤-function
represents run-time selection of one of the arguments
based on the incoming control flow path that was taken.
If a variable can have distinct types along multiple
incoming paths then in the SSA form those types refer
to distinct variable names, derived from a single variable
name in the original program. The subsequent code,
that uses the result of the ⇤-function, must be ready to
accept any of the types of all the variables that appear as
arguments to the ⇤-function. In other words, the resulting
type of a ⇤-function is the most inclusive type of all its
arguments.

This is implemented using a max operation on the ar-
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Inferring Base Types
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Inferring Array Sizes
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Static vs Dynamic Inference
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Observations

Memory seems to play a key role in 
performance of high-level dynamically type 
languages (studied MATLAB and Ruby)
Lack of general-purpose analytical models to 
guide the compiler toward generating 
programs with better memory locality
• need inter-procedural methods
• need a way to incorporate separately-compiled 

libraries
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Static Reuse Distances
x = a + b;
c = a + d[i]*100;
y =# x * 10;

Static Reuse Distance = 6  (a, b, c, d, i, 100)

Definition: A reference point, p, is the unique syntactic reference that is 
either an lvalue or an rvalue. When the point is inside a loop nest a 
superscripted reference point pi refers to the dynamic instance of p at 
the iteration vector i.
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SRD Across Function Calls

[�1, �2, . . . , �n] = f(↵1, ↵2, . . . ,↵m)

Pf Pf

Pf

Of Of

IfIf

Xf

Figure 1: Dependence types along which reuse distances

are influenced by call to a function f and the correspond-

ing memory transfer functions.

the term “procedure” whenever we mean a syntactic proce-
dure or function.

We denote a call to an abstract (mathematical) function
f as ⇥ = f(�), where � is the sequence of actual input
parameters to function f and ⇥ is the sequence of output
parameters. Thus, f might correspond to a call to some
user-level procedure or to a built-in high-level operator. We
will assume that there is a unique mapping between the
two, but will not belabor this point and rely on context
to determine whether f refers to a procedure or a unique
abstract function corresponding to the procedure.

Figure 1 shows how a function call a⇥ects reuse distance
computation. Let Z be the set of non-negative integers and
P be the set of all possible reference points in a program.
Let A be the domain of all alias functions, such that an
alias function a(p1, p2) is true if and only if reference points
p1 and p2 overlap in their memory references. The alias
function a is assumed to be have been computed for the
given program separately2. For convenience, we will use
|a(p1, p2)| to denote the “volume” of alias, i.e., the amount
of overlap in data referenced at p1 and p2. For example, if
p1 and p2 reference an array of floats then |a(p1(̄ı), p2(̄ı))| is
the size of float whenever a(p1(̄ı), p2(̄ı)) is true.

In order to fully capture the e⇥ects of a call to f on reuse
distance computation we need four memory transfer func-
tions, corresponding to the four types of edges in the figure.
For a call to function f , let reference points p, p1, and p2

correspond to the actual parameters ⇤, ⇤1, and ⇤2, respec-
tively, and let a be the alias function for the program in
which f is called.

Definition 3. The four memory transfer functions are
defined as follows.
Xf : A⇥Z

Xf (a) is the volume of data accessed within f .
If : P�A⇥Z

If (p, a) is the volume of data accessed within f before
the first access to ⇤.

Of : P�A⇥Z
Of (p, a) is the volume of data accessed within f after
the last access to ⇤.

Pf : P�P�A⇥Z
Pf (p1, p2, a) is the volume of data accessed between
the last use of ⇤1 and the first use of ⇤2 within f . It is
0 if a(⇤1, ⇤2) is true.

Notice that each memory transfer function needs alias in-
formation in order to accurately compute the volume of ref-
erenced data. Traditionally, the transfer or“jump” functions
2Our analysis can tolerate both may- and must-aliases with
di⇥erent trade-o⇥s, as explained in Section 6.1

used to succinctly capture the behavior of a procedure in
inter-procedural analysis correspond to Xf in the above def-
initions. The extended set of functions lets us capture the
behavior of f more precisely, especially in the presence of
reference points involving compound data structures such
as, arrays.

As in the case of R, all memory transfer functions, except
Xf , can also be defined for specific elements of the reference
point(s) involved. Thus,

If (p, a) = �ı̄If (p(̄ı), a) (2)

We are now ready to describe an algorithm to compute
source-level reuse distances.

4. COMPUTING SOURCE-LEVEL REUSE
DISTANCES

4.1 Data Volumes for Reuse Distances
Our approach is based on computing volumes of data ac-

cessed within increasingly larger regions of code. To keep the
discussion simple we restrict ourselves to sequencing (using
the ; operator), if-then-else branches, and matlab-like
for-loops. For HLPS it is rare to encounter spaghetti code
using goto’s. Consequently, we focus only on structured
control flow. Other standard control-flow constructs can be
handled by extending the analysis presented here, which we
omit for brevity3.

We use the term “region” in a restricted sense.

Definition 4. A region of code is a contiguous portion
of code such that it contains full simple or compound state-
ments.

In other words, a region of code cannot begin or terminate
in the middle of a loop body or in the middle of a branching
construct. We extend the definitions of memory transfer
functions introduced in Section 3.3 to regions. For a region
of code, c, let p be a reference point and a be the alias
function.

Definition 5. Memory transfer functions for regions of
code are defined as follows.
Xc : A⇥Z

Xc(a) is the volume of data accessed within c.
Ic : P�A⇥Z

Ic(p, a) is the volume of data accessed within c before
the first execution of p.

Oc : P�A⇥Z
Oc(p, a) is the volume of data accessed within c after
the last execution of p.

Note that Pc is not meaningful unless the two reference
points are within the same function call f , in which case it
reduces to Pf . Therefore, it need not be defined separately
for regions. Similarly to reference points, we will sometimes
find it convenient to use a superscript to parameterize a re-
gion of code by an interation vector, e.g., cı̄. For readability
we may use a superscript on the transfer function, e.g., X ı̄

c ,
to denote a superscript on the region c.

Algorithm 1 outlines a recursive algorithm to compute
Ic for a region of code c. Oc is computed similarly to Ic.
3We leave the handling of advanced control-flow constructs
such as, co-routines and continuations as a topic for future
research.

[�1, �2, . . . , �n] = f(↵1, ↵2, . . . ,↵m)

Pf Pf
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Figure 1: Dependence types along which reuse distances

are influenced by call to a function f and the correspond-

ing memory transfer functions.

the term “procedure” whenever we mean a syntactic proce-
dure or function.

We denote a call to an abstract (mathematical) function
f as ⇥ = f(�), where � is the sequence of actual input
parameters to function f and ⇥ is the sequence of output
parameters. Thus, f might correspond to a call to some
user-level procedure or to a built-in high-level operator. We
will assume that there is a unique mapping between the
two, but will not belabor this point and rely on context
to determine whether f refers to a procedure or a unique
abstract function corresponding to the procedure.

Figure 1 shows how a function call a⇥ects reuse distance
computation. Let Z be the set of non-negative integers and
P be the set of all possible reference points in a program.
Let A be the domain of all alias functions, such that an
alias function a(p1, p2) is true if and only if reference points
p1 and p2 overlap in their memory references. The alias
function a is assumed to be have been computed for the
given program separately2. For convenience, we will use
|a(p1, p2)| to denote the “volume” of alias, i.e., the amount
of overlap in data referenced at p1 and p2. For example, if
p1 and p2 reference an array of floats then |a(p1(̄ı), p2(̄ı))| is
the size of float whenever a(p1(̄ı), p2(̄ı)) is true.

In order to fully capture the e⇥ects of a call to f on reuse
distance computation we need four memory transfer func-
tions, corresponding to the four types of edges in the figure.
For a call to function f , let reference points p, p1, and p2

correspond to the actual parameters ⇤, ⇤1, and ⇤2, respec-
tively, and let a be the alias function for the program in
which f is called.

Definition 3. The four memory transfer functions are
defined as follows.
Xf : A⇥Z

Xf (a) is the volume of data accessed within f .
If : P�A⇥Z

If (p, a) is the volume of data accessed within f before
the first access to ⇤.

Of : P�A⇥Z
Of (p, a) is the volume of data accessed within f after
the last access to ⇤.

Pf : P�P�A⇥Z
Pf (p1, p2, a) is the volume of data accessed between
the last use of ⇤1 and the first use of ⇤2 within f . It is
0 if a(⇤1, ⇤2) is true.

Notice that each memory transfer function needs alias in-
formation in order to accurately compute the volume of ref-
erenced data. Traditionally, the transfer or“jump” functions
2Our analysis can tolerate both may- and must-aliases with
di⇥erent trade-o⇥s, as explained in Section 6.1

used to succinctly capture the behavior of a procedure in
inter-procedural analysis correspond to Xf in the above def-
initions. The extended set of functions lets us capture the
behavior of f more precisely, especially in the presence of
reference points involving compound data structures such
as, arrays.

As in the case of R, all memory transfer functions, except
Xf , can also be defined for specific elements of the reference
point(s) involved. Thus,

If (p, a) = �ı̄If (p(̄ı), a) (2)

We are now ready to describe an algorithm to compute
source-level reuse distances.

4. COMPUTING SOURCE-LEVEL REUSE
DISTANCES

4.1 Data Volumes for Reuse Distances
Our approach is based on computing volumes of data ac-

cessed within increasingly larger regions of code. To keep the
discussion simple we restrict ourselves to sequencing (using
the ; operator), if-then-else branches, and matlab-like
for-loops. For HLPS it is rare to encounter spaghetti code
using goto’s. Consequently, we focus only on structured
control flow. Other standard control-flow constructs can be
handled by extending the analysis presented here, which we
omit for brevity3.

We use the term “region” in a restricted sense.

Definition 4. A region of code is a contiguous portion
of code such that it contains full simple or compound state-
ments.

In other words, a region of code cannot begin or terminate
in the middle of a loop body or in the middle of a branching
construct. We extend the definitions of memory transfer
functions introduced in Section 3.3 to regions. For a region
of code, c, let p be a reference point and a be the alias
function.

Definition 5. Memory transfer functions for regions of
code are defined as follows.
Xc : A⇥Z

Xc(a) is the volume of data accessed within c.
Ic : P�A⇥Z

Ic(p, a) is the volume of data accessed within c before
the first execution of p.

Oc : P�A⇥Z
Oc(p, a) is the volume of data accessed within c after
the last execution of p.

Note that Pc is not meaningful unless the two reference
points are within the same function call f , in which case it
reduces to Pf . Therefore, it need not be defined separately
for regions. Similarly to reference points, we will sometimes
find it convenient to use a superscript to parameterize a re-
gion of code by an interation vector, e.g., cı̄. For readability
we may use a superscript on the transfer function, e.g., X ı̄

c ,
to denote a superscript on the region c.

Algorithm 1 outlines a recursive algorithm to compute
Ic for a region of code c. Oc is computed similarly to Ic.
3We leave the handling of advanced control-flow constructs
such as, co-routines and continuations as a topic for future
research.

P: set of all possible 
reference points in a 
program
A: domain of alias functions 
such that an alias function 
a(p1,p2) returns true iff p1 
and p2 overlap in their 
memory references
Z: set of integers
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SRD For Regions of Code

[�1, �2, . . . , �n] = f(↵1, ↵2, . . . ,↵m)
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Figure 1: Dependence types along which reuse distances

are influenced by call to a function f and the correspond-

ing memory transfer functions.

the term “procedure” whenever we mean a syntactic proce-
dure or function.

We denote a call to an abstract (mathematical) function
f as ⇥ = f(�), where � is the sequence of actual input
parameters to function f and ⇥ is the sequence of output
parameters. Thus, f might correspond to a call to some
user-level procedure or to a built-in high-level operator. We
will assume that there is a unique mapping between the
two, but will not belabor this point and rely on context
to determine whether f refers to a procedure or a unique
abstract function corresponding to the procedure.

Figure 1 shows how a function call a⇥ects reuse distance
computation. Let Z be the set of non-negative integers and
P be the set of all possible reference points in a program.
Let A be the domain of all alias functions, such that an
alias function a(p1, p2) is true if and only if reference points
p1 and p2 overlap in their memory references. The alias
function a is assumed to be have been computed for the
given program separately2. For convenience, we will use
|a(p1, p2)| to denote the “volume” of alias, i.e., the amount
of overlap in data referenced at p1 and p2. For example, if
p1 and p2 reference an array of floats then |a(p1(̄ı), p2(̄ı))| is
the size of float whenever a(p1(̄ı), p2(̄ı)) is true.

In order to fully capture the e⇥ects of a call to f on reuse
distance computation we need four memory transfer func-
tions, corresponding to the four types of edges in the figure.
For a call to function f , let reference points p, p1, and p2

correspond to the actual parameters ⇤, ⇤1, and ⇤2, respec-
tively, and let a be the alias function for the program in
which f is called.

Definition 3. The four memory transfer functions are
defined as follows.
Xf : A⇥Z

Xf (a) is the volume of data accessed within f .
If : P�A⇥Z

If (p, a) is the volume of data accessed within f before
the first access to ⇤.

Of : P�A⇥Z
Of (p, a) is the volume of data accessed within f after
the last access to ⇤.

Pf : P�P�A⇥Z
Pf (p1, p2, a) is the volume of data accessed between
the last use of ⇤1 and the first use of ⇤2 within f . It is
0 if a(⇤1, ⇤2) is true.

Notice that each memory transfer function needs alias in-
formation in order to accurately compute the volume of ref-
erenced data. Traditionally, the transfer or“jump” functions
2Our analysis can tolerate both may- and must-aliases with
di⇥erent trade-o⇥s, as explained in Section 6.1

used to succinctly capture the behavior of a procedure in
inter-procedural analysis correspond to Xf in the above def-
initions. The extended set of functions lets us capture the
behavior of f more precisely, especially in the presence of
reference points involving compound data structures such
as, arrays.

As in the case of R, all memory transfer functions, except
Xf , can also be defined for specific elements of the reference
point(s) involved. Thus,

If (p, a) = �ı̄If (p(̄ı), a) (2)

We are now ready to describe an algorithm to compute
source-level reuse distances.

4. COMPUTING SOURCE-LEVEL REUSE
DISTANCES

4.1 Data Volumes for Reuse Distances
Our approach is based on computing volumes of data ac-

cessed within increasingly larger regions of code. To keep the
discussion simple we restrict ourselves to sequencing (using
the ; operator), if-then-else branches, and matlab-like
for-loops. For HLPS it is rare to encounter spaghetti code
using goto’s. Consequently, we focus only on structured
control flow. Other standard control-flow constructs can be
handled by extending the analysis presented here, which we
omit for brevity3.

We use the term “region” in a restricted sense.

Definition 4. A region of code is a contiguous portion
of code such that it contains full simple or compound state-
ments.

In other words, a region of code cannot begin or terminate
in the middle of a loop body or in the middle of a branching
construct. We extend the definitions of memory transfer
functions introduced in Section 3.3 to regions. For a region
of code, c, let p be a reference point and a be the alias
function.

Definition 5. Memory transfer functions for regions of
code are defined as follows.
Xc : A⇥Z

Xc(a) is the volume of data accessed within c.
Ic : P�A⇥Z

Ic(p, a) is the volume of data accessed within c before
the first execution of p.

Oc : P�A⇥Z
Oc(p, a) is the volume of data accessed within c after
the last execution of p.

Note that Pc is not meaningful unless the two reference
points are within the same function call f , in which case it
reduces to Pf . Therefore, it need not be defined separately
for regions. Similarly to reference points, we will sometimes
find it convenient to use a superscript to parameterize a re-
gion of code by an interation vector, e.g., cı̄. For readability
we may use a superscript on the transfer function, e.g., X ı̄

c ,
to denote a superscript on the region c.

Algorithm 1 outlines a recursive algorithm to compute
Ic for a region of code c. Oc is computed similarly to Ic.
3We leave the handling of advanced control-flow constructs
such as, co-routines and continuations as a topic for future
research.
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will assume that there is a unique mapping between the
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correspond to the actual parameters ⇤, ⇤1, and ⇤2, respec-
tively, and let a be the alias function for the program in
which f is called.

Definition 3. The four memory transfer functions are
defined as follows.
Xf : A⇥Z

Xf (a) is the volume of data accessed within f .
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If (p, a) is the volume of data accessed within f before
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Of (p, a) is the volume of data accessed within f after
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Pf (p1, p2, a) is the volume of data accessed between
the last use of ⇤1 and the first use of ⇤2 within f . It is
0 if a(⇤1, ⇤2) is true.

Notice that each memory transfer function needs alias in-
formation in order to accurately compute the volume of ref-
erenced data. Traditionally, the transfer or“jump” functions
2Our analysis can tolerate both may- and must-aliases with
di⇥erent trade-o⇥s, as explained in Section 6.1

used to succinctly capture the behavior of a procedure in
inter-procedural analysis correspond to Xf in the above def-
initions. The extended set of functions lets us capture the
behavior of f more precisely, especially in the presence of
reference points involving compound data structures such
as, arrays.

As in the case of R, all memory transfer functions, except
Xf , can also be defined for specific elements of the reference
point(s) involved. Thus,

If (p, a) = �ı̄If (p(̄ı), a) (2)

We are now ready to describe an algorithm to compute
source-level reuse distances.

4. COMPUTING SOURCE-LEVEL REUSE
DISTANCES

4.1 Data Volumes for Reuse Distances
Our approach is based on computing volumes of data ac-

cessed within increasingly larger regions of code. To keep the
discussion simple we restrict ourselves to sequencing (using
the ; operator), if-then-else branches, and matlab-like
for-loops. For HLPS it is rare to encounter spaghetti code
using goto’s. Consequently, we focus only on structured
control flow. Other standard control-flow constructs can be
handled by extending the analysis presented here, which we
omit for brevity3.

We use the term “region” in a restricted sense.

Definition 4. A region of code is a contiguous portion
of code such that it contains full simple or compound state-
ments.

In other words, a region of code cannot begin or terminate
in the middle of a loop body or in the middle of a branching
construct. We extend the definitions of memory transfer
functions introduced in Section 3.3 to regions. For a region
of code, c, let p be a reference point and a be the alias
function.

Definition 5. Memory transfer functions for regions of
code are defined as follows.
Xc : A⇥Z

Xc(a) is the volume of data accessed within c.
Ic : P�A⇥Z

Ic(p, a) is the volume of data accessed within c before
the first execution of p.

Oc : P�A⇥Z
Oc(p, a) is the volume of data accessed within c after
the last execution of p.

Note that Pc is not meaningful unless the two reference
points are within the same function call f , in which case it
reduces to Pf . Therefore, it need not be defined separately
for regions. Similarly to reference points, we will sometimes
find it convenient to use a superscript to parameterize a re-
gion of code by an interation vector, e.g., cı̄. For readability
we may use a superscript on the transfer function, e.g., X ı̄

c ,
to denote a superscript on the region c.

Algorithm 1 outlines a recursive algorithm to compute
Ic for a region of code c. Oc is computed similarly to Ic.
3We leave the handling of advanced control-flow constructs
such as, co-routines and continuations as a topic for future
research.
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Algorithm to Compute Ic
Algorithm: Compute Ic1

Input: code region c; reference point p; alias2

function a that is valid over c
Output: Ic(p, a)3

if c = c1; c2 then4

if p⇧ c1 then5

return Ic1(p, a)6

else7

return Xc1(a) + Ic2(p, a)8

else if c = if e then c1 else c2 then9

if p = e then10

return 011

else if p ⇧ c1 then12

return |e|+ Ic1(p, a)13

else14

return |e|+ Ic2(p, a)15

else if c = for i = L : S : U begin c1 end then16

if p ⇧ for i = L : S : U then17

return 018

else19

k̄ ⇤ first iteration vector in which p is reached20

k̄⇥ ⇤ largest iteration vector smaller than k̄21

r ⇤ �p1,p2⇤c1 |p1
c⌅p2|, p1

c⌅p2 ⇧ polytope(c, k̄⇥)22

/*
c⌅ denotes loop carried dependence */

return �ı̄<k̄X ı̄
c1(a) + I k̄

c1(p, a)� r23

else24

ERROR25

Algorithm 1: Algorithm to compute Ic for a region
of code c. Oc can be computed similarly to Ic. For
a reference x, |x| denotes the size of the referenced
object.

There are three cases, corresponding to the three control-
flow constructs that we focus on. The cases for sequencing
and two-way branches are self-explanatory. The case of for-
loop merits some explanation, in particular, lines 20 through
23. In order to count the total number of memory accesses
before a reference is reached, we first determine the itera-
tion, k̄, in which the reference point is first reached. This is
especially relevant in situations where the reference point is
a compound object and not all elements of the object (e.g.,
array) might be accessed in the first iteration. Line 22 counts
the number of loop carried dependencies that fall before the
iteration vector k̄. This is exactly the duplicated count of
those memory locations that get referenced multiple times
before reaching iteration k̄. Thus, to obtain the total num-
ber of references before the reference point is reached, we
count the number of references in each iteration (the sum-
mation term in line 23) before iteration k̄, add the amount of
data referenced in iteration k̄ before reaching the reference
point, and then subtract the multiply counted references.

We use the helper function polytope to construct the iter-
ation space polytope. This assumes that the iteration space
is a⌅ne. Otherwise, we can use an a⌅ne approximation.
The call polytope(c, k̄⇥) constructs a polytope bounded by
the iteration vector k̄⇥ and the iteration space of the loop c.

Algorithm: Compute Xc1

Input: code region c; alias function a that is valid2

over c; probability weights, �, on CFG edges
Output: Xc(a)3

if c = c1; c2 then4

return Xc1(a) + Xc2(a)5

else if c = if e then c1 else c2 then6

return |e|+ �(true)⇥Xc1(a) + �(false)⇥Xc2(a)7

else if c = for i = L : S : U begin c1 end then8

n̄⇤ iteration vector for the last iteration9

r = �p1,p2⇤c1 |p1
c⌅p2|, p1

c⌅p2 ⇧ polytope(c, n̄)10

/*
c⌅ denotes loop carried dependence */

return �ı̄�n̄X ı̄
c1(a)� r11

else12

ERROR13

Algorithm 2: Algorithm to compute Xc for a region
of code c. For a reference x, |x| denotes the size of
the referenced object.

p1(̄ı) p2(k̄)

These dependence edges reduce the unique memory access count

Figure 2: Reuse distance across references spanning
loop-carried dependencies.

Figure 2 shows how, in a sequence of memory references, de-
pendencies lying wholly within two references points cause
duplicated counting. Note that the number of such depen-
dencies is exactly the number by which references have been
over-counted, and is the value r on line 22. Even though the
algorithm deals with one loop at a time, we use a generaliza-
tion and use multi-dimensional iteration vectors. This lets
us easily modify the algorithm to handle perfectly nested
loops together as a single loop nest, which is more e⌅cient
than building the loop nest one loop at a time. Finally, a
polytope-based approach of counting dependencies enables
the theoretical formulation to be exact, while keeping the
common case of uniform dependencies simple. By keeping
the mathematical formulation precise we can incorporate
specialized algorithms for counting dependencies for other
important cases as well, without having to change the funda-
mental high-level algorithm for computing memory transfer
functions for code regions.

Algorithm 2 computes Xc. It uses a partially weighted
control-flow graph where the weight on an edge is the prob-
ability that it will be taken. The back-edges in the control-
flow graph (CFG), indicating a loop, are not weighted. For
simplicity, we assume that each statement is represented by
one CFG node. The analysis here is independent of how the
probablities on branches are arrived at. If nothing is known
about a two-way branch then it is safe to weigh the edges
along the two branches with 0.5.



High Level Programming, Arun Chauhan, Rochester 2009-11-30

Algorithm to Compute Xc

Algorithm: Compute Ic1

Input: code region c; reference point p; alias2

function a that is valid over c
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else19
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of code c. Oc can be computed similarly to Ic. For
a reference x, |x| denotes the size of the referenced
object.

There are three cases, corresponding to the three control-
flow constructs that we focus on. The cases for sequencing
and two-way branches are self-explanatory. The case of for-
loop merits some explanation, in particular, lines 20 through
23. In order to count the total number of memory accesses
before a reference is reached, we first determine the itera-
tion, k̄, in which the reference point is first reached. This is
especially relevant in situations where the reference point is
a compound object and not all elements of the object (e.g.,
array) might be accessed in the first iteration. Line 22 counts
the number of loop carried dependencies that fall before the
iteration vector k̄. This is exactly the duplicated count of
those memory locations that get referenced multiple times
before reaching iteration k̄. Thus, to obtain the total num-
ber of references before the reference point is reached, we
count the number of references in each iteration (the sum-
mation term in line 23) before iteration k̄, add the amount of
data referenced in iteration k̄ before reaching the reference
point, and then subtract the multiply counted references.

We use the helper function polytope to construct the iter-
ation space polytope. This assumes that the iteration space
is a⌅ne. Otherwise, we can use an a⌅ne approximation.
The call polytope(c, k̄⇥) constructs a polytope bounded by
the iteration vector k̄⇥ and the iteration space of the loop c.

Algorithm: Compute Xc1

Input: code region c; alias function a that is valid2

over c; probability weights, �, on CFG edges
Output: Xc(a)3

if c = c1; c2 then4
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Figure 2 shows how, in a sequence of memory references, de-
pendencies lying wholly within two references points cause
duplicated counting. Note that the number of such depen-
dencies is exactly the number by which references have been
over-counted, and is the value r on line 22. Even though the
algorithm deals with one loop at a time, we use a generaliza-
tion and use multi-dimensional iteration vectors. This lets
us easily modify the algorithm to handle perfectly nested
loops together as a single loop nest, which is more e⌅cient
than building the loop nest one loop at a time. Finally, a
polytope-based approach of counting dependencies enables
the theoretical formulation to be exact, while keeping the
common case of uniform dependencies simple. By keeping
the mathematical formulation precise we can incorporate
specialized algorithms for counting dependencies for other
important cases as well, without having to change the funda-
mental high-level algorithm for computing memory transfer
functions for code regions.

Algorithm 2 computes Xc. It uses a partially weighted
control-flow graph where the weight on an edge is the prob-
ability that it will be taken. The back-edges in the control-
flow graph (CFG), indicating a loop, are not weighted. For
simplicity, we assume that each statement is represented by
one CFG node. The analysis here is independent of how the
probablities on branches are arrived at. If nothing is known
about a two-way branch then it is safe to weigh the edges
along the two branches with 0.5.
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Empirical Data for Library Functions
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the term “procedure” whenever we mean a syntactic proce-
dure or function.

We denote a call to an abstract (mathematical) function
f as ⇥ = f(�), where � is the sequence of actual input
parameters to function f and ⇥ is the sequence of output
parameters. Thus, f might correspond to a call to some
user-level procedure or to a built-in high-level operator. We
will assume that there is a unique mapping between the
two, but will not belabor this point and rely on context
to determine whether f refers to a procedure or a unique
abstract function corresponding to the procedure.

Figure 1 shows how a function call a⇥ects reuse distance
computation. Let Z be the set of non-negative integers and
P be the set of all possible reference points in a program.
Let A be the domain of all alias functions, such that an
alias function a(p1, p2) is true if and only if reference points
p1 and p2 overlap in their memory references. The alias
function a is assumed to be have been computed for the
given program separately2. For convenience, we will use
|a(p1, p2)| to denote the “volume” of alias, i.e., the amount
of overlap in data referenced at p1 and p2. For example, if
p1 and p2 reference an array of floats then |a(p1(̄ı), p2(̄ı))| is
the size of float whenever a(p1(̄ı), p2(̄ı)) is true.

In order to fully capture the e⇥ects of a call to f on reuse
distance computation we need four memory transfer func-
tions, corresponding to the four types of edges in the figure.
For a call to function f , let reference points p, p1, and p2

correspond to the actual parameters ⇤, ⇤1, and ⇤2, respec-
tively, and let a be the alias function for the program in
which f is called.

Definition 3. The four memory transfer functions are
defined as follows.
Xf : A⇥Z

Xf (a) is the volume of data accessed within f .
If : P�A⇥Z

If (p, a) is the volume of data accessed within f before
the first access to ⇤.

Of : P�A⇥Z
Of (p, a) is the volume of data accessed within f after
the last access to ⇤.

Pf : P�P�A⇥Z
Pf (p1, p2, a) is the volume of data accessed between
the last use of ⇤1 and the first use of ⇤2 within f . It is
0 if a(⇤1, ⇤2) is true.

Notice that each memory transfer function needs alias in-
formation in order to accurately compute the volume of ref-
erenced data. Traditionally, the transfer or“jump” functions
2Our analysis can tolerate both may- and must-aliases with
di⇥erent trade-o⇥s, as explained in Section 6.1

used to succinctly capture the behavior of a procedure in
inter-procedural analysis correspond to Xf in the above def-
initions. The extended set of functions lets us capture the
behavior of f more precisely, especially in the presence of
reference points involving compound data structures such
as, arrays.

As in the case of R, all memory transfer functions, except
Xf , can also be defined for specific elements of the reference
point(s) involved. Thus,

If (p, a) = �ı̄If (p(̄ı), a) (2)

We are now ready to describe an algorithm to compute
source-level reuse distances.

4. COMPUTING SOURCE-LEVEL REUSE
DISTANCES

4.1 Data Volumes for Reuse Distances
Our approach is based on computing volumes of data ac-

cessed within increasingly larger regions of code. To keep the
discussion simple we restrict ourselves to sequencing (using
the ; operator), if-then-else branches, and matlab-like
for-loops. For HLPS it is rare to encounter spaghetti code
using goto’s. Consequently, we focus only on structured
control flow. Other standard control-flow constructs can be
handled by extending the analysis presented here, which we
omit for brevity3.

We use the term “region” in a restricted sense.

Definition 4. A region of code is a contiguous portion
of code such that it contains full simple or compound state-
ments.

In other words, a region of code cannot begin or terminate
in the middle of a loop body or in the middle of a branching
construct. We extend the definitions of memory transfer
functions introduced in Section 3.3 to regions. For a region
of code, c, let p be a reference point and a be the alias
function.

Definition 5. Memory transfer functions for regions of
code are defined as follows.
Xc : A⇥Z

Xc(a) is the volume of data accessed within c.
Ic : P�A⇥Z

Ic(p, a) is the volume of data accessed within c before
the first execution of p.

Oc : P�A⇥Z
Oc(p, a) is the volume of data accessed within c after
the last execution of p.

Note that Pc is not meaningful unless the two reference
points are within the same function call f , in which case it
reduces to Pf . Therefore, it need not be defined separately
for regions. Similarly to reference points, we will sometimes
find it convenient to use a superscript to parameterize a re-
gion of code by an interation vector, e.g., cı̄. For readability
we may use a superscript on the transfer function, e.g., X ı̄

c ,
to denote a superscript on the region c.

Algorithm 1 outlines a recursive algorithm to compute
Ic for a region of code c. Oc is computed similarly to Ic.
3We leave the handling of advanced control-flow constructs
such as, co-routines and continuations as a topic for future
research.
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Figure 3: Putting memory reference points in AST regions. Left: Loop-independent dependencies. Right:
Loop-carried dependencies. b is the loop body.

Algorithm: Compute R1

Input: reference points p1 and p2; program AST;2

alias function a, memory transfer functions
Output: Rp1,p23

if p1⇤p2 is a loop-carried dependence then4

ı̄⇥ iteration vector at dependence source, p15

k̄ ⇥ iteration vector at dependence destination, p26

b⇥ surrounding loop-nest, according to Figure 37

return Oı̄
b(p1, a) + I k̄

b (p2, a) + �ı̄<l̄<k̄X l̄
b(a)8

else if p1 and p2 are actual parameters in the same9

function call, f then
return Pf (p1, p2, a)10

else11

c1, c2, c3 ⇥ regions according to Figure 312

return Oc1(p1, a) + Ic2(p2, a) + Xc3(a)13

Algorithm 3: Computing source-level reuse dis-
tance.

4.2 Data Volumes to Reuse Distances
Algorithm 3 gives an algorithm to compute source-level

reuse distance between reference points p1 and p2 once data
volumes of Section 4.1 have been computed for all the rel-
evant code regions. The algorithm relies on finding code
regions enclosing p1 and p2 such that the regions are at the
same “level” in the program’s abstract syntax tree (AST).

There are two cases to consider. If the reuse distance is
being computed between two points that are not within a
common loop-nest, or have a loop-independent dependence
(second case in the algorithm) then the code regions c1 and
c2 can be found by simply finding the nearest common an-
cestor of p1 and p2 in the AST and then collecting all the
regions on the control-flow path between c1 and c2 in c3. It is
easily argued that this is always possible whenever there ex-
ists a control-flow path from p1 to p2 (it does because there
is a dependence from p1⇤p2) and we restrict ourselves to
structured control-flow (which is our assumption). Figure 3
illustrates this in the left part of the figure.

If there is a loop-carried dependence between p1 and p2

then we consider the body of the loop (or loop-nest) that
contains the references points, and divide it into regions as

shown in the right part of Figure 3. Again, due to struc-
tured control-flow, it is always possible to divide the body
into regions that precede the region of p1, that follow the
region of p2, and that fall in between. In this case, however,
we need transfer functions only for the loop body. The ap-
proach allows branches inside loop bodies also to be handled
seamlessly.

In both cases there may be regions at the same“level” that
do not fall in the control-flow path from p1 to p2. Those do
not play a role in computing Rp1,p2 and are omitted from
Figure 3 for simplicity.

4.3 Computing If , Of , Xf

The transfer functions for a procedure in source form can
be summarized using analysis presented here. In general,
the transfer functions will depend on procedure’s parameter
types and, possibly, values. Within our matlab compiler we
use matlab itself as the language to describe the transfer
functions. This is convenient because our compiler leverages
the matlab interpreter for partial evaluation. Therefore, it
can use a similar mechanism to evaluate the transfer func-
tions. Moreover, this approach gives us the ability to even
defer the evaluation of memory transfer functions until run
time, if we wish to perform dynamic optimizations or make
use of values available only at run time.

For a large number of primitive operations and library
functions source code is not available for analysis. In such
cases, we evaluate the memory transfer functions empiri-
cally. We use hardware counters to measure cache hit- and
miss-rates. On a system with two levels of cache, the number
of L2 misses provides a reasonable measure of the number
of unique memory references, thus giving us Xf . In the ab-
sence of any other information we use Xf to approximate
IF and Of . In other words,

If � Of � Xf (3)

To capture the behavior across a spectrum of input sizes,
we do the empirical measurements across a heuristically de-
termined sample of input sizes—these sizes could also be
determined by a di⇥erent method, such as library developer
annotations or example codes. The empirically measured
values are fitted on a curve, which is then interpolated or ex-
trapolated to“read-o⇥”the transfer function at other points.
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Challenges Remain: FFT
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Rescuing Parallel 
Programmers
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Concurrency Trends
(ExaScale Computing Study, Peter Kogge et al.)
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Figure 4.16: Total hardware concurrency in the Top 10 supercomputers.
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Courtesy: Vivek Sarkar, Rice University

Types of (Parallel) Programmers

Mainstream  
Parallelism-Oblivious  

Developers 

Parallelism–Aware 
Developers 

Concurrency 
Experts 

(Doug) 

(Stephanie) 

(Joe) 

Joe needs high level 
Programming Models 
designed for Domain 

Experts  

Stephanie needs simple 
Parallel Programming 

Models with safety nets 

Focus of today’s Parallel 
Programming Models 
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Parallelism Oblivious Users

Programming languages-driven

• implicit parallelism, compiler support

OS-driven

• innovative solutions to leverage extra cores

Architecture-driven

• ILP, hyper-threading
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Observations for Parallelism-
Aware and Expert Users

Completely automatic parallelization has had 
limited success

Writing parallel programs is hard; optimizing 
and maintaining them is harder!

Compilation technology has worked well in 
communication optimization
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Declarative Parallel Programming

Let users write parallel programs

Let compilers optimize parallel programs

Separate computation and communication 
specification, using a domain-specific language 
to specify communication

Key insight: most parallel applications have 
predictable (but not necessarily static) 
communication patterns
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Declarative Specification of 
Communication

@collective cshift (A)
{
foreach processor i
{
A@i := A@(i+1)

}
}

@collective stencil (A, B)
{
foreach processor i in Mesh2D
{
B@i := 0.25*(A@i.N + A@i.S + A@i.W + A@i.E)

}
}

Compiler converts collectives to 
MPI calls and optimizes 
communication by coalescing and 
overlapping with computation

ICPP 2009, Hoefler et al.

mailto:A@i.N+A
mailto:A@i.N+A
mailto:i.S+A@i.W+A
mailto:i.S+A@i.W+A
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Concluding Remarks
Computing is a core technique in an increasing 
number of fields
• programming is no longer restricted to scientists 

and engineers
• conventional programming models are inadequate
Parallelism is no longer restricted to scientific 
and engineering applications
• need to address the needs of different types of 

users and applications
Traditional program analysis is inadequate on 
modern machines
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Other Interests

High-level Languages

• Ruby

Heterogeneous parallel computing

Large memory-footprint applications

Automatic parallelization
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Scratch
http://scratch.mit.edu/

http://scratch.mit.edu
http://scratch.mit.edu
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http://www.cs.indiana.edu/~achauhan

http://phi.cs.indiana.edu/

http://www.cs.indiana.edu/~achauhan
http://www.cs.indiana.edu/~achauhan
http://phi.cs.indiana.edu
http://phi.cs.indiana.edu
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Bonus Material
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Ruby Class Hierarchy

class B
...

end

class D < B
...

end

d = D.new
D

B

< Object

Object

Basic Object

d
def d.newMeth

...
end

Objects store values
Classes store methods

Sd

nil
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Ruby Classes as Objects

D

B

Obj.

B. Obj.

d

Sd

nil

Sd‘

B‘

D‘

Obj.

B. Obj.

‘

‘

Sd‘

B‘

D‘

Obj.

B. Obj.

‘

‘‘

‘

‘

‘

‘ Sd‘

B‘

D‘

Obj.

B. Obj.

‘

‘‘

‘

‘

‘

‘

‘

‘

‘

‘

‘

Class

Module

Class

Module

‘

‘

M

undefined

M‘
Superclass of the meta-class 
is meta-class of the 
superclass


