Effective (Parallel)

Programming for the Masses
Optimizing High-level Languages

Arun Chauhan
School of Informatics and Computing
Indiana University, Bloomington

Purdue University
October 28,201 |

Computing as a Fundamental Science

“Computing is as fundamental as the physical, life,
and social sciences.”

Peter |. Denning and Paul S. Rosenbloom
Communications of the ACM, Sep 2009

“What our community should really aim for is the
development of a curriculum that turns our subject
into the fourth R—as in ‘rogramming—of our
education systems.

A form of mathematics can be used as a full- fledged

programming language, just like Turing Machines.”

Matthias Felleisen and Shriram Krishnamurthy
Communications of the ACM, Jul 2009

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Computing is Inexpensive

“I would rather spend 10 minutes coding and letting
the program run overnight, than spend weeks
writing and debugging to be able to run the

program in 10 minutes.”
A DSP researcher in EE

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

MATLAB

x a w O Current Folder xa =[O Command Window x a + O Workspace
(0 « MATLAB v Lo @ % oo 292 B % [Pse. - i
I Name & ans = Name & Value
H ans 4
4
fe>> |

Details v

-

x 2 +» 0 Command History|

segmentation

par for

parfor (i = 1:10)
A(i) = i*i:

A= 1:10

parfor (i = 1:10)
A(i) = i * i;

end
Select a file to view details A
v %-- 10/13/11 12:43 PM
ver
v %-- 10/27/11 5:55 PM
242
4\ Start
€ 2ty

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

MATLAB: Ease of Use

SO0 kscatter

(Balil 10.slk Tng it s
piximic N L Maka K-Lina

| Gel Background | | Plot X-section | 3 K Width
| Gat Poaks | | Plat Y-saction | Make Kymograph
| Gat Tubas | Vart Avg, |
| Scattemiot | Min. Pix = Raplot K-Graph
|C=::1rre=:’:l Eleaq:hmg| | Corract Drift |

Sava la Fila

| - Closa |

Arun Chauhan, Programming for the Masses,

Purdue, Oct 28, 201 |

MATLAB in a Nutshell

o (-like syntax
o x=1+1;
o y=2x+100;
® Array operations
e C=A"B;
o C=A."B;
e |F, FOR, WHILE, SWITCH statements

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Motivation: NASMG

P U e U e U e Y e S e e O e S e e Y e

© O 0O T VT T LOLT T VDO
OO 0O 3T OLOVDT 30V 30
O 00T OLL 30V 30V 3 30VDO

cocagcgocaogcagcgagacg
~+ + + 4+ ++ + + 4+ + + + +

P U U e e S e U e e U e U e U e U e U e O e O e 8

O 300333 30033323
OO0 3030 0LLJIII3 3OV 3O
OO0 0LUL30VLL3I0V 3T 33TV

cocagccaocagcgcgacg
—— 4+ + =+ + + + + =+ + +

X X X X
— ™M <
U 4 Uy Uy
I+ + +
&

S
N
8’
N
)
[
o
e’
>
©
L .
S
Q_
S’
(D]
(%)
(%)
=
()
<
)
| -
=)
¥4}
S
&
&
(e
L .
oV}
o
S
(a W
n’
S
<
>
RS
O
-
S
| .
<

Optimization Potential

Effects of Memory Optimizations on NASMG

Bl Direct translation to C
9_ ___ -LOOp fusion L
Loop fusion + subscript opt.

Speedup over MATLAB interpreter
@)

Core 2 Duo Pentium IV

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

MATLAB / Octave Compiler

i Front end | i Prelim Optimizations |
—-—>: i] Type Dataflow
Occggze i Octave — | tree to ATerm i : inference analysis n
E parsing library CoRMErsIgn | | t
: i : e
. | SE— r
P
r
r— b S iy . iy by i i b el b . iy N i e
! Back end i i Advanced optimizations v £
- | Libra i § = .
Optimized q—— Code < functig}lll < : s;rlllcelll?:rel: Type-based .
code i generation o : i qenc ¢ specialization
: selection i | optimization

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

MATLAB / Octave Compiler

i Front end | i Prelim Optimizations |
—-—>: i] Type Dataflow
Occggze i Octave — | tree to ATerm i : inference analysis n
E parsing library CoRMErsIgn | | t
: i : e
. | SE— r
P
4
r— b S iy . iy by i i b el b . iy N i e
! Back end i i Advanced optimizations v £
- | Libra i § = .
Optimized q—— Code < functig}lll < : s;rlllcelll?:rel: Type-based .
code i generation o : i qenc ¢ specialization
: selection i | optimization

Infrastructure written in Ruby
Uses our own embedded DSL called RubyWrite

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Basic Compilation Issues

e Dynamic types

® |nfer types to enable translation to lower-level
(statically typed) language

e Dynamic dispatch

® specialize for static dispatch

® use types info. to specialize based on input types
® High-level operators

e Intelligently map to underlying libraries

Chun-Yu Shei, Arun Chauhan, and Sidney Shaw. Compile-time Disambiguation of MATLAB Types through Concrete

|

Interpretation with Automatic Run-time Fallback. In Proceedings of the 2009 International Conference on High
Performance Computing (HiPC), 2009.

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Basic Compilation Issues

e Dynamic dispatch

® specialize for static dispatch

® use types info. to specialize based on input types

® High-level operators

e intelligently map to underlying libraries

Chun-Yu Shei, Arun Chauhan, and Sidney Shaw. Compile-time Disambiguation of MATLAB Types through Concrete
Interpretation with Automatic Run-time Fallback. In Proceedings of the 2009 International Conference on High
Performance Computing (HIiPC), 2009.

|

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

MATLAB Type Inference: Past Efforts

® As a data flow problem

® abstract interpretation to propagate types

® can be combined with constant propagation

e not easy to handle complex library functions
® As a set-theoretic problem

® need external symbolic analysis tool (e.g., Mathematica)
® As constraint equations over sets

e could be too loosely constrained

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (1)

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (1)

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (1)

BT x = ‘i’;
x = 10;
y = 20;

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (1)

BT x = ‘i’;
x = 10;
BT y = ‘i’;
y = 20;
Zz = X + Yy;

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (1)

BT 2z BXF sum(BT x,BT y);

z = X + vy,

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (2)

x = 10.5;

X*y + aj;

R
|l

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (2)

x = 10.5;

y = [1, 27 3, 4];
t = X*y;

y = t + aj;

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (2)

xS1 = 10.5;

ysl = [1, 2; 3, 41];
tS1 = x$1*yS1l;

y$2 = t$1 + as$l;

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (2)

xS1 = 10.5;

tS1 = xS1*y$1;

N
0
N

|

tS1 + as$l;

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (2)

BT x$1 = ‘d’;
xS1 = 10.5;

tS1 = xS1*y$1;

N
0
N

|

tS1 + as$l;

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (2)

BT x$1 = ‘d’;

xS1 = 10.5;

BT y$1 = BXF vertcat(
BXF horzcat(‘i1’','1"),..
BXF horzcat(‘i’,’'i’")

) 7
ysl =1[1, 2; 3, 4];

tS1 = xS1*y$1;

y$2 = t$S1 + asSl;

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (2)

BT x$1 = ‘d’;

xS1 = 10.5;

BT y$1 = BXF vertcat(
BXF horzcat(‘1’,'1")
BXF horzcat(‘i’,’i’)

) 7
ysl =1[1, 2; 3, 4];

BT t$1 = BXF product (BT x$1,BT yS$1);
tS1 = xS1*y$1;

, (X X

y$2 = t$S1 + asSl;

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (2)

BT x$1 = ‘d’;

xS1 = 10.5;

BT y$1 = BXF vertcat(
BXF horzcat(‘1’,'1")
BXF horzcat(‘i’,’i’)

) 7
ysl =1[1, 2; 3, 4];

BT t$1 = BXF product (BT x$1,BT yS$1);
tS1 = xS1*y$1;

BT y$2 = BXF_sum(BT t$1,BT a$l);
y$2 = t$1 + asl;

, (X X

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (2)

xS1 = 10.5;

ysl = [1, 2; 3, 41];

tS1l = x$51*ySl;

BT y$2 = BXF sum(BT t$1,BT a$l);
y$2 = t$1 + asl;

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (3)

1f x < 0
y = 1.5;
else
y = 2;
end

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (3)

if xS1 < O
y$S1l = 1.5;
else
y$2 = 2;
end

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (3)

if xS1 < O
y$S1 = 1.5;
else
y$2 = 2;
end

y$3 = @(y$l,yS$2)

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (3)

i1f xS1 < O
BT y$1 = ‘d’;
y$S1l = 1.5;
else
BT y$2 = '1';
y$2 = 2;
end
BT y$2 = BTMAX(BT y$1,BT y$2);
y$3 = @(ys1l,ys2)

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Leverage MATAB Interpreter (3)

if xS1 < O
BT y$1 = ‘d’;
y$S1l = 1.5;
else
BT y$2 ;
y$2 = 2;
end \\5::;——~\\\\
BT y$2 = BTMAX(BT y$1,BT y$2);
y$3 = @(y51,y%52)

|l
ny
I—l.
b |
|

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Inference Steps

® For each statement of the form p = f(a), insert a
statement pr = fexr(ar)

® Perform concrete partial evaluation

e Perform dead-code elimination

® |eaves those type computations that are used for run
time optimization

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Inference Steps

® For each statement of the form p = f(a), insert a
statement pr = fexr(ar)

® Perform concrete partial evaluation

e Perform dead-code elimination

® |eaves those type computations that are used for run
time optimization

Need to do a bit more for loops (details in the paper)

|

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Base Type Lattice

— /
| W
integ/er

(char cell
double

\

complex

\

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Other Type Inference Issues

® Struct types
® each field can be considered a separate variable

® Procedures with side-effects

e output types cannot be computed if that involves
executing a slice of the original procedure with side-
effects

® Recursive procedures

e can be handled with a fixed-point evaluation

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Evaluation: Precision (Base)

1 20 [[[| | |
I \o Annotations
B Base Type Annotations
[] Base Type + Size Annotations
{00 []Base Type + Size + Value Annotations

(7p)

o

O n

© 80

-

©

>

I

O 60

e

(-

@)

e

3

O 40

S

(0]

o

20+
0 , , , ,
dlaplacian arnoldi v_hbmult clean_image reseat_points get_slopes

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Evaluation: Precision (Size)

120 T T T I I I
I \o Annotations
B Base Type Annotations
[1 Base Type + Size Annotations
{00 [|Base Type + Size + Value Annotations

80

60

40

percent of total variables

20

dlaplacian arnoldi v_hbmult clean_image reseat |

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Evaluation: Static vs Dynamic

110 T T T 1 1 1 l l l l I I I I I I I
N statically inferred
100 - -
90 - -
7] n |
D 80
&
= 70 |
©
>
< 60 u
e
O
)
w— S0 =
@)
e
GC) 40 -
O
©
QO 30 T
20+ -
10 -
dlaplacian arnoldi v_hbmult clean_image reseat_points get_slopes

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Observations

e Advantages of concrete interpretation

® maintains semantic fidelity for languages defined by their
Interpreters

® protects against language changes

® avoids duplication of effort

® Solving other problems

® can be seen as an alternative to traditional data flow
analysis, for certain problems

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

The Free Lunch is Over

10,000,000 |
DIVE: ore Ita
1,000,000
Intel CPU Trends
(sources: Intel Jukotun)
100,000
10,000
1,000
100
10
1 m Transistors (000)
@ Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)
0 [l

1970 1975 1980 1985 1990 1995 2000 2005 2010

Herb Sutter, The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, Dr. Dobb's Journal, 30(3), March 2005

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

|

http://www.ddj.com/
http://www.ddj.com/

Exa-scale Challenge

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Trends in Concurrency

1.E+07
1.E+06 —
mEBE
? - o : SR
o _— »
qt, 1.E+05 B EBEEBEEBEEROOCO g
§ B BE B OO g g o3 g 8 g 8
S - © 0 0 g 8888
= 1E+04] . 8888888 55,800
e _— LA
2 l<>3@gg///§/§<>0<>00©§§§§§§§§80
6808 ®S 8©§§§§ o
s oo 8E8§ o8
o O
o8 S
o O
1.E+02 ‘ ‘ ‘ ‘
1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09
¢ Top10 ®™ Top System — Top 1 Trend

Peter Kogge et al. Exascale Computing Study, Technology Challenges in Achieving Exascale Systems, 2008.
Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

|

Long History of Parallelism

® \ector processors

e Symmetric multi-processors (SMPs)

® Nodes over inter-connection networks
® [nstruction-level parallelism

e Multi-cores

e GPUs

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Parallelism

Ma|nStream Joe needs high level

Programming Models

Parallelism-Oblivious [~ designed for Domain

(J Oe) Experts
Developers
_/
_ Stephanie needs simple
_\ Parallelism—Aware Parallel Programming
(Stephanie) Developers — Models with safety nets
\ 4 —_ Focus of today’s Parallel
(Doug) } Programming Models
Concurrency
Experts

Courtesy:Vivek Sarkar, Rice University

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Parallelism

. N
’/h/f' // ?
\) 4./,,u
Y

i /,,,_
2N O
X A/e, s@%«.w,‘,
// S ‘/4’
\ AR ‘/ 2
\%«\.ﬁ,‘/_» \
5

N

E\ N K

=
o
‘b. k-4

Vi

-

X N
NVASN%,
N

N S

Y HECTHAL /N A ‘,

X7 PN

2t A {)
5K O \ ! /‘v‘
g vom,’ . \ . o
| % /4 A SN

x
N

R

) ,
WS AN
=R

e e vy,
‘\ s W
L T S
¥ /

v

\{6.\0% .
7y

I 4

A | e

Y - o
SN
i
40\\\\‘&@@0{ il
N\ Y/ | |

7,

el

7S _
\.-Am »‘ MM.. - \1‘
.\\Més./ﬂsmeox g
(AP 4

F

=)
N
8’
o~
)
|9
o
e’
S
©
L.
S
Q_
S’
(]
(%]
(%]
s
(5}
<
)
L .
=}
oW
£
£
£
S
p -
oW
o
S
a
n,
S
<
S
&
)
<
S
.
<<

Parallelism

i

win N ’Mli’; i

i

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Thinking of Joe
programmers

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Automatic parallelization

“The reports of my death are highly exaggerated”

e MATLAB is the lingua franca of scientists and
engineers

e Joe programmers would rather write in 10
minutes and let the program run for 24 hours,
than vice versa

e They would still like their programs to run in 10
minutes!

® We can leverage inferred types for automatic
parallelization

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Parallelism in MATLAB

e Built-in parallel-for (with the parallel
computing toolbox)

e Third party libraries to offload computations on
clusters

e Third party and MathWorks libraries to offload
computation on GPUs

e “declare” variables to be of GPU type
A = GPUdouble(a);
B = GPUdouble(b);
C = A*B;

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

MATLAB: Empirical Study

Basic Block Sizes

0 10 20 30 40 50 60

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Basic Block Counts

0

15

20

Automatic GPU Computation

¢ Model the computation
e cost model for CPU times

e cost model for GPU times

e cost model for CPU-GPU data transfer

® Solve a binary integer linear programming problem

—,

Minimize f &
such that Axr < b
and AT = l;eq

Chun-Yu Shei, Pushkar Ratnalikar, and Arun Chauhan. Automating GPU Computing in MATLAB. In Proceedings of

|

the 2011 International Conference on Supercomputing (ICS), 2011.

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

3.5

1

—e— Greedy
| ——Heuiristic

Experimental Results

Heated Plate

400 600
Input size

800

1000

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

—o— Greedy

'| ——Heuristic

T

T

T

T

T

T

T

N-body (3D)

200 300
Input size

400

500

Extending to other Languages

e Unique characteristics of MATLAB

e simple basic data types
e simple control flow
e first-order functions

e array language directly encodes data parallelism
e Ruby

® object-oriented, with meta-programming support

® closures, co-routines, higher-order functions

® open classes

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Ruby: Type Complications

class FooO
def my method

end
end

f Foo.new

g = Foo.new

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Ruby: Type Complications

class FooO
def my method

end
end

f = Foo.new
class FooO

end

g = Foo.new

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Ruby: Type Complications

class FooO
def my method

end
end

f = Foo.new def bar
class FooO

bar

end
end

g = Foo.new

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Challenges

® [Reasonable static type inference

e |dentifying conditions under which the inference
IS correct

e Detecting and verifying those conditions at run-
time

® Possibly speculating on types

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

What about Stephanie
programmers?

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

High Performance Fortran

PROGRAM SUM
REAL A(10000)
READ (9) A
SUM = 0.0
DO I =1, 10000
SUM = SUM + A(I)
ENDDQO
PRINT SUM
END

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

High Performance Fortran

PROGRAM PARALLEL_SUM
REAL A(100), BUFF(100)
IF (PID == 0) THEN
DO IP = 0, 99
READ (9) BUFF(1:100)

IF (IP == 0) A(1:100) = BUFF(1:100)
PROGRAM SUM ELSE SEND(IP, BUFF, 100) ! 100 words to Proc 1
REAL A(10000) ENDDO
ELSE
READ (9) A RECV (0, A, 100) ! 100 words from proc 0 into A
SUM = 0.0 ENDIF
_ SUM = 0.0
DO I =1, 10000 DO T =1, 100
SUM = SUM + A(I) SUM = SUM + A(I)
ENDDO
ENDDD IF (PID == 0) SEND(1, SuM, 1)
PRINT SUM IF (PID > 0)
END RECV(PID-1, T, 1)

SUM = SUM + T
IF (PID < 99) SEND(PID+1, SUM, 1)
ELSE SEND (0, SuM, 1)
ENDIF
IF (PID == 0) THEN; RECV (99, SUM, 1); PRINT SUM; ENDIF
END

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

|

High Performance Fortran

REAL A(10000)
REAL A(10000)
|HPF$ DISTRIBUTE A(BLOCK)
READ (9) A
READ (9) A
SUM = 0.0 SUM = 0.0
" L aco R
- = SUM = SUM + A(I)
ENDDO
PRINT SUM PRINT SUM
END END

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

HPF: Victim of its own Success?

® No prior compiler technology to learn from

e Limited number of data distribution primitives

® not user expandable
e Paucity of good HPF libraries
® | ack of performance-tuning tools

e [ack of patience of user community!

Ken Kennedy, Charles Koelbel, and Hans Zima. The Rise and Fall of High Performance Fortran: An Historical Object Lesson. In
Proceedings of the third ACM SIGPLAN Conference on History of Programming Languages, pages 7-1-7-22, 2007.

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

HPF: Victim of its own Success?

® No prior compiler technology to learn from

e Limited number of data distribution primitives

® not user expandable
e Paucity of good HPF libraries
® | ack of performance-tuning tools

e [ack of patience of user community!

Does not motivate users to think in parallel|

Ken Kennedy, Charles Koelbel, and Hans Zima. The Rise and Fall of High Performance Fortran: An Historical Object Lesson. In
Proceedings of the third ACM SIGPLAN Conference on History of Programming Languages, pages 7-1-7-22, 2007.

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Design Principles

e Users must think in parallel (creativity)

e but not be encumbered with optimizations that can be
automated, or proving synchronization correctness

e Compiler focuses on what it can do (mechanics)

® not creative tasks, such as determining data
distributions, or creating new parallel algorithms

® |ncremental deployment

® not a new programming language

® more of a coordination language (DSL)
® Formal semantics

® provable correctness

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Declarative Approach

e Qriginally motivated by Block-synchronous
Parallel (BSP) programs, especially for collective
communication

e alternate between computation and communication

® communication optimization breaks the structure

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Declarative Approach

e QOriginally motivated by Block-synchronous
Parallel (BSP) programs, especially for collective
communication

e alternate between computation and communication

® communication optimization breaks the structure

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Declarative Approach

e QOriginally motivated by Block-synchronous

Parallel (BSP) programs, especially for collective
communication

e alternate between computation and communication

® communication optimization breaks the structure

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Declarative Approach

e QOriginally motivated by Block-synchronous

Parallel (BSP) programs, especially for collective
communication

e alternate between computation and communication

® communication optimization breaks the structure

® Extend to non BSP-style applications

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }

eo@e| << op << e;@es3 where ey

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }
eo@e| << op << e;@es3 where ey

eg@e; <<= e, @e; where ey

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }
eo@e| << op << e;@es3 where ey

eg@e; <<= e, @e; where ey

A[j] @ 1 <<= B[i1] @ j where 1iinworld, jin{0...1}, 1 %2 ==20
N—— ~—— Y~ —(— ~— N — NG Ny SR =

storage receiver reduction Jaiq sender generator generator filter
location rank operator rank

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }
eo@e| << op << e;@es3 where ey

eg@e; <<= e, @e; where ey

A[j] @ 1 <<= B[1] @ j where 1iinworld, jin{0..1}, 1 %2 ==0

storage receiver reduction Jjgtq sender generator generator Ffilter
location rank operator rank

Source-level compiler (using ROSE)

|

standard C++ code

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

|

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Distributed Memory Targets

e (Generate MPI
® Recognize collectives that map to MPI collectives

e Optimize communication
e computation-communication overlap

® communication coalescing

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Software Pipelining

for (int i = 0; 1 < OCTANTS; i++) {
for (int j = 0; J < ANGLES; J++) {

1
2
E% 3 // loop though the diagonals, N 1is the number of processors
Sl 4 for (int diag = 0; diag < 2 x N + 1; diag++) {
g 5 if ((myid.x + myid.y) == diag) { compute(); } /x wave front */
N | 6 @communicate {temp_s@(x, y+1) <<= A[lastrow]@(x, V)
7 where x, y in {0...N-1} and x + y = diag;}
8 @communicate {temp_e@(x + 1, y) <<= A[][lastcol]l@(x, V)
9 where x, y in {0...N-1} and x + y = diag;}
10 }}}
L — N

Nilesh Mahajan, Sajith Sasidharan, Arun Chauhan, and Andrew Lumsdaine. Automatically Generating Coarse Grained
Software Pipelining from Declaratively Specified Communication. In Proceedings of the 18th International Conference on
High Performance Computing (HiPC), 2011. Student paper in the Student Research Symposium (SRS). To appear.

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

J

Software Pipelining

for (int i = 0; 1 < OCTANTS; i++) {
for (int j = 0; J < ANGLES; J++) {

1

2
E% 3 // loop though the diagonals, N 1is the number of processors
Sl 4 for (int diag = 0; diag < 2 * N + 1; diag++) {
Q1|5 if ((myid.x + myid.y) == diag) { compute(); } /» wave front x/
=
N | 6 @communicate {temp_s@(x, y+1) <<= A[lastrow]@(x, V)

7 where x, y in {0...N-1} and x + y = diag;}

8 @communicate {temp_e@(x + 1, y) <<= A[][lastcol]l@(x, V)

9 where x, y in {0...N-1} and x + y = diag;}

10 }}}

L Tee———— S

1 for (int 1 = 0; 1 < OCTANTS; i++) {
P |2 for (imt j = 0; j < ANGLES; Jj++) {
;g 3 for (int s = 0; s < min(SIZE, s + BLOCK_SIZE),; s+=BLOCK_SIZE) {
84 4 // loop though the diagonals, N is the number of processors
B, 5 for (int diag = 0; diag < 2 = N + 1; diag++) {
A | 6 if ((myid.x + myid.y) == diag) { strip_mined_compute(); }
i& 7 @communicate {temp_ s@(x, y+1) <<= A[lastrow]@(x, V)
L 8 where x, v in {0...N-1} and x + y = diag;}
5% 9 @communicate {temp_e@(x + 1, y) <<= A[][lastcol]l@(x, V)
10 where x, y in {0...N-1} and x + y = diag;}
11 }}}}

Nilesh Mahajan, Sajith Sasidharan, Arun Chauhan, and Andrew Lumsdaine. Automatically Generating Coarse Grained
Software Pipelining from Declaratively Specified Communication. In Proceedings of the 18th International Conference on
High Performance Computing (HiPC), 2011. Student paper in the Student Research Symposium (SRS). To appear.

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

J

Harlan for GPUs

cudaFree (dX);
cudaFree (dY);
cudaFree (dZ);

cudaMemcpy (dX, X,
cudaMemcpy (dY, Y,

add_kernel <<<1,

cudaMemcpy (Z, dZ,

void add_kernel(int

__global__

{
int 1 = threadldx .x;

¥

void vector_add(int size ,

{
float *xdX, *xdY, *dZ;
cudaMalloc(&dX, size
cudaMalloc(&dY, size
cudaMalloc(&dZ, size

size , float x*xX,

if(i < size) { Z[i] = X[i] + Y[i]; }

float *xX, float =xY,

sizeof (float));
sizeof (float));
sizeof (float));

size >>>(size , dX, dY, dZ);

float xY,

float xZ)

float xZ7)

size x sizeof(float), cudaMemcpyHostToDevice);
size x sizeof(float), cudaMemcpyHostToDevice);

size x sizeof (float), cudaMemcpyDeviceToHost);

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Harlan for GPUs

__global__ void add_kernel(int size, float *X, float xY, float xZ)
{

int i = threadldx .x;

if(i < size) { Z[i] = X[i] + Y[i]; }
}

void vector_add(int size, float xX, float xY, float %Z)
{
float *dX, *dY, *dZ;
cudaMalloc(&dX, size * sizeof(float));
cudaMalloc(&dY, size * sizeof(float));
cudaMalloc(&dZ, size * sizeof (float));

cudaMemcpy (dX, X, size x sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy (dY, Y, size x sizeof(float), cudaMemcpyHostToDevice);

add_kernel <<<1, size>>>(size , dX, dY, dZ);
cudaMemcpy(Z, dZ, size x sizeof(float), cudaMemcpyDeviceToHost);
cudaFree (dX);

cudaFree (dY);
cudaFree (dZ);

void vector add (vector<float> X, vector <float> Y, vector<float> Z)

{
¥

kernel (x : X, v 1Y, z :2Z){z=x+1y; };

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Harlan Features

Reductions

z = +/kernel (x : X, vy : Y) { x *vy };

L eee— —C

Eric Holk, William Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. Declarative
Parallel Programming for GPUSs. In Proceedings of the International Conference on Parallel Computing (ParCo), 2011.

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

|

Harlan Features

Reductions

z = +/kernel (x : X, y : Y) { x *vy };

Asynchronous kernels

handle = async kernel (x : X, ¥y : Y) { x *vy };
// other concurrent kernels of program code here
z = +/wait(handle);

Eric Holk, William Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. Declarative
Parallel Programming for GPUSs. In Proceedings of the International Conference on Parallel Computing (ParCo), 2011.

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

|

Harlan Features

Reductions

z = +/kernel (x : X, y : Y) { x *vy };

Asynchronous kernels

handle = async kernel (x : X, ¥y : Y) { x *vy };
// other concurrent kernels of program code here
z = +/wait(handle);

Nested kernels

total = +/kernel (row : Rows) { +/kernel (x : row); };

Eric Holk, William Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. Declarative
Parallel Programming for GPUSs. In Proceedings of the International Conference on Parallel Computing (ParCo), 2011.

|

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Serious Joe programmer?

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Scalable Speculative Parallelism on Clusters

/]l safe code
// code where speculation possible (code region A)
/] safe code

// code where speculation possible (code regions B)

\

FF_init ();
// safe code

if (FF_fork() == FF_VERIFIER) {
// safe version of the code region A
} else { // FF_.SPECULATOR
// unsafe version of the code region A

}
FF_create_validation_thread ();

// safe code

if (FF_fork() == FF_VERIFIER) ({
// safe version of the code region B
} else { // FF_SPECULATOR
/!l unsafe version of the code region B

J

FF _create_validation_thread ();

Devarshi Ghoshal, Sreesudhan R Ramkumar, and Arun Chauhan. Distributed Speculative Parallelization using Checkpoint
Restart. In Proceedings of the International Conference on Computational Science (ICCS), 2011

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

gl

Intra- and Inter-Node Speculation

Core 1l . Core 2 Node 1 : Node 2
Safe Safe |
region : region

FF_fork | : |
, checkpoint | - e
L . "
. r “ \
| i . * restart
- -
Speculatof | g_ i | g_ |
Verifier : | 2 i : | E .
- Validation .E r 'E |
: threM | N |
ST | : .
Q) | |
() .
: S Verifi [S lat
. . erifier
Validation . uE’ | peculatof
— thread '® !
* — S g
...’__ |
g 5 .
c g |
L S |
& S .
g .‘-"‘—_-_,"h . .
o —— Notify |
Notify X .
3 [3

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Implementing Inter-Node Speculation

speculator d;rgrc\fg:y verifier verifier
1 : 0 : 2] 3
.'f?ﬂé!_e:st n ‘
+ =lno de <]
@ : 9 0, . 3 Speculating
: el | ~
= (\0 M _ZA ! AN
o P e ‘ N
2 X .
5| @ o S ¥ L
' . 3 L
-] 3 o e
! so) T !
—_ . - - L
. : %-“ m ': LL
- . .
2 :] =,
© : !
-] . '
O . '
(O] '
2 : |
_ T | g
- e | g 3 :
@ .8qy, | R LY
....... Stn Q- 8 . - e
N e O 9’@ : . v . 8
O R , e 2: ST
v . 643 €Xpect] 9_ - W . 'I-JL-
§_ P (\Od P cp from 1 ! it ‘797 3
0 e : A e, '// “‘
5 @ : ! é ! ﬁ. 3
L Z ! © 2
® : | = |
T o ——senicp 3|
C . ! '
o
S . ' \u
© I i
>] [)
o 3 =
& -
- . ©
] o
, >

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Analysis

T = time of execution of original program

p = probability that speculation succeeds

k = number of simultaneous speculations

s = speedup of speculatively parallelized code over the original sequential code
S = overall speedup of the program

T
Running time of code, with speculation = T + pk " + (1 — p)kT

Tk+1) B k+1
T +pkt+(1-pkT k+1+pk(:-1)

Overall speedup, S =

S < k+1 (strict upper bound, as s —)

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

What next?

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

The Maze of Parallel Programming

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Concluding Remarks

e [Effectively programming modern computers
requires leveraging parallelism at multiple levels

® There is no silver bullet of parallel programming
(and there may never be)

® Tool (compiler developers, OS developers,
architects) need to recognize the different needs
of (parallel) programmers

e Parallel programming needs to become an
integrated core of computer science education

e every future programmer is a parallel programmer

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

Questions?

http://www.cs.indiana.edu/~achauhan/
Google: arun indiana

Arun Chauhan, Programming for the Masses, Purdue, Oct 28, 201 |

http://www.cs.indiana.edu/~achauhan
http://www.cs.indiana.edu/~achauhan

