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Reasons for the Talk

Q Efficient way to get the message across

Q Obtain feedback and comments

Q Improve communication within the
group -



Motivation

Q Irregular applications are hard to handle
completely statically

Q Completely general run-time system
may become inefficient

Q Compiler Analysis + light-weight
efficient run-time system



Perspective for the Talk

Q Idea for the run-time system based on
CRL’s Space-Time Memory

Q Need input for integration with compiler
analysis

Q Work at a preliminary stage
Q Immediate goals?



Space-Time Memory

Q Originally designed to efficiently handle
time-synchronized data

Q Channel abstraction for data comm. as
well as synchronization

Q Different from message-passing and
shared-memory



Stampede: STM Implementation

Q Implemented as an API on top of
Distributed Shared Objects as well as
Message Passing

Q Works on Digital Unix and Win-NT
Q Being ported to MPI
Q Uses CLF on top of Memory Channel or

TCP



Typical use of STM

Q Streaming data

Q Time-synchronized data access

Q Semi-automatic garbage collection

Q Other features not relevant



Channels

Q Different from TCP sockets or Unix
pipes as well as Shared Memory

Q Data indexed (addressed) using time-
stamps

Q Data attributes
– time-stamp: application generated
– ref-count: aids in garbage collection



Primitives
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thread create

channel create

attach input

attach output

get data

put data

consume data



Data Parallel Programs

Q Mechanism to address data
Q Mechanism to distribute and share data
Q Mechanism to map data dependencies
Q Handle dynamic environment



Data Parallel Programs

Q Mechanism to address data
Q Mechanism to distribute and share data
Q Mechanism to map data dependencies
Q Handle dynamic environment

Do this efficiently!



Why STM

Q Experience with work-queue based
data-parallelism

workers

work to do computed data
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Key Ideas

Q Use blocking to define small pieces of
work

Q Use an enhanced time-stamp
mechanism to address data, and
channels to communicate data

Q Capture dependence relations between
blocks

Q Distribute pieces of work dynamically



Proposed Model

“ ready to compute”

Data Channel Workers

“computed”

Data Channel
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Multi-dimensional Time Stamps
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temporal dimension in original program
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precise
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Q Associate a dependence list with each
data item

Q Associate an enabling ref-count with each
data item

Q Generate a “ready-to-compute” item when
all dependencies are satisfied

op ( , , )

Mechanism to handle dependencies



Proposed Model:
Handling Dynamic Environment
Q Workers load-balance automatically
Q A single queue could become

bottleneck on a slow network
Q Hierarchical approach to match the

computing workers graph with network
topology

Q Has worked for multi-media applications
Q Need more designing work!



Proposed Model: Recap

Q Data divided into blocks representing
units of work

Q Channels to communicate data and
control information

Q Multi-dimensional time-stamps to
capture data values

Q Enabling ref-counts to capture data
dependencies



Categories of Applications

Q Jacobi, Cholesky
Q Fixed Irregular Mesh (e.g., airplane

wing simulation)
Q Dynamic Irregular (e.g., N-body)
Q More ...



Advantages of our approach

Q Simple model
Q Good space usage
Q Potential for good data locality
Q Potential for good scalability
Q Can take advantage of compiler

analysis in data distribution



Potential Pitfalls

Q Performance of Stampede
Q Ability to capture a variety of parallel

programs
Q Scalability



Inputs

Q Are we missing anything in terms of
requirements for data parallel
programs?

Q How can we make good use of compiler
analysis techniques?

Q What should be the immediate goal?



End of Talk


