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“A New Kind of Science”

Stephen Wolfram

“Computing is as fundamental as the physical,

life, and social sciences.”

Peter |. Denning and Paul S. Rosenbloom
Communications of the ACM, Sep 2009

“What our community should really aim for is
the development of a curriculum that turns our
subject into the fourth R—as in ‘rogramming—of
our education systems.

A form of mathematics can be used as a full-
fledged programming language, just like Turing

Machines.”

Matthias Felleisen and Shriram Krishnamurthy
Communications of the ACM, Jul 2009
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Programming

&

“Why can’t you be like the Math
Department, which only needs a
blackboard and wastepaper basket?
Better still, like the Department of
Philosophy. That doesn’t even need
a wastepaper basket ...”

Arthur C . Clarke
3001: The Final Odyssey
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Computers are for Computing and ...

o Computers as general-purpose tools

e communication, navigation, data collection,
entertainment, etc.

o Computers as computing tools

e problem solving

e data processing and analysis
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Overview

Motivation
Rethinking program analysis
Rescuing parallel programmers

Concluding remarks
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Rethinking Program Analysis




Problem

o Nice programming languages
e domain-specific
e often dynamically typed and interpreted

o Poor performance

e inefficient use of computing resources

e inefficient use of energy
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“It is a capital mistake to theorize before one

has data. Insensibly one begins to twist facts to

suit theories, instead of theories to suit facts.”

Sir Arthur Conon Doyle
A Scandal in Bohemia
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Example 1: BLAS

e ArB’ + 2% (A+B)’'*A + (Xty)exe

copy (A, tmp0) ;
gemm(1l,A,B,1,tmp0);
copy (A, tmpl);
axpy(1,B,1,tmpl);
gemm(2,tmpl,A,1,tmp0);
copy (x,tmpl);
axpy(l,y,1,tmpl);
ger(l,tmpl,x,tmp0);

AHR*B! + 2%DA'*xA + 2xB'*A + XX’ | v

gemm(1l,A,B,1,tmp0);
ger(l,x,x,tmp0);
ger(l,y,x,tmp0);
gemm(2,A,A,1,tmp0);
gemm(2,B,A,1,tmp0);
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Examplel: BLAS

Implementing A Big Expression
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Lessons

e Minimize butfer copies

o Combine as many simple operations as
possible into a single BLAS call

o Work on data-flow graph

e simple algorithm within basic blocks

e expanded to work globally (intra-procedurally)
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Example 1: BLAS

mplementing Scaled Vector Addition (alpha*x + beta*y)
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Example 1: BLAS

Implementing Vector Outer Product (x™*y + A)
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Results

1.5 GHz dual Intel Itanium 2, 4GB RAM, Linux 2.6
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Example &: Subscripts

Effects of Memory Optlmlzatlons on NASMG

B Direct translatlon to C

I L oop fusion
Loop fusion + subscript opt.

=

Speedup over MATLAB interpreter

Core 2 Duo Pentium IV




Enabling Technology

HiPC 2009, Shei, Chauhan, and Shaw

o Type Inference

e infer base types, and array sizes

o Leverage MATLAB / Octave interpreter

e “concretely interpreted partial evaluation” to combine
type inference and constant propagation+folding

e type transfer functions encoded within MATLAB

o Potential for spectacular improvements

100x on biology code (electron u-scope image-proc.)

1.5x on math code (ODE solver)
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Type Inference Through
Concrete Interpretation
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Inferring Base Types

I I
I \o Annotations
I Base Type Annotations
[ 1Base Type + Size Annotations
[ |Base Type + Size + Value Annotations
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Inferring Array Sizes

I I
I \o Annotations
I Base Type Annotations
[ 1Base Type + Size Annotations
[ |Base Type + Size + Value Annotations
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Static vs Dynamic Inference
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I statically inferred
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Observations

o Memory seems to play a key role in
performance of high-level dynamically type
languages (studied MATLAB and Ruby)

o Lack of general-purpose analytical models to
guide the compiler toward generating
programs with better memory locality

e need inter-procedural methods

e need a way to incorporate separately-compiled
libraries
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otatic Reuse Distances

a + b;
= a + d[1]*100;
x * 10;

Static Reuse Distance =6 (a, b, ¢, d, 1, 100)

Definition: A reference point, p, is the unique syntactic reference that is
either an lvalue or an rvalue. When the point is inside a loop nest a

superscripted reference point p! refers to the dynamic instance of p at
the iteration vector i.
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SRD Across Function Calls

P: set of all possible

reference points in a
X¢ A: domain of alias functions
617 627 o 6’”’ e C¥1, A0 ¢ such that an alias function

v \ \ v a(pl,p2) returns true iff p1l

and p2 overlap in their

memory references
Xi: A—Z Z: set of integers

X¢(a) is the volume of data accessed within f.

T : PxA—Z
Z¢(p,a) is the volume of data accessed within f before
the first access to p.

Q2 PXA—Z
Oy (p,a) is the volume of data accessed within f after
the last access to p.

Ps: PxPxA—Z
Ps(p1,p2,a) is the volume of data accessed between
the last use of p; and the first use of p2 within f. It is
0 if a(p1, p2) is true.




SRD For Regions of Code

Xy (a) is the volume of data accessed within f.

I;: PxA—Z
Z¢(p, a) is the volume of data accessed within f before
the first access to p.

O PxXA—Z
O¢(p, a) is the volume of data accessed within f after
the last access to p.

'Pf : PxPxA—Z
Ps(p1,p2,a) is the volume of data accessed between
the last use of p; and the first use of p2 within f. It is
0 if a(p1, p2) is true.

X.: A—=Z

Xc(a) is the volume of data accessed within c.

T PR
Z.(p,a) is the volume of data accessed within ¢ before
the first execution of p.

O.: PxA—Z
Oc(p,a) is the volume of data accessed within c after
the last execution of p.




Algorithm to Compute I

Algorithm: COMPUTE Z.

Input: code region c; reference point p; alias
function a that is valid over ¢
Output: Z.(p, a)

if c=|cy1;c2|then
if p€|cy1|then
|return 7, (p, a)

else
[return X, (a) + Zc, (p, a)

else if ¢ =|if e then c; else co
if p =[e]then

|return 0

else if p €| c; | then
|return |e| + 7., (p, a)

else

[return |e| + Z,(p, a)

else if c=|fori=L:S: U begin c¢; end
if pelfori=L:S:U|then

return 0
else
k < first iteration vector in which p is reached

k' «— largest iteration vector smaller than k

(& C 7/
T < Xp; pace; [P1— P2|, p1—p2 € polytope(c, k')
/* = denotes loop carried dependence */
return X, ;X% (a) + 5, (p,a) — 7




Algorithm to Compute X

Algorithm: COMPUTE X,

Input: code region c; alias function a that is valid
over c; probability weights, m, on CFG edges
Output: X.(a)

if c=|ci1;co|then
|return X., (a) + X, (a)

else if ¢ =|if e then c; else cs | then
|return |e| + 7(true) X X, (a) + 7 (false) x Xe, (a)

else if c=|fori=L:S: U begin c; end | then

n < iteration vector for the last iteration

r = Sy, paees [P P2, p1—p2 € polytope(c, i)

/* = denotes loop carried dependence */
return ;<5 X7, (a) — 7

else

|[ERROR




Accuracy

T
B Arnoldi (computed)
I Arnoldi (measured)
[ 1NASCG (computed)
[ 1NASCG (measured)

L1 Hits L2 Hits L2 Misses
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Empirical Data for Library Functions
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Challenges Remain: FFT
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Rescuing Parallel

Programmers




Concurrency Trends
(ExaScale Computing Study, Peter Kogge et al.)
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Types of (Parallel) Programmers

Ma|nStream Joe needs high level

Programming Models

Parallelism-Oblivious deSiQ";:;::tgmi"
Developers

_ Stephanie needs simple
_\ Parallelism—Aware Parallel Programming
(Stephanie) Developers — Models with safety nets

A 4 —_ Focus of today’s Parallel
(Doug) } Programming Models

Concurrency
Experts

Courtesy: Vivek Sarkar, Rice University
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Parallelism Oblivious Users

e Programming languages-driven

e implicit parallelism, compiler support
e OS-driven

e innovative solutions to leverage extra cores
o Architecture-driven

e ILP hyper-threading
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Observations for Parallelism-
Aware and Expert Users

o Completely automatic parallelization has had
limited success

o Writing parallel programs is hard; optimizing
and maintaining them is harder!

o Compilation technology has worked well in
communication optimization
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Declarative Parallel Programming

Let users write parallel programs
Let compilers optimize parallel programs

Separate computation and communication
specification, using a domain-specific language
to specify communication

Key insight: most parallel applications have
predictable (but not necessarily static)
communication patterns
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Declarative Specification of
Communication

@collective cshift (A) ; :
{ Compiler converts collectives to

foreach processor i MPI calls and optimizes
{ communication by coalescing and

: ARl := AR(1+1) overlapping with computation

}

@collective stencil (A, B)

{

foreach processor 1 in Mesh2D

{
B@i := 0.25*(A@i.N + A@i.S + AQ@i.W + AQi.E)

}

}



mailto:A@i.N+A
mailto:A@i.N+A
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Concluding Remarks

o Computing is a core technique in an increasing
number of fields

e programming is no longer restricted to scientists
and engineers

e conventional programming models are inadequate
e Parallelism is no longer restricted to scientific
and engineering applications

e need to address the needs of different types of
users and applications

o Traditional program analysis is inadequate on
modern machines
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Other Interests

High-level Languages
e Ruby

Heterogeneous parallel computing
Large memory-tootprint applications

Automatic parallelization
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Scratch

http://scratch.mit.edu/
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http:/ /www.cs.indiana.edu/~achauhan

http: / /phi.cs.indiana.edu/
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Ruby Class Hierarchy

class B < Object
en.c.:l.
classD <B
en.c.al.

d = D.new
def d.newMeth

. lend

nil

T

Basic Object

T

Object

T

|
|

dd

Objects store values
Classes store methods




Ruby Classes as Objects
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