Higher Level Programming on Parallel
Computers: Sweetening the Deal for

} Programmers
(and Making Compilers Work Harder)

Arun Chauhan, Indiana University

University of Rochester, Nov 30, c009

Collaborators

Blake Barker
Torsten Hoefler
Eric Holk
William Holmes
Andrew Keep

Andrew Lumsdaine

Daniel McFarlin

Pushkar Ratnalikar
Koby Rubinstein

Sidney Shaw
Chun-Yu Shei

Jeremiah Willcock

Kevin Zumbrun

High Level Programming, Arun Chauhan, Rochester 2009-11-30

“A New Kind of Science”

Stephen Wolfram

“Computing is as fundamental as the physical,

life, and social sciences.”

Peter |. Denning and Paul S. Rosenbloom
Communications of the ACM, Sep 2009

“What our community should really aim for is
the development of a curriculum that turns our
subject into the fourth R—as in ‘rogramming—of
our education systems.

A form of mathematics can be used as a full-
fledged programming language, just like Turing

Machines.”

Matthias Felleisen and Shriram Krishnamurthy
Communications of the ACM, Jul 2009

High Level Programming, Arun Chauhan, Rochester 2009-11-30

ale

£
w
£
L
|
%
ﬂ.
w
G
(4

AR R RN R RN R R R I I R R Rl

Programming

&

“Why can’t you be like the Math
Department, which only needs a
blackboard and wastepaper basket?
Better still, like the Department of
Philosophy. That doesn’t even need
a wastepaper basket ...”

Arthur C . Clarke
3001: The Final Odyssey

E:ﬂ High Level Programming, Arun Chauhan, Rochester 2009-11-30

Computers are for Computing and ...

o Computers as general-purpose tools

e communication, navigation, data collection,
entertainment, etc.

o Computers as computing tools

e problem solving

e data processing and analysis

High Level Programming, Arun Chauhan, Rochester 2009-11-30

Overview

Motivation
Rethinking program analysis
Rescuing parallel programmers

Concluding remarks

High Level Programming, Arun Chauhan, Rochester 2009-11-30

Rethinking Program Analysis

Problem

o Nice programming languages
e domain-specific
e often dynamically typed and interpreted

o Poor performance

e inefficient use of computing resources

e inefficient use of energy

High Level Programming, Arun Chauhan, Rochester 2009-11-30

“It is a capital mistake to theorize before one

has data. Insensibly one begins to twist facts to

suit theories, instead of theories to suit facts.”

Sir Arthur Conon Doyle
A Scandal in Bohemia

High Level Programming, Arun Chauhan, Rochester 2009-11-30

Example 1: BLAS

e ArB’ + 2% (A+B)’'*A + (Xty)exe

copy (A, tmp0) ;
gemm(1l,A,B,1,tmp0);
copy (A, tmpl);
axpy(1,B,1,tmpl);
gemm(2,tmpl,A,1,tmp0);
copy (x,tmpl);
axpy(l,y,1,tmpl);
ger(l,tmpl,x,tmp0);

AHR*B! + 2%DA'*xA + 2xB'*A + XX’ | v

gemm(1l,A,B,1,tmp0);
ger(l,x,x,tmp0);
ger(l,y,x,tmp0);
gemm(2,A,A,1,tmp0);
gemm(2,B,A,1,tmp0);

High Level Programming, Arun Chauhan, Rochester 2009-11-30

Examplel: BLAS

Implementing A Big Expression

@
~

—©— AMD Opteron
—#— PowerPC 970 (Apple G5)
—+— Intel Xeon

Intel Itanium 2

)

w

o

2.
2.
2.
2.

\o}

©
O]
]
-
9
p -
-
B2
S
O)
E
-
~
e
O]
N
7p]
)
-
-
C
o
S
©
£
)
£
e

Lessons

e Minimize butfer copies

o Combine as many simple operations as
possible into a single BLAS call

o Work on data-flow graph

e simple algorithm within basic blocks

e expanded to work globally (intra-procedurally)

High Level Programming, Arun Chauhan, Rochester 2009-11-30

Example 1: BLAS

mplementing Scaled Vector Addition (alpha*x + beta*y)
1.7

—&— AMD Opteron
—*— PowerPC 970 (Apple G5)
—+— Intel Xeon

Intel Itanium 2

1.6

1.5

R TE e Ty

i L

S
=
LUl
O
S5
@
£
j .
<
O
0p)
]
+
>
o
X
<
S5
@
£

4 6 8 10 12 14 16 18
Vector size (millions of double elements)

Example 1: BLAS

Implementing Vector Outer Product (x™*y + A)

—©— AMD Opteron
—#— PowerPC 970 (Apple G5)
—+— Intel Xeon

Intel ltanium 2

9 10
Vector size (thousands of double elements)

N
oo™
N Gl o

—
@)
e
O
o
o
T
C
9
el
@)
C
-
b
)
E
-]
~~~
(<)
=
o
Q
©
S
9o
o
k=
)
O)
E
e

Results

3.2 GHz dual Xeon, 1 GB RAM, Linux 2.6

—O— GS Arnoldi

—#— Gauss-Siedel

—+—— Lanczos
Arnoldi

30

40 50 60
Data size (normalized)

70




Results

1.5 GHz dual Intel Itanium 2, 4GB RAM, Linux 2.6

—O— GS Arnoldi

—#— Gauss-Siedel

—+— Lanczos
Arnoldi

—
O
fd
O
o
O
T
-
0
[r—
O
-
-
Nawb
o
E
-

time(simple mapping) /

40 50 60 70
Data size (normalized)

than, Rochester 2009-11-30



Example &: Subscripts

Effects of Memory Optlmlzatlons on NASMG

B Direct translatlon to C

I L oop fusion
Loop fusion + subscript opt.

=

Speedup over MATLAB interpreter

Core 2 Duo Pentium IV




Enabling Technology

HiPC 2009, Shei, Chauhan, and Shaw

o Type Inference

e infer base types, and array sizes

o Leverage MATLAB / Octave interpreter

e “concretely interpreted partial evaluation” to combine
type inference and constant propagation+folding

e type transfer functions encoded within MATLAB

o Potential for spectacular improvements

100x on biology code (electron u-scope image-proc.)

1.5x on math code (ODE solver)

High Level Programming, Arun Chauhan, Rochester 2009-11-30



Type Inference Through
Concrete Interpretation

= 80en50
= RN
SR RIS e Yo T

Example Code
4

S iRa=— 0 5

ol S AP e NG S S
T S0 i gha S
oL eI VS

 After SSA & flattening

e b S e e

Seorla e 055

Bl s 19 =" IBXEiiverteat |
BRI e G ea B
B RASN ONa7ZE St ey

) ;
e kA L e e R
BRSNS aaret

EXSEpr o diciBat e SRBTayis s

G Tt ¢ 3 R S Fal o 6
BN s R

B (R R S e BT e ks
S R e T o

sl EERSr

ok [t 2y S i

il pgeple e s

B N S E=r s
BXF_sum(BT_tS$1,; BT aSiEEs

A s R

With type disambiguation code

After partial evaluation




Inferring Base Types

I I
I \o Annotations
I Base Type Annotations
[ 1Base Type + Size Annotations
[ |Base Type + Size + Value Annotations

n
Qo
O

©
T

©
>
©
i —

O
e
(V-

o
e

-

)

&)

| -

)

o

dlaplacian arnoldi v_hbmult clean_image reseat points get slopes




Inferring Array Sizes

I I
I \o Annotations
I Base Type Annotations
[ 1Base Type + Size Annotations
[ |Base Type + Size + Value Annotations

7))
Qo
O
O

S

Q)

>

O
e

O
e
(V-

@
el

-

O

@)

S

o

o

dlaplacian arnoldi v_hbmult clean_image reseat |

High Level Programming, Arun Chauhan, Rochester 2009-11-30



Static vs Dynamic Inference

I I I I I I I

I statically inferred

7))
o
O
O

-

)

>

qV]

e

O
fd
o

@)
fd

-

)

o

-

o

o

dlaplacian arnoldi v_hbmult clean_image reseatﬂints get_slopes




Observations

o Memory seems to play a key role in
performance of high-level dynamically type
languages (studied MATLAB and Ruby)

o Lack of general-purpose analytical models to
guide the compiler toward generating
programs with better memory locality

e need inter-procedural methods

e need a way to incorporate separately-compiled
libraries

High Level Programming, Arun Chauhan, Rochester 2009-11-30



otatic Reuse Distances

a + b;
= a + d[1]*100;
x * 10;

Static Reuse Distance =6 (a, b, ¢, d, 1, 100)

Definition: A reference point, p, is the unique syntactic reference that is
either an lvalue or an rvalue. When the point is inside a loop nest a

superscripted reference point p! refers to the dynamic instance of p at
the iteration vector i.

High Level Programming, Arun Chauhan, Rochester 2009-11-30



SRD Across Function Calls

P: set of all possible

reference points in a
X¢ A: domain of alias functions
617 627 o 6’”’ e C¥1, A0 ¢ such that an alias function

v \ \ v a(pl,p2) returns true iff p1l

and p2 overlap in their

memory references
Xi: A—Z Z: set of integers

X¢(a) is the volume of data accessed within f.

T : PxA—Z
Z¢(p,a) is the volume of data accessed within f before
the first access to p.

Q2 PXA—Z
Oy (p,a) is the volume of data accessed within f after
the last access to p.

Ps: PxPxA—Z
Ps(p1,p2,a) is the volume of data accessed between
the last use of p; and the first use of p2 within f. It is
0 if a(p1, p2) is true.




SRD For Regions of Code

Xy (a) is the volume of data accessed within f.

I;: PxA—Z
Z¢(p, a) is the volume of data accessed within f before
the first access to p.

O PxXA—Z
O¢(p, a) is the volume of data accessed within f after
the last access to p.

'Pf : PxPxA—Z
Ps(p1,p2,a) is the volume of data accessed between
the last use of p; and the first use of p2 within f. It is
0 if a(p1, p2) is true.

X.: A—=Z

Xc(a) is the volume of data accessed within c.

T PR
Z.(p,a) is the volume of data accessed within ¢ before
the first execution of p.

O.: PxA—Z
Oc(p,a) is the volume of data accessed within c after
the last execution of p.




Algorithm to Compute I

Algorithm: COMPUTE Z.

Input: code region c; reference point p; alias
function a that is valid over ¢
Output: Z.(p, a)

if c=|cy1;c2|then
if p€|cy1|then
|return 7, (p, a)

else
[return X, (a) + Zc, (p, a)

else if ¢ =|if e then c; else co
if p =[e]then

|return 0

else if p €| c; | then
|return |e| + 7., (p, a)

else

[return |e| + Z,(p, a)

else if c=|fori=L:S: U begin c¢; end
if pelfori=L:S:U|then

return 0
else
k < first iteration vector in which p is reached

k' «— largest iteration vector smaller than k

(& C 7/
T < Xp; pace; [P1— P2|, p1—p2 € polytope(c, k')
/* = denotes loop carried dependence */
return X, ;X% (a) + 5, (p,a) — 7




Algorithm to Compute X

Algorithm: COMPUTE X,

Input: code region c; alias function a that is valid
over c; probability weights, m, on CFG edges
Output: X.(a)

if c=|ci1;co|then
|return X., (a) + X, (a)

else if ¢ =|if e then c; else cs | then
|return |e| + 7(true) X X, (a) + 7 (false) x Xe, (a)

else if c=|fori=L:S: U begin c; end | then

n < iteration vector for the last iteration

r = Sy, paees [P P2, p1—p2 € polytope(c, i)

/* = denotes loop carried dependence */
return ;<5 X7, (a) — 7

else

|[ERROR




Accuracy

T
B Arnoldi (computed)
I Arnoldi (measured)
[ 1NASCG (computed)
[ 1NASCG (measured)

L1 Hits L2 Hits L2 Misses

High Level Programming, Arun Chauhan, Rochester 2009-11-30



Empirical Data for Library Functions

//\ \

- ﬁhﬁ%" n Pt ()5170527"'

‘\/\c‘?f \‘\/

X r ~ L2 cache misses

If%@f%ﬂff




Challenges Remain: FFT

©
)
7))
)]
)
O
&)
©
S
(C
©
[S—
o
O]
S
=
@)
>

High Level Programming, Arun Chauhan, Rochester 2009-11-30



Rescuing Parallel

Programmers




Concurrency Trends
(ExaScale Computing Study, Peter Kogge et al.)

1.E+07

>
(&)
L am
Q
o
S
S
-
(&)
c
@)
o
©
el
(@)
|—

8
1.E+02

1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09

¢ Top10 ® Top System —— Top 1 Trend




Types of (Parallel) Programmers

Ma|nStream Joe needs high level

Programming Models

Parallelism-Oblivious deSiQ";:;::tgmi"
Developers

_ Stephanie needs simple
_\ Parallelism—Aware Parallel Programming
(Stephanie) Developers — Models with safety nets

A 4 —_ Focus of today’s Parallel
(Doug) } Programming Models

Concurrency
Experts

Courtesy: Vivek Sarkar, Rice University

.
.
.
-
-
.
»
-
.
*
-
.
-
-
-
-
*



Parallelism Oblivious Users

e Programming languages-driven

e implicit parallelism, compiler support
e OS-driven

e innovative solutions to leverage extra cores
o Architecture-driven

e ILP hyper-threading

High Level Programming, Arun Chauhan, Rochester 2009-11-30



Observations for Parallelism-
Aware and Expert Users

o Completely automatic parallelization has had
limited success

o Writing parallel programs is hard; optimizing
and maintaining them is harder!

o Compilation technology has worked well in
communication optimization

High Level Programming, Arun Chauhan, Rochester 2009-11-30



Declarative Parallel Programming

Let users write parallel programs
Let compilers optimize parallel programs

Separate computation and communication
specification, using a domain-specific language
to specify communication

Key insight: most parallel applications have
predictable (but not necessarily static)
communication patterns

High Level Programming, Arun Chauhan, Rochester 2009-11-30



Declarative Specification of
Communication

@collective cshift (A) ; :
{ Compiler converts collectives to

foreach processor i MPI calls and optimizes
{ communication by coalescing and

: ARl := AR(1+1) overlapping with computation

}

@collective stencil (A, B)

{

foreach processor 1 in Mesh2D

{
B@i := 0.25*(A@i.N + A@i.S + AQ@i.W + AQi.E)

}

}



mailto:A@i.N+A
mailto:A@i.N+A
mailto:i.S+A@i.W+A
mailto:i.S+A@i.W+A

Concluding Remarks

o Computing is a core technique in an increasing
number of fields

e programming is no longer restricted to scientists
and engineers

e conventional programming models are inadequate
e Parallelism is no longer restricted to scientific
and engineering applications

e need to address the needs of different types of
users and applications

o Traditional program analysis is inadequate on
modern machines

High Level Programming, Arun Chauhan, Rochester 2009-11-30



Other Interests

High-level Languages
e Ruby

Heterogeneous parallel computing
Large memory-tootprint applications

Automatic parallelization

High Level Programming, Arun Chauhan, Rochester 2009-11-30



Scratch

http://scratch.mit.edu/

_[8]X]

’1_,’[}’7111--"_?"{;,_.':[ | Now | | Open || save || save As || share || Extras | | undo | | want Melp? |

move ) steps
turn (& € dogreos

turn © €D degrees

point in direction €K

point towards

gotoxDy: @
g0 to

ghde ) secs to x: O v: O

change x by ()
sot x to )
change y by €D

utv!oo
If on edge, bounce
ixpo“ﬂoo

B vy position
B dwrection

*)(®)

|
|

High Level Programming, Arun Chauhan, Rochester 2009-11-30


http://scratch.mit.edu
http://scratch.mit.edu

http:/ /www.cs.indiana.edu/~achauhan

http: / /phi.cs.indiana.edu/

High Level Programming, Arun Chauhan, Rochester 2009-11-30


http://www.cs.indiana.edu/~achauhan
http://www.cs.indiana.edu/~achauhan
http://phi.cs.indiana.edu
http://phi.cs.indiana.edu

Rochester 2009-11-30

7

Arun Chauhan

High Level Programming,



Ruby Class Hierarchy

class B < Object
en.c.:l.
classD <B
en.c.al.

d = D.new
def d.newMeth

. lend

nil

T

Basic Object

T

Object

T

|
|

dd

Objects store values
Classes store methods




Ruby Classes as Objects

E

B. Obj—»B Obj. —» B. Obj"”

Lo F

Obj.——» Obj, — s B

E -

Module— Module » B » B

AN

undefined ’Sé ’S(ljl
T Superclass of the meta-class

ey L y is meta-class of the

superclass

E:ﬂ High Level Programming, Arun Chauhan, Rochester 2009-11-30




