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Motivation
• Increasing popularity and availability of many-cores

• Abundance of legacy MPI code

• Simplifying programming model

• single model, instead of hybrid

• Leveraging shared memory fully for performance

• Proving that shared memory could be used as an 
optimization for communication
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Partitioned Address Space 
Programming on Shared Memory

• Avoids having to worry about race conditions

• Encourages programmers to think about locality

• Could make it easier to reason about program 
correctness

• if done at the right level of abstraction

Needs special handling to compete in performance with 
threaded shared memory programs
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Declarative Approach
• Originally motivated by Block-synchronous Parallel 

(BSP) programs, especially for collective 
communication

• alternate between computation and communication

• communication optimization breaks the structure
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Declarative Approach
• Originally motivated by Block-synchronous Parallel 

(BSP) programs, especially for collective 
communication

• alternate between computation and communication

• communication optimization breaks the structure

• Extend to non BSP-style applications
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Kanor for Clusters

occur in a large program—a programmer might initially write a program using floats,
then change it to use doubles. If the programmer misses a float, the program will likely
produce incorrect results.

Instead, the programmer should be able to write something like:

double b = 0;

float a = 1.0;

@communicate { b@recv rank <<= a@send rank }

and let the compiler and runtime ensure the float value is implicitly converted to double,
preserving the intended behavior for compatible data types. When the data types are
incompatible, the code should fail to compile, rather than behaving incorrectly at run-
time.

Kanor has all the desirable properties described above—indeed, the @communicate

blocks above are correct, running Kanor code.

3 Exploiting Communication Knowledge

For a declarative language for communication to be e�cient, it is essential to exploit all
available information about each communication pattern. Kanor’s design is informed
by a multi-level classification of communications, based on each process’s knowledge
of the global communication pattern. These patterns are a refinement of those our group
identified previously [7].

Global Knowledge Each process can determine the entire communication pattern. This
global knowledge may enable tree-based communication with logarithmic rather
than linear overhead. An advantage of Kanor is that it allows the compiler to gener-
ate tree-based communication as an optimization, without forcing the programmer
to write special-case code for e�ciency.

Corresponding Knowledge Each process knows only a subset of the complete com-
munication topology, but has complete knowledge of the communication in which
it will be participating.

Sender Knowledge Senders know only the destinations they will send to; receivers do
not know which senders they will receive from. The sender knowledge case requires
the receiver to perform a termination protocol. The Kanor runtime uses the Non-
blocking Barrier eXchange (NBX) protocol [8], which allows receiver processes to
receive an unknown amount of data with minimal overhead.

Receiver Knowledge Receivers know only the senders they will receive from; senders
do not know which receivers they will send to. This case requires the receiver to
notify the sender processes from which it wishes to receive data. After this noti-
fication, communication then becomes equivalent to the corresponding knowledge
case.

These categories do not cover all possible applications or communication patterns.
For example, some communications might fit a third-party knowledge pattern. How-
ever, these categories cover the majority of today’s parallel applications [15], and thus
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case.

These categories do not cover all possible applications or communication patterns.
For example, some communications might fit a third-party knowledge pattern. How-
ever, these categories cover the majority of today’s parallel applications [15], and thus

good performance (Section 6). It should be possible for the compiler to infer this hint
in many cases; when in doubt, the compiler can use the default sender hint.

A remote reference, of the form e0@e1, can appear only within a reduction. The
right-hand-side of a remote reference must evaluate to a processor rank; the left-hand-
side must evaluate to a data item (on the sender) or a location for data to be stored (on
the receiver). The rules for evaluating e0 and e1 are critical to the design of Kanor, and
are described in detail in Section 4.1.

Our fundamental unit of communication is the generalized reduction construct, of
the form:

e0@e1 << op << e2@e3 where e4

From left-to-right, the reduction comprises four major parts: receiver remote reference,
reduction operator, sender remote reference, and qualifier. The variable op must evalu-
ate to a reduction function (described below); e4 is the qualifier of the set comprehen-
sion. Because the majority of communication statements simply move data, we allow
transfer statements, which are merely syntactic sugar for reductions using a special
operator that performs assignment. A transfer of the form:

e0@e1 <<= e2@e3 where e4

is equivalent to:
e0@e1 << assign << e2@e3 where e4

The qualifier portion of a reduction uses comprehension syntax, which expresses
the “control structure” of a communication pattern more succinctly than conditionals
or loops. Comprehensions allow declarative specification using concepts and notation
many programmers are already familiar with. The body of the comprehension contains
generator expressions and filter expressions. Generator expressions are of the form

x0, . . . , xn

in e

where x0 through x

n

are variables to be bound, and e is an expression that must eval-
uate to a set S. When the comprehension is evaluated, the variables x0 through x

n

are
independently assigned values from the set S, in e↵ect forming a Cartesian product.
A filter expression is an arbitrary Boolean expression, which may reference variables
bound in any generators that appear before it. Each filter expression is evaluated once
for each generator assignment of variables that are in scope. If every filter expression
evaluates to true for a given set of variable assignments, the sender and receiver remote
references are evaluated with those variable bindings and a message is sent; otherwise,
the remote references are not evaluated for those bindings. Details of these evaluation
rules are given in Section 4.1.

Once a message is received, the receiver updates the values within the storage loca-
tion by means of a reduction operator op. The operator has the signature:

op(e0 : ref ⌧0, e2 : ⌧1)

where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in
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where e0 represents the storage address to be updated, and e2 represents the message’s
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Section 4.1, the operator expression is evaluated, and the resulting operator applied, on
the receiving process. Here is a simple reduction operator written in C++, which updates
the storage location with the sum of the values received:

template<typename T>
void sum(T &left, T right) {

left += right;

}

We assume user-defined reduction operators are both commutative and associative.
The behavior of non-commutative or non-associative reduction operators is undefined.

The order of evaluation is unspecified between e1, e2, and e3 on the sender and
between e0 and op on the receiver. The operator op is call-by-value, and is applied only
after all of its arguments have been evaluated.

The dependency chain within a Kanor communication can only be of length one:
no read can depend upon another read. Kanor also uses parallel assignment semantics:
all reads occur before all writes. This allows us to perform analyses similar to those in
static single assignment languages. Parallel assignment is an important part of Kanor’s
semantics, as it guarantees there are no dependencies within a communication block.
Parallel assignment makes it much easier to write programs whose communication pat-
terns contain cycles, such as circular shift. Values destined for the same location are
accumulated using the reduction operator. However, it is erroneous to make multiple
writes to the same location using Kanor’s assignment operator (<<=); the semantics of
overlapping assignments is undefined.

4.1 Evaluation Rules

Kanor is a language for explicit communication: the programmer specifies the send-
ing and receiving processes, the data to be sent, and where the data should be stored
upon receipt. To make specifying this information easy, Kanor’s comprehension syn-
tax allows programmers to build sets of variable bindings (that is, environments) using
generators and filters. Consider this communication, similar to the first one presented
in Section 2, annotated to show information explicitly provided by the programmer:

A[j]|{z}
storage

location

@ i|{z}
receiver

rank

<<=|{z}
reduction

operator

B[i]|{z}
data

@ j|{z}
sender

rank

where i in world,|         {z         }
generator

j in {0...i},|        {z        }
generator

i% 2 == 0|        {z        }
f ilter

It may seem that this information is su�cient to fully specify the communication, given
that Kanor’s parallel assignment semantics allows the order in which messages are sent
to be left unspecified. However, this is not the case; it is also necessary to specify where

and in which environment each of these sub-expressions should be evaluated.
An important note about terminology: when we say that an expression e is evaluated

on process p in some environment env, we are referring to the semantics of Kanor,
rather than its implementation. As an optimization, the Kanor implementation may use a
completely di↵erent evaluation strategy, so long as the program behaves as if expression
e were evaluated in env on process p. (On a related note, side-e↵ecting expressions
within a communication block should be avoided, as their behavior is unspecified.)
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occur in a large program—a programmer might initially write a program using floats,
then change it to use doubles. If the programmer misses a float, the program will likely
produce incorrect results.

Instead, the programmer should be able to write something like:

double b = 0;

float a = 1.0;

@communicate { b@recv rank <<= a@send rank }

and let the compiler and runtime ensure the float value is implicitly converted to double,
preserving the intended behavior for compatible data types. When the data types are
incompatible, the code should fail to compile, rather than behaving incorrectly at run-
time.

Kanor has all the desirable properties described above—indeed, the @communicate

blocks above are correct, running Kanor code.

3 Exploiting Communication Knowledge

For a declarative language for communication to be e�cient, it is essential to exploit all
available information about each communication pattern. Kanor’s design is informed
by a multi-level classification of communications, based on each process’s knowledge
of the global communication pattern. These patterns are a refinement of those our group
identified previously [7].

Global Knowledge Each process can determine the entire communication pattern. This
global knowledge may enable tree-based communication with logarithmic rather
than linear overhead. An advantage of Kanor is that it allows the compiler to gener-
ate tree-based communication as an optimization, without forcing the programmer
to write special-case code for e�ciency.

Corresponding Knowledge Each process knows only a subset of the complete com-
munication topology, but has complete knowledge of the communication in which
it will be participating.

Sender Knowledge Senders know only the destinations they will send to; receivers do
not know which senders they will receive from. The sender knowledge case requires
the receiver to perform a termination protocol. The Kanor runtime uses the Non-
blocking Barrier eXchange (NBX) protocol [8], which allows receiver processes to
receive an unknown amount of data with minimal overhead.

Receiver Knowledge Receivers know only the senders they will receive from; senders
do not know which receivers they will send to. This case requires the receiver to
notify the sender processes from which it wishes to receive data. After this noti-
fication, communication then becomes equivalent to the corresponding knowledge
case.

These categories do not cover all possible applications or communication patterns.
For example, some communications might fit a third-party knowledge pattern. How-
ever, these categories cover the majority of today’s parallel applications [15], and thus

good performance (Section 6). It should be possible for the compiler to infer this hint
in many cases; when in doubt, the compiler can use the default sender hint.

A remote reference, of the form e0@e1, can appear only within a reduction. The
right-hand-side of a remote reference must evaluate to a processor rank; the left-hand-
side must evaluate to a data item (on the sender) or a location for data to be stored (on
the receiver). The rules for evaluating e0 and e1 are critical to the design of Kanor, and
are described in detail in Section 4.1.

Our fundamental unit of communication is the generalized reduction construct, of
the form:

e0@e1 << op << e2@e3 where e4

From left-to-right, the reduction comprises four major parts: receiver remote reference,
reduction operator, sender remote reference, and qualifier. The variable op must evalu-
ate to a reduction function (described below); e4 is the qualifier of the set comprehen-
sion. Because the majority of communication statements simply move data, we allow
transfer statements, which are merely syntactic sugar for reductions using a special
operator that performs assignment. A transfer of the form:

e0@e1 <<= e2@e3 where e4

is equivalent to:
e0@e1 << assign << e2@e3 where e4

The qualifier portion of a reduction uses comprehension syntax, which expresses
the “control structure” of a communication pattern more succinctly than conditionals
or loops. Comprehensions allow declarative specification using concepts and notation
many programmers are already familiar with. The body of the comprehension contains
generator expressions and filter expressions. Generator expressions are of the form

x0, . . . , xn

in e

where x0 through x

n

are variables to be bound, and e is an expression that must eval-
uate to a set S. When the comprehension is evaluated, the variables x0 through x

n

are
independently assigned values from the set S, in e↵ect forming a Cartesian product.
A filter expression is an arbitrary Boolean expression, which may reference variables
bound in any generators that appear before it. Each filter expression is evaluated once
for each generator assignment of variables that are in scope. If every filter expression
evaluates to true for a given set of variable assignments, the sender and receiver remote
references are evaluated with those variable bindings and a message is sent; otherwise,
the remote references are not evaluated for those bindings. Details of these evaluation
rules are given in Section 4.1.

Once a message is received, the receiver updates the values within the storage loca-
tion by means of a reduction operator op. The operator has the signature:

op(e0 : ref ⌧0, e2 : ⌧1)

where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in
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where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in

Section 4.1, the operator expression is evaluated, and the resulting operator applied, on
the receiving process. Here is a simple reduction operator written in C++, which updates
the storage location with the sum of the values received:

template<typename T>
void sum(T &left, T right) {

left += right;

}

We assume user-defined reduction operators are both commutative and associative.
The behavior of non-commutative or non-associative reduction operators is undefined.

The order of evaluation is unspecified between e1, e2, and e3 on the sender and
between e0 and op on the receiver. The operator op is call-by-value, and is applied only
after all of its arguments have been evaluated.

The dependency chain within a Kanor communication can only be of length one:
no read can depend upon another read. Kanor also uses parallel assignment semantics:
all reads occur before all writes. This allows us to perform analyses similar to those in
static single assignment languages. Parallel assignment is an important part of Kanor’s
semantics, as it guarantees there are no dependencies within a communication block.
Parallel assignment makes it much easier to write programs whose communication pat-
terns contain cycles, such as circular shift. Values destined for the same location are
accumulated using the reduction operator. However, it is erroneous to make multiple
writes to the same location using Kanor’s assignment operator (<<=); the semantics of
overlapping assignments is undefined.

4.1 Evaluation Rules

Kanor is a language for explicit communication: the programmer specifies the send-
ing and receiving processes, the data to be sent, and where the data should be stored
upon receipt. To make specifying this information easy, Kanor’s comprehension syn-
tax allows programmers to build sets of variable bindings (that is, environments) using
generators and filters. Consider this communication, similar to the first one presented
in Section 2, annotated to show information explicitly provided by the programmer:

A[j]|{z}
storage

location

@ i|{z}
receiver

rank

<<=|{z}
reduction

operator

B[i]|{z}
data

@ j|{z}
sender

rank

where i in world,|         {z         }
generator

j in {0...i},|        {z        }
generator

i% 2 == 0|        {z        }
f ilter

It may seem that this information is su�cient to fully specify the communication, given
that Kanor’s parallel assignment semantics allows the order in which messages are sent
to be left unspecified. However, this is not the case; it is also necessary to specify where

and in which environment each of these sub-expressions should be evaluated.
An important note about terminology: when we say that an expression e is evaluated

on process p in some environment env, we are referring to the semantics of Kanor,
rather than its implementation. As an optimization, the Kanor implementation may use a
completely di↵erent evaluation strategy, so long as the program behaves as if expression
e were evaluated in env on process p. (On a related note, side-e↵ecting expressions
within a communication block should be avoided, as their behavior is unspecified.)

Source-level compiler (using ROSE)

standard C++ code

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A 
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical 
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on 
Principles of Programming Languages (POPL).
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Design Principles
• Users must think in parallel (creativity)

• but not be encumbered with optimizations that can be 
automated, or proving synchronization correctness

• Compiler focuses on what it can do (mechanics)

• not creative tasks, such as determining data distributions, 
or creating new parallel algorithms

• Incremental deployment

• not a new programming language

• more of a coordination language (DSL)

• Formal semantics

• provable correctness
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Compiling to MPI
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x x
App
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MPI Optimized for Shared Memory
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Optimizing for Shared Memory

send x recv x
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(requires rendezvous or compiler intervention)
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Steps for Optimizing Communication 
with Shared Memory

• Identify globalization candidates

• Ensure correctness

• insert appropriate synchronization

• Minimize contention

• minimize synchronization points

• minimize synchronization overheads

• using a run-time trick
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Globalization Candidates
• Contiguous chunks of memory

• excluding strided array sections, for example

• contiguous array sections OK (but not implemented)

• Large buffers

• communication inside loops

• Small local reuse
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Ensuring Correctness

@communicate {x@i <<= x@i+1,
              where i in Kanor::WORLD}
…
consume(A);    // consume communicated data
…
overwrite(A);  // reuse A for local data
…
consume(A);      // consume local data
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Ensuring Correctness

@communicate {x@i <<= x@i+1,
              where i in Kanor::WORLD}
…
consume(A);    // consume communicated data
…
overwrite(A);  // reuse A for local data
…
consume(A);      // consume local data
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Correctness Issues
@communicate{x@i <<= x@0}, where i > 0

... = x

... = x

x = ...

x = ...

... = x

x = ...

... = x

E

Fig. 2. CFG of a hypothetical example showing writes into a globalized
variable within complex control flow. Dotted path is possible only with
unstructured control-flow, such as goto.

Theorem 1. If the locking set belongs to a critical section
then the partitioned address space semantics are maintained.

Proof: Any path from a local write to read passes only
through nodes in the locking set, by definition. Since all
these nodes belong to a critical section, only one process can
write into, and read from, the globalized variable at a time.
Therefore, each process sees exactly the same values for all
the variables that it would see under a strict partitioned address
space execution.

Theorem 1 indicates that is the compiler should ensure that
a process holds a mutex while executing any node in the
locking set. In the absence of any more information about
which control flow edges may or may not be taken at runtime,
this defines the minimal set of CFG nodes over which the
mutex must be held. However, such a region of code may have
multiple entries and exits. The compiler must ensure that the
lock is acquired and released exactly once, no matter which
path is taken through the locking set. At the same time, to
minimize serialization, we would like to avoid holding locks
for any longer than necessary. Next, we describe a strategy
that achieves both.

Suppose that W
↵

denotes the set of CFG nodes that contain
writes to a variable ↵. Similarly, suppose that R

↵

denotes
the set of CFG nodes that read the variable ↵. The locking
set is then denoted by L

↵

. It is tempting to compute L
↵

as
the intersection of nodes that are reachable from W

↵

and the
nodes that can reach R

↵

. However, this has several problems
as illustrated by Fig. 3. In each example, grey colored boxes
are not part of the locking set. As before, the circle marked
E represents the exit node. The globalized variable is x is the
first two examples and A in the third example.

In the leftmost example, since x is written again, the first
write to x cannot reach the second read. Thus, the grey box
in the middle represents a statement that should not be part

of the locking set. A simple intersection based approach, as
suggested above, would erroneously add that node into the
locking set.

In the second example, there is a loop carried dependency
due to reuse of x, but each iteration defines a new value that
get used in the next one. Notice that the first iteration uses
the “global” value of x that comes from the communication
statement. Thus, the middle grey box represents a statement
during which a local value of x is never live.

Before we discuss the final example, we review the termi-
nology related to data dependencies. A data dependence exists
from a statement S1 to S2 if: 1) S1 and S2 access a common
memory location, M ; 2) at least one of the accesses to M is
a write; and 3) there is a control flow path from S1 to S2. S1

is said to be the source, and S2 the sink, of the dependence.
If S1 and S2 are inside a loop, and the accesses to M occur
on different iterations then the dependence is called a loop-
carried dependence. Inside a loop-nest, the loop that causes
the dependence is said to carry the dependence. The level of
the loop-carried dependence is the level of the loop that carries
the dependence, the outermost loop being at level 1, as in
Fig. 3. Any dependence that is not carried by a loop is called
a loop-independent dependence. The dependence distance of
a loop-carried dependence is the number of iterations that
separate the source of the dependence from the sink.

The rightmost example in Fig. 3 illustrates the subtle prob-
lems that arrays can cause. There is a loop-carried dependence
that is carried by the j-loop, which is at level 2. We use
the convention that a statement that is not inside any loop is
considered to be at level 0. In this case, all CFG nodes that are
at level greater than or equal to those that carry the dependence
are part of the locking set.

Finally, we note that a read that has no incoming dependen-
cies should cause no locking, since that indicates read of the
global (communicated) value. Similarly, a write without out-
going dependencies should cause no locking. In the rightmost
example of Fig. 3, this could happen if the i-loop went from
1 to N and the reference to A[i,j+2,k] was replaced by,
say, A[N+1,j+2,k].

In order to take such subtleties into account, we make
use of data dependence analysis, which is a well-established
technique in compilers [9]. We will use the term looping back-
edge to refer to the critical edge from the last statement in a
loop-body to the head node of the loop. In a depth-first search
starting from the head node this edge can be detected as a
back edge to the head node. We assume that there is a unique
last node of the loop-body so that if there are statements that
allow the rest of the loop body to be skipped for the curent
iteration, such as continue or next, they cause jumps to
this unique last node, instead of directly to the head node.

Fig. 1 shows the helper algorithm PATHS that computes the
set of all nodes lying on any path from s to t.

Theorem 2. Algorithm 1 computes the set of all nodes that
lie on any path from node s to t in time O(|E|+ |V |).

Proof: Lines 7–8 mark all nodes reachable from s “red”,
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Observations

Definition:  Locking Set: The set of CFG 
nodes that lie on a path from a node 
containing local write into a globalized variable 
to a node containing read of that value
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Observations

Definition:  Locking Set: The set of CFG 
nodes that lie on a path from a node 
containing local write into a globalized variable 
to a node containing read of that value

Theorem:  If the locking set belongs to a 
critical section then the partitioned address 
space semantics are maintained 
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Correctness: Examples

@communicate ...

x = ...

... = x

x = ...

... = x

E

@communicate ...

for ...

... = x

x = ...

E

@communicate ...

for i ... (level 1)

for j ... (level 2)

for k ... (level 3)

A[i,j+2,k] = ... (level 3)

(level 3)

... = A[i,j,k] (level 3)
E

Fig. 3. Examples CFGs illustrating the subtleties involved in computing locking sets.

1 Algorithm: PATHS

2 Input: Directed graph G(V,E)
Start node s
End node t

3 Output: Set P of nodes that lie on any path from s to t

4 P  �
5 for each node n in G do
6 n.color  “white”
7 Q [s]
8 while not Q.empty do
9 q  Q.extract

10 for each edge (q, v) 2 E do
11 if v.color 6= “red” then
12 v.color  “red”
13 Q.add(v)

14 Q [t]
15 while not Q.empty do
16 q  Q.extract
17 for each edge (v, q) 2 E do
18 if v.color 6= “black” then
19 if v.color = “red” then
20 P  P [ {v}
21 v.color  “black”
22 Q.add(v)

23 return P
Algorithm 1: Algorithm to compute the set of all
nodes that lie on any path from s to t.

by doing a BFS starting at s. Similarly, lines 14–15 do a
backward BFS (on reverse edges) starting at t, which visits
any node that can reach t. Thus, any node added to P is on
a path from s to t. On the other hand, if there is a path from

s to t then any node on that path must be reachable from
s, and t must be reachable from any such node. Thus, the
algorithm will discover that node in the BFS from s as well
as in the reverse BFS from t, adding it to P . Finally, the two
BFS steps in the algorithm lead directly to the time complexity
of O(|E|+ |V |).

In order to arrive at an algorithm to compute the locking
set, we make several observations in the form of following
lemmas.

Lemma 1. For a loop-carried dependence, carried by loop
level l, all dependence carrying edges in the CFG lie at loop
level l or higher and any dependence carrying path must
traverse the looping back-edge at level l.

Proof: The proof follows directly from the definition of
loop-carried dependencies [9].

Lemma 2. For a loop-independent dependence between state-
ments that are at the common level l, no dependence carrying
path in the CFG goes through the looping back-edge at level
l or lower.

Proof: If the looping back-edge at level l was involved
in the dependence it would be a loop-carried dependence.

Lemma 3. Suppose that there is a loop-carried true depen-
dence from a CFG node w to a CFG node r with dependence
distance 1 due to a variable x, carried by a loop with the
head node h. Suppose that P

u,v

denotes the set of nodes
on all possible simple paths from u to v. Then, the locking
set for x due to the dependence from w to r is given by
L
x

= P
w,h

[ P
h,r

.
Proof: For a loop-carried dependence with dependence

distance 1, any dependence-carrying path goes through the
looping back-edge exactly once. Thus, any such path must
start from the write node, w, go through the looping back-
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level l or higher and any dependence carrying path must
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loop-carried dependencies [9].
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ments that are at the common level l, no dependence carrying
path in the CFG goes through the looping back-edge at level
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Proof: If the looping back-edge at level l was involved
in the dependence it would be a loop-carried dependence.
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by doing a BFS starting at s. Similarly, lines 14–15 do a
backward BFS (on reverse edges) starting at t, which visits
any node that can reach t. Thus, any node added to P is on
a path from s to t. On the other hand, if there is a path from

s to t then any node on that path must be reachable from
s, and t must be reachable from any such node. Thus, the
algorithm will discover that node in the BFS from s as well
as in the reverse BFS from t, adding it to P . Finally, the two
BFS steps in the algorithm lead directly to the time complexity
of O(|E|+ |V |).

In order to arrive at an algorithm to compute the locking
set, we make several observations in the form of following
lemmas.

Lemma 1. For a loop-carried dependence, carried by loop
level l, all dependence carrying edges in the CFG lie at loop
level l or higher and any dependence carrying path must
traverse the looping back-edge at level l.

Proof: The proof follows directly from the definition of
loop-carried dependencies [9].

Lemma 2. For a loop-independent dependence between state-
ments that are at the common level l, no dependence carrying
path in the CFG goes through the looping back-edge at level
l or lower.

Proof: If the looping back-edge at level l was involved
in the dependence it would be a loop-carried dependence.

Lemma 3. Suppose that there is a loop-carried true depen-
dence from a CFG node w to a CFG node r with dependence
distance 1 due to a variable x, carried by a loop with the
head node h. Suppose that P

u,v

denotes the set of nodes
on all possible simple paths from u to v. Then, the locking
set for x due to the dependence from w to r is given by
L
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= P
w,h
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.
Proof: For a loop-carried dependence with dependence

distance 1, any dependence-carrying path goes through the
looping back-edge exactly once. Thus, any such path must
start from the write node, w, go through the looping back-
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Correctness: Examples
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Overall Algorithm
• Identify globalization candidates

• For each globalized variable

• compute the locking set

• divide the locking set into connected components, Ci

• CFG edge into Ci ⇒ insert lock_acquire

• CFG edge out of Ci ⇒ insert lock_release
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Example of sub-optimal Behavior

edge to the head node h, and finally to the read node r. Since
any sub-path from w to h could be composed with any sub-
path from h to r, the locking set consists of the union of the
two.

Lemma 4. Suppose that there is a loop-carried true depen-
dence from a CFG node w to a CFG node r with dependence
distance greater than one, due to a variable x, carried by a
loop with the head node h. Then, the locking set for x due to
the dependence from w to r is the set of all nodes inside the
body of the loop and the head node h.

Proof: Since the dependence distance is greater than one,
a dependence carrying path from w to r may go through any
arbitrary cycle from h to itself, which may involve any nodes
from the loop body. Thus, all nodes in the loop body, and the
head node, are part of the locking set.

These observations lead us directly to Algorithm 2. The
following theorem proves its correctness and time bound.

Theorem 3. For a CFG, G = (V,E), Algorithm 2 computes
the locking set, L

x

, associated with a globalized variable,
x, in O(�·(|E| + |V |)) time, where � is the number of true
dependencies (read-after-write) involving x.

Proof: The correctness of the algorithm follows in a
straightforward manner from the preceding lemmas. Line 6
tests if the dependence between w and r is loop-independent.
The if in line 7 succeeds if the loop-independent dependence
lies outside any loop, in which case the locking set is computed
simply as all possible paths that lie between w and r. If the
loop-independent dependence is inside a loop-nest, then the
algorithm removes all the looping back-edges that cannot lie
on a dependence carrying path, according to Lemma 2. If
the dependence distance is 1 then the algorithm computes the
locking set using Lemma 3. Otherwise, when a loop-carried
dependence has dependence distance greater than one (lines
16–5) any path from w to r may carry dependencies, per
Lemma 4.

From Theorem 2, each call to PATH costs O(|V | + |W |),
leading to the overall time complexity of O(�·(|V |+ |E|)).

As the last step, the locking set is divided into connected
components to identify the control-flow edges along which
lock acquires and releases should be inserted. This is done by
splitting an edge and inserting a CFG node to place the lock
operation. If all predecessors (or successors) of a node have
lock acquires (or releases) then the acquire (or release) can be
moved into the node, obviating the need for edge splitting.

Definition 2. Locking section: A connected component of a
locking set.

Lemma 5. A critical section consisting of nodes from the
locking set can be implemented by inserting lock acquires
along each edge going into a locking section and inserting
lock releases along each edge exiting a locking section.

Proof: Follows directly from Theorem 1.
We note that while the locking set defines the minimal static

set of nodes defining the critical section, it does not necessarily
result in a minimum number of lock acquires at runtime.

1 Algorithm: COMPUTE-LOCKING-SET

2 Input: CFG G(V,E) of code region over which variable x is
globalized, with level-annotated nodes;
dependence levels, l

x

, for dependencies involving x;
dep. distances, d

x

, for dependencies involving x;
3 Output: Locking set L

4 L = �
5 for each node pair (w, r) with an entry in l

x

do
6 if d

x

(w, r) = 0 then
7 if l

x

(w, r) = 0 then
8 L L [ PATHS(G,w, r)
9 else

10 G0(V 0, E0) G without any looping back-edges at
level l

x

(w, r) and lower
11 L L [ PATHS(G0, w, r)

12 else if d
x

(w, r) = 1 then
13 h head node of loop at level l

x

(w, r)
14 G0(V 0, E0) G restricted to levels l

x

(w, r) and higher
15 L L [ PATHS(G0, w, h) [ PATHS(G0, h, r)
16 else
17 G0(V 0, E0) G restricted to levels l

x

(w, r) and higher
18 L L [ PATHS(G0, w, r)

19 return L
Algorithm 2: Algorithm to compute the locking set
for a given globalized variable.

@communicate ...

for ...

... = x

x = ...

Fig. 4. Example for which locking set is
not dynamically minimal.

In Fig. 4, grey boxes
represent CFG nodes
that are not part of
the locking set. Since
the join point of the
branch is in the lock-
ing set, the read branch
(left branch) needs to
acquire the lock be-
fore entering that node.
However, that is un-
necessary. In an exe-
cution where the read
branch often executes
consecutively this could
lead to a significant
overhead of lock ac-
quire and release, es-
pecially, if there is a
contention on the lock.
Section IV-E addresses
this issue.

D. Fused Globalization

A commonly occurring communication pattern arises when
only certain parts of an array are communicated. For example,
here is an abstraction of a communication step that might occur
in 2D successive over-relaxation (SoR) computation, such as
iterative Jacobi.
@communicate{A[0:N-1,N]@i <<= A[0:N-1,0]@i.right}
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Copy-on-conflict

This assumes that the parallel program uses shadow columns,
which are “synchronized” before each iteration. If we have
to eliminate buffer copying here we will need to alias (i.e.,
overlap) portions of the array A across all processes. In other
words, globalization of A involves not just array expansion, but
also fusing together certain regions of the expanded array. We
call this transformation fused globalization. Once the sections
that need to be fused have been identified, the algorithms
presented here for inserting synchronization can be applied
to the globalized array sections.

Identification of sections to be fused, and proving the
validity of fusion, is a difficult problem on its own and
orthogonal to the globalization problem addressed in this
paper. Consequently, we consider the problem of fusing to
be out of the scope of this paper.

E. Runtime Support to Minimize Wait Time

The idea behind reducing synchronization overheads is to
dynamically localize those buffers that might cause too much
contention, by creating a local (per-process) copy. While
at first it appears to be counterproductive to first globalize
data, only to be localized again at runtime, in practice this
greatly simplifies the compiler and eliminates situations in
which conservatively inserted synchronization could lead to
unacceptable runtime overheads.

Fig. 5 shows the pseudocode for the Kanor compiler’s
runtime support for shared memory targets that implements
an aggressive synchronization by simultaneously initiating a
buffer copy operation in a separate thread. A node can safely
enter the “critical section” that was statically identified by
the compiler in one of the three cases, (1) the shared buffer
was dynamically localized in an earlier step; (2) the critical

1 void acquire_or_copy (Buffer& a, Lock& lock)
2 {
3 if (Localized[a]) return NULL;
4 Condition cond;
5 enum {COPY_THRD, LOCK_THRD} notifier;
6 a_cpy = new Buffer;
7

8 Thread l_thrd =
9 spawn(acquire_lock, lock, cond, &notifier);

10 Thread c_thrd =
11 spawn(buf_copy, a, a_cpy, cond, &notifier);
12 wait(cond);
13

14 if (notifier == LOCK_THRD) {
15 c_thrd.kill();
16 free(a_cpy);
17 } else {
18 l_thrd.kill();
19 if (lock.held()) lock.release();
20 delete a;
21 a = a_cpy;
22 Localized[a] = true;
23 }
24 }

Fig. 5. C++-like pseudocode for smart synchronization. Localized is a
per-process Boolean valued hash table.

section lock is successfully acquired; or (3) the shared buffer
is localized by copying it into a local buffer.

Even though the pseudocode suggests that threads are
spawned in each call to acquire_or_lock, a thread pool
could be used if spawning has unacceptable overheads, as
turns out to be the case with most current pthread im-
plementations. We emphasize that this approach of copy-on-
conflict is different from copy-on-write, because no copying is
performed when there are no runtime conflicts, even if multiple
processors write to the same shared memory.

V. EXPERIMENTAL EVALUATION

A. Benchmarks

We study four commonly occurring communication
patterns, all-to-all, broadcast, shift, and
reduction. In each case the MPI and shared memory codes
are those emitted by a proof-of-concept Kanor compiler using
the algorithms presented in this paper. Fig. 6 summarizes the
benchmarks.

In each case, if the send and receive buffers are different
variables then those two variables are aliased by the compiler.
Clearly, such an aliasing is not possible if the original code
had overlapping live ranges of the variables. In that case, the
shared memory code would also include call to memcpy (not
shown in the figure).

We measured the performance of MPI on a multicore
machine with 8 cores (AMD Opteron 2356, Gentoo Linux
2.6, two quad cores, 8GB memory), with MPI libraries (Open-
MPI 1.4.3) optimized for shared memory. We compared that
to a version that used shared memory directly, using our
algorithms and our runtime system. We used 8 processes in
each case and increased the buffer size until MPI’s shared
memory version could no longer handle it. The shared memory
version translated from Kanor used mmap. Fig. 7 shows four
graphs corresponding to the three cases listed in Section IV-B
with the case 2 divided into two subcases: 2(a) when the
process successfully acquires the lock; and 2(b) when the
process localizes the buffer while waiting for the lock. For
case 2, we use a pool of waiting threads instead of dynamically
spawning threads.

For each benchmark, we observe that shared memory ver-
sions consistently perform better than MPI for each case. In
the best case, there could be several orders of magnitude
difference. In the worst case, exemplified by cases 2(b) and 3,
when buffers need to be copied, the compiler-generated shared
memory version is no worse than MPI but, unsurprisingly,
approaches MPI performance for very large buffers as the
copy cost dominates. Similarly, in the case of reduction, the
reducing cost dominates for large buffer sizes. Note that only
case 1 applies for reduction since there is no need to ever
copy the buffers when performing reduction. However, the
speedup over MPI asymptotically approaches one as the time
spent in performing the reduction operation dominates the
communication time for very large buffers.
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section lock is successfully acquired; or (3) the shared buffer
is localized by copying it into a local buffer.

Even though the pseudocode suggests that threads are
spawned in each call to acquire_or_lock, a thread pool
could be used if spawning has unacceptable overheads, as
turns out to be the case with most current pthread im-
plementations. We emphasize that this approach of copy-on-
conflict is different from copy-on-write, because no copying is
performed when there are no runtime conflicts, even if multiple
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reduction. In each case the MPI and shared memory codes
are those emitted by a proof-of-concept Kanor compiler using
the algorithms presented in this paper. Fig. 6 summarizes the
benchmarks.

In each case, if the send and receive buffers are different
variables then those two variables are aliased by the compiler.
Clearly, such an aliasing is not possible if the original code
had overlapping live ranges of the variables. In that case, the
shared memory code would also include call to memcpy (not
shown in the figure).

We measured the performance of MPI on a multicore
machine with 8 cores (AMD Opteron 2356, Gentoo Linux
2.6, two quad cores, 8GB memory), with MPI libraries (Open-
MPI 1.4.3) optimized for shared memory. We compared that
to a version that used shared memory directly, using our
algorithms and our runtime system. We used 8 processes in
each case and increased the buffer size until MPI’s shared
memory version could no longer handle it. The shared memory
version translated from Kanor used mmap. Fig. 7 shows four
graphs corresponding to the three cases listed in Section IV-B
with the case 2 divided into two subcases: 2(a) when the
process successfully acquires the lock; and 2(b) when the
process localizes the buffer while waiting for the lock. For
case 2, we use a pool of waiting threads instead of dynamically
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For each benchmark, we observe that shared memory ver-
sions consistently perform better than MPI for each case. In
the best case, there could be several orders of magnitude
difference. In the worst case, exemplified by cases 2(b) and 3,
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approaches MPI performance for very large buffers as the
copy cost dominates. Similarly, in the case of reduction, the
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Experimental Evaluation

• 8-core AMD Opteron, Gentoo Linux, OpenMPI 1.4.3

• Case 1: No local writes

• Case 2: Local writes

• 2a: lock successfully acquired

• 2b: buffer copied locally before the lock could be acquired

• Case 3: Forced copying (overlapping live ranges)

Op Kanor MPI Shared Memory

al
l A[j]@i <<= A[i]@j

where i,j in WORLD
MPI_Alltoall (...) barrier();

b’
ca

st A@i <<= A@0
where i in WORLD

MPI_Bcast(A, ..., ..., 0, ...); barrier();

sh
ift A@i <<= A@i+1 if (Rank == (numprocs - 1)) dest = 0;

else dest = Rank + 1;
MPI_Send(A, array_size, ...);
MPI_Recv(A, array_size, ...);

barrier();

re
du

ce A@0 <<op<< A@i
where i in WORLD

MPI_Reduce (...)
// or specialized code for
// tree-reduction of ‘‘op’’

// loop for tree-reduction
for (i ...) {

A[i] = op(..);
}

Fig. 6. Communication benchmarks in Kanor and their equivalent MPI and shared memory code generated by Kanor compiler.
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Fig. 7. Experimental evaluation of some of the commonly occurring collective communication patterns, compared to MPI.

VI. RELATED WORK

Denning [10] introduced information flow analysis as a
means to check security violations inside a program. Since

then the information flow methods have been used in security
related analyses [11]. We have used information flows to
discover an interesting property of parallel program in Kanor,
the global knowledge case, which is described in details
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Case 1
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Case 2a
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Case 2b
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Case 3
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Concluding Remarks
• Parallel programming with partitioned address 

spaces has advantages

• Appropriate abstraction makes parallel 
programming more accessible to intermediate-
level programmers

• Kanor demonstrates the effectiveness of this approach

• Advantages of shared memory can be obtained 
through compiler optimizations

• our compiler algorithms and experimental evaluation 
substantiate this claim
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End
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Optimizing for Shared Memory

send x recv x

x x
App

MPI

@communicate {x@0 <<= x@1}

Node 0 Node 1
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Optimizing for Shared Memory

send x recv x

App

x_1                              x_2

MPI

@communicate {x@0 <<= x@1}

Node 0 Node 1
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Optimizing for Shared Memory

send x recv x

App

signal(sem_x)
wait(sem_x)

copy x_1, x_2

x_1                              x_2

MPI

@communicate {x@0 <<= x@1}

Node 0 Node 1
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Optimizing for Shared Memory
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App
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Optimizing for Shared Memory

send x recv x

App

signal(sem_x)
wait(sem_x)

copy x_1, x_2

x_1                              x_2

MPI

@communicate {x@0 <<= x@1}
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Optimizing for Shared Memory

send x recv x

App

signal(sem_x)
wait(sem_x)

copy x_1, x_2

x_1                              x_2

MPI

1 copy
(requires compiler intervention)

@communicate {x@0 <<= x@1}

Node 0 Node 1
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Computing all Paths from s to t

@communicate ...

x = ...

... = x

x = ...

... = x

E

@communicate ...

for ...

... = x

x = ...

E

@communicate ...

for i ... (level 1)

for j ... (level 2)

for k ... (level 3)

A[i,j+2,k] = ... (level 3)

(level 3)

... = A[i,j,k] (level 3)
E

Fig. 3. Examples CFGs illustrating the subtleties involved in computing locking sets.

1 Algorithm: PATHS

2 Input: Directed graph G(V,E)
Start node s
End node t

3 Output: Set P of nodes that lie on any path from s to t

4 P  �
5 for each node n in G do
6 n.color  “white”
7 Q [s]
8 while not Q.empty do
9 q  Q.extract

10 for each edge (q, v) 2 E do
11 if v.color 6= “red” then
12 v.color  “red”
13 Q.add(v)

14 Q [t]
15 while not Q.empty do
16 q  Q.extract
17 for each edge (v, q) 2 E do
18 if v.color 6= “black” then
19 if v.color = “red” then
20 P  P [ {v}
21 v.color  “black”
22 Q.add(v)

23 return P
Algorithm 1: Algorithm to compute the set of all
nodes that lie on any path from s to t.

by doing a BFS starting at s. Similarly, lines 14–15 do a
backward BFS (on reverse edges) starting at t, which visits
any node that can reach t. Thus, any node added to P is on
a path from s to t. On the other hand, if there is a path from

s to t then any node on that path must be reachable from
s, and t must be reachable from any such node. Thus, the
algorithm will discover that node in the BFS from s as well
as in the reverse BFS from t, adding it to P . Finally, the two
BFS steps in the algorithm lead directly to the time complexity
of O(|E|+ |V |).

In order to arrive at an algorithm to compute the locking
set, we make several observations in the form of following
lemmas.

Lemma 1. For a loop-carried dependence, carried by loop
level l, all dependence carrying edges in the CFG lie at loop
level l or higher and any dependence carrying path must
traverse the looping back-edge at level l.

Proof: The proof follows directly from the definition of
loop-carried dependencies [9].

Lemma 2. For a loop-independent dependence between state-
ments that are at the common level l, no dependence carrying
path in the CFG goes through the looping back-edge at level
l or lower.

Proof: If the looping back-edge at level l was involved
in the dependence it would be a loop-carried dependence.

Lemma 3. Suppose that there is a loop-carried true depen-
dence from a CFG node w to a CFG node r with dependence
distance 1 due to a variable x, carried by a loop with the
head node h. Suppose that P

u,v

denotes the set of nodes
on all possible simple paths from u to v. Then, the locking
set for x due to the dependence from w to r is given by
L
x

= P
w,h

[ P
h,r

.
Proof: For a loop-carried dependence with dependence

distance 1, any dependence-carrying path goes through the
looping back-edge exactly once. Thus, any such path must
start from the write node, w, go through the looping back-
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Computing Locking Sets
edge to the head node h, and finally to the read node r. Since
any sub-path from w to h could be composed with any sub-
path from h to r, the locking set consists of the union of the
two.

Lemma 4. Suppose that there is a loop-carried true depen-
dence from a CFG node w to a CFG node r with dependence
distance greater than one, due to a variable x, carried by a
loop with the head node h. Then, the locking set for x due to
the dependence from w to r is the set of all nodes inside the
body of the loop and the head node h.

Proof: Since the dependence distance is greater than one,
a dependence carrying path from w to r may go through any
arbitrary cycle from h to itself, which may involve any nodes
from the loop body. Thus, all nodes in the loop body, and the
head node, are part of the locking set.

These observations lead us directly to Algorithm 2. The
following theorem proves its correctness and time bound.

Theorem 3. For a CFG, G = (V,E), Algorithm 2 computes
the locking set, L

x

, associated with a globalized variable,
x, in O(�·(|E| + |V |)) time, where � is the number of true
dependencies (read-after-write) involving x.

Proof: The correctness of the algorithm follows in a
straightforward manner from the preceding lemmas. Line 6
tests if the dependence between w and r is loop-independent.
The if in line 7 succeeds if the loop-independent dependence
lies outside any loop, in which case the locking set is computed
simply as all possible paths that lie between w and r. If the
loop-independent dependence is inside a loop-nest, then the
algorithm removes all the looping back-edges that cannot lie
on a dependence carrying path, according to Lemma 2. If
the dependence distance is 1 then the algorithm computes the
locking set using Lemma 3. Otherwise, when a loop-carried
dependence has dependence distance greater than one (lines
16–5) any path from w to r may carry dependencies, per
Lemma 4.

From Theorem 2, each call to PATH costs O(|V | + |W |),
leading to the overall time complexity of O(�·(|V |+ |E|)).

As the last step, the locking set is divided into connected
components to identify the control-flow edges along which
lock acquires and releases should be inserted. This is done by
splitting an edge and inserting a CFG node to place the lock
operation. If all predecessors (or successors) of a node have
lock acquires (or releases) then the acquire (or release) can be
moved into the node, obviating the need for edge splitting.

Definition 2. Locking section: A connected component of a
locking set.

Lemma 5. A critical section consisting of nodes from the
locking set can be implemented by inserting lock acquires
along each edge going into a locking section and inserting
lock releases along each edge exiting a locking section.

Proof: Follows directly from Theorem 1.
We note that while the locking set defines the minimal static

set of nodes defining the critical section, it does not necessarily
result in a minimum number of lock acquires at runtime.

1 Algorithm: COMPUTE-LOCKING-SET

2 Input: CFG G(V,E) of code region over which variable x is
globalized, with level-annotated nodes;
dependence levels, l

x

, for dependencies involving x;
dep. distances, d

x

, for dependencies involving x;
3 Output: Locking set L

4 L = �
5 for each node pair (w, r) with an entry in l

x

do
6 if d

x

(w, r) = 0 then
7 if l

x

(w, r) = 0 then
8 L L [ PATHS(G,w, r)
9 else

10 G0(V 0, E0) G without any looping back-edges at
level l

x

(w, r) and lower
11 L L [ PATHS(G0, w, r)

12 else if d
x

(w, r) = 1 then
13 h head node of loop at level l

x

(w, r)
14 G0(V 0, E0) G restricted to levels l

x

(w, r) and higher
15 L L [ PATHS(G0, w, h) [ PATHS(G0, h, r)
16 else
17 G0(V 0, E0) G restricted to levels l

x

(w, r) and higher
18 L L [ PATHS(G0, w, r)

19 return L
Algorithm 2: Algorithm to compute the locking set
for a given globalized variable.

@communicate ...

for ...

... = x

x = ...

Fig. 4. Example for which locking set is
not dynamically minimal.

In Fig. 4, grey boxes
represent CFG nodes
that are not part of
the locking set. Since
the join point of the
branch is in the lock-
ing set, the read branch
(left branch) needs to
acquire the lock be-
fore entering that node.
However, that is un-
necessary. In an exe-
cution where the read
branch often executes
consecutively this could
lead to a significant
overhead of lock ac-
quire and release, es-
pecially, if there is a
contention on the lock.
Section IV-E addresses
this issue.

D. Fused Globalization

A commonly occurring communication pattern arises when
only certain parts of an array are communicated. For example,
here is an abstraction of a communication step that might occur
in 2D successive over-relaxation (SoR) computation, such as
iterative Jacobi.
@communicate{A[0:N-1,N]@i <<= A[0:N-1,0]@i.right}


