
A Novel Execution Model for
Data Parallel Programs

Arun Chauhan
with

Kath Knobe

Reasons for the Talk

Q Efficient way to get the message across

Q Obtain feedback and comments

Q Improve communication within the
group -

Motivation

Q Irregular applications are hard to handle
completely statically

Q Completely general run-time system
may become inefficient

Q Compiler Analysis + light-weight
efficient run-time system

Perspective for the Talk

Q Idea for the run-time system based on
CRL’s Space-Time Memory

Q Need input for integration with compiler
analysis

Q Work at a preliminary stage
Q Immediate goals?

Space-Time Memory

Q Originally designed to efficiently handle
time-synchronized data

Q Channel abstraction for data comm. as
well as synchronization

Q Different from message-passing and
shared-memory

Stampede: STM Implementation

Q Implemented as an API on top of
Distributed Shared Objects as well as
Message Passing

Q Works on Digital Unix and Win-NT
Q Being ported to MPI
Q Uses CLF on top of Memory Channel or

TCP

Typical use of STM

Q Streaming data

Q Time-synchronized data access

Q Semi-automatic garbage collection

Q Other features not relevant

Channels

Q Different from TCP sockets or Unix
pipes as well as Shared Memory

Q Data indexed (addressed) using time-
stamps

Q Data attributes
– time-stamp: application generated
– ref-count: aids in garbage collection

Primitives

Primitives

Thread 1 Thread 2

Primitives

Thread 1 Thread 2

Channel

Primitives

Thread 1 Thread 2

Channel

Primitives

Thread 1 Thread 2

ChannelAttach Output

Primitives

Thread 1 Thread 2

ChannelAttach Output Attach Input

Primitives

Thread 1 Thread 2

ChannelAttach Output Attach Input

Primitives

Thread 1 Thread 2

ChannelAttach Output Attach Input

Primitives

Thread 1 Thread 2

ChannelAttach Output Attach Input

thread create

channel create

attach input

attach output

get data

put data

consume data

Data Parallel Programs

Q Mechanism to address data
Q Mechanism to distribute and share data
Q Mechanism to map data dependencies
Q Handle dynamic environment

Data Parallel Programs

Q Mechanism to address data
Q Mechanism to distribute and share data
Q Mechanism to map data dependencies
Q Handle dynamic environment

Do this efficiently!

Why STM

Q Experience with work-queue based
data-parallelism

workers

work to do computed data

Why STM

Q Iteration space = more complex version
of time-stamps

<S1, S2>

Why STM

Q Iteration space = more complex version
of time-stamps

<S1, S2>

Why STM

Q Iteration space = more complex version
of time-stamps

<S1, S2><S1, S2, T>

Why STM

Q Ref counts similar to the notion of
triggers for computation

Why STM

Q Ref counts similar to the notion of
triggers for computation

Key Ideas

Q Use blocking to define small pieces of
work

Q Use an enhanced time-stamp
mechanism to address data, and
channels to communicate data

Q Capture dependence relations between
blocks

Q Distribute pieces of work dynamically

Proposed Model

“ ready to compute”

Data Channel Workers

“computed”

Data Channel

Proposed Model:
Multi-dimensional Time Stamps
Q <T1, T2, T3, …, Tn>
Q Each dimension represents a spatial or

temporal dimension in original program
Q Time-stamps (multi-dimensional labels)

identify data values – blocks, to be
precise

Proposed Model:
Multi-dimensional Time Stamps
Q <T1, T2, T3, …, Tn>
Q Each dimension represents a spatial or

temporal dimension in original program
Q Time-stamps (multi-dimensional labels)

identify data values – blocks, to be
precise

Mechanism to address data

Proposed Model:
Enabling Reference Count

Q Associate a dependence list with each
data item

Q Associate an enabling ref-count with each
data item

Q Generate a “ready-to-compute” item when
all dependencies are satisfied

op (, ,)

Proposed Model:
Enabling Reference Count

Q Associate a dependence list with each
data item

Q Associate an enabling ref-count with each
data item

Q Generate a “ready-to-compute” item when
all dependencies are satisfied

op (, ,)

Mechanism to handle dependencies

Proposed Model:
Handling Dynamic Environment
Q Workers load-balance automatically
Q A single queue could become

bottleneck on a slow network
Q Hierarchical approach to match the

computing workers graph with network
topology

Q Has worked for multi-media applications
Q Need more designing work!

Proposed Model: Recap

Q Data divided into blocks representing
units of work

Q Channels to communicate data and
control information

Q Multi-dimensional time-stamps to
capture data values

Q Enabling ref-counts to capture data
dependencies

Categories of Applications

Q Jacobi, Cholesky
Q Fixed Irregular Mesh (e.g., airplane

wing simulation)
Q Dynamic Irregular (e.g., N-body)
Q More ...

Advantages of our approach

Q Simple model
Q Good space usage
Q Potential for good data locality
Q Potential for good scalability
Q Can take advantage of compiler

analysis in data distribution

Potential Pitfalls

Q Performance of Stampede
Q Ability to capture a variety of parallel

programs
Q Scalability

Inputs

Q Are we missing anything in terms of
requirements for data parallel
programs?

Q How can we make good use of compiler
analysis techniques?

Q What should be the immediate goal?

End of Talk

