Partial Globalization of Partitioned
Address Spaces for Zero-copy
Communication with Shared Memory

Fangzhou Jiao, Nilesh Mahajan, Jeremiah Willcock,
Arun Chauhan,Andrew Lumsdaine
Indiana University

HiPC 201 |

Motivation

® |ncreasing popularity and availability of many-cores
® Abundance of legacy MPI code
® Simplifying programming model
® single model, instead of hybrid
® | everaging shared memory fully for performance

® Proving that shared memory could be used as an
optimization for communication

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Partitioned Address Space
Programming on Shared Memory

® Avoids having to worry about race conditions
® Encourages programmers to think about locality

® Could make it easier to reason about program
correctness

® if done at the right level of abstraction

Needs special handling to compéte in performance with
threaded shared memory programs

|

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Declarative Approach

® Originally motivated by Block-synchronous Parallel
(BSP) programs, especially for collective
communication

® alternate between computation and communication

® communication optimization breaks the structure

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Declarative Approach

® Originally motivated by Block-synchronous Parallel
(BSP) programs, especially for collective
communication

® alternate between computation and communication

® communication optimization breaks the structure

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Declarative Approach

® Originally motivated by Block-synchronous Parallel
(BSP) programs, especially for collective
communication

® alternate between computation and communication

® communication optimization breaks the structure

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Declarative Approach

® Originally motivated by Block-synchronous Parallel
(BSP) programs, especially for collective
communication

® alternate between computation and communication

® communication optimization breaks the structure

® Extend to non BSP-style applications

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }

eo@e| << op << e, @e3 where ¢y

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }
eo@e| << op << e;@es3 where ey

eg@e| <<= e, @e¢; Where ¢4

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }
eo@e| << op << e;@es3 where ey

eg@e| <<= e, @e¢; Where ¢4

A[j] @ 1 <<= B[i1] @ j where 1inworld, jin{0...1}, 1 %2 ==20
storage receiver reduction Jatq sender generator generator filter
location rank operator rank

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }
eo@e| << op << e;@es3 where ey

eg@e| <<= e, @e¢; Where ¢4

A[j] @ 1 <<= B[i1] @ j where 1inworld, jin{0...1}, 1 %2 ==20
storage receiver reduction Jgta sender generator generator filter
location rank operator rank

Source-level compiler (using ROSE)

|

standard C++ code

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

|

Design Principles
® Users must think in parallel (creativity)

® but not be encumbered with optimizations that can be
automated, or proving synchronization correctness

® Compiler focuses on what it can do (mechanics)

® not creative tasks, such as determining data distributions,
or creating new parallel algorithms

® |[ncremental deployment
® nota new programming language

® more of a coordination language (DSL)

® Formal semantics

® provable correctness

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Compiling to MPI
@communicate {x@1 <<= x@0}

Node 0 Node |

App

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Compiling to MPI
@communicate {x@1 <<= x@0}

Node 0 Node |

App

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Compiling to MPI
@communicate {x@1 <<= x@0}

Node 0 Node |

App

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Compiling to MPI
@communicate {x@1 <<= x@0}

Node 0 Node |

App

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Compiling to MPI
@communicate {x@1 <<= x@0}

Node 0 Node |

App

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Compiling to MPI
@communicate {x@1 <<= x@0}

Node 0 Node |

App

3 copies

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

MP| Optimized for Shared Memory

@communicate {x@1 <<= x@0}

Node 0 Node |

App

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

MP| Optimized for Shared Memory

@communicate {x@1 <<= x@0}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

MP| Optimized for Shared Memory

@communicate {x@1 <<= x@0}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

MP| Optimized for Shared Memory

@communicate {x@1 <<= x@0}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

MP| Optimized for Shared Memory

@communicate {x@1 <<= x@0}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

MP| Optimized for Shared Memory

@communicate {x@1 <<= x@0}

Node 0 Node |

App

: _

2 copies

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory
@communicate {x@1 <<= x@1}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory
@communicate {x@1 <<= x@1}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory
@communicate {x@1 <<= x@1}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory
@communicate {x@1 <<= x@1}

Node 0 Node |

App

: _

| copy

(requires rendezvous or combiler intervention)

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory
@communicate {xQ@0 <<= x@1}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory

@communicate {xQ@0 <<= x@1}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory

@communicate {xQ@0 <<= x@1}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory
@communicate {xQ@0 <<= x@1}

Node 0 Node |

App

: _

0 copy

(requires compiler intervention)

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory

@communicate {xQ@0 <<= x@1}

0 copy

(requires compiler intervention)

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Steps for Optimizing Communication
with Shared Memory

® |dentify globalization candidates
® Ensure correctness
® insert appropriate synchronization

® Minimize contention
® minimize synchronization points

® minimize synchronization overheads

® yusing a run-time trick

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Globalization Candidates

® Contiguous chunks of memory
® excluding strided array sections, for example

® contiguous array sections OK (but not implemented)

® |arge buffers

® communication inside loops

® Small local reuse

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Ensuring Correctness

@communicate {x@i <<= x@i+1,
where 1 i1n Kanor::WORLD}

consume(A); // consume communicated data
overwrite(A); // reuse A for local data

consume(A); // consume local data

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Ensuring Correctness

@communicate {x@i <<= x@i+1,
where 1 i1n Kanor::WORLD}

consume(A); // consume communicated data

XX)

4 2
overwrite(A); // reuse A for local data

consume(A) ; // consume local data
N y

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Correctness Issues

Gcommunicate{x@i <<= x@0}, where i > 0

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Observations

Definition: Locking Set: The set of CFG
nodes that lie on a path from a node
containing local write into a globalized variable
to a node containing read of that value

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Observations

Definition: Locking Set: The set of CFG
nodes that lie on a path from a node

containing local write into a globalized variable
to a node containing read of that value

Theorem: If the locking set belongs to a
critical section then the partitioned address
space semantics are maintained

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Correctness: Examples

@communicate ...

L
|
X _l. ..

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Correctness: Examples

Qcommunicate ... Qcommunicate ...

L
1 X
X _l. ..

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Correctness: Examples

@communicate

Qcommunicate

L
|
X —l

@communicate
for 1 ... |(devell)
for 7 (level 2)

N

for k ...

<

(level 3)

A[l,j‘|‘2,]{] = . e

(level 3)

Y

(level 3)

!

Ali, 3, k]

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

(level 3)

Overall Algorithm

® |dentify globalization candidates

® For each globalized variable
® compute the locking set
® divide the locking set into connected components, C;

® CFG edgeinto C; = insert lock acquire

® CFG edge out of Ci = insert lock release

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Example of sub-optimal Behavior

Qcommunicate ...

forl...
|

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Copy-on-conflict

1 void acquire_or_copy (Buffer& a, Locké& lock)
2 |

3 if (Localized[a]) return NULL;

4 Condition cond;

5 enum {COPY THRD, LOCK_THRD} notifier;

6 a_cpy = new Buffer;

7

8

9

Thread 1 _thrd =
spawn (acquire_lock, lock, cond, ¬ifier);

10 Thread c_thrd =
11 spawn (buf_copy, a, a_cpy, cond, ¬ifier);

12 walit (cond) ;

13

14 if (notifier == LOCK THRD) {
15 c_thrd.kill ();

16 free (a_cpy) ;

17 } else {

18 1 thrd.kill () ;

19 if (lock.held()) lock.release();
20 delete 3;

21 a = a_cpy;

22 Localized[a] = true;

23 }
24}

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Copy-on-conflict

1 void acquire_or_copy (Buffer& a, Locké& lock)
2 |

3 if (Localized[a]) return NULL;

4 Condition cond;

5 enum {COPY THRD, LOCK_THRD} notifier;

6 a_cpy = new Buffer;

7

8

9

g Thread 1 _thrd = h
spawn (acquire_lock, lock, cond, ¬ifier);
10 Thread c_thrd =
11 spawn (buf_copy, a, a_cpy, cond, ¬ifier);
12 walit (cond) ;
AN J
14 if (notifier == LOCK_THRD) {
15 c_thrd.kill ();
16 free (a_cpy) ;
17 } else {
18 1 thrd.kill () ;
19 if (lock.held()) lock.release();
20 delete 3;
21 a = a_cpy;,
22 Localized[a] = true;

23 }
24}

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Experimental Evaluation

Op Kanor Shared Memory
:g A[J]Q1 <<= A[i]@] MPI_Alltoall (...) barrier ();
where 1,3 in WORLD
~—
2! AQi <<= AQRO MPI Bcast(dA, ..., ..., 0, ...); barrier () ;
2 where i1 in WORLD
O
= Adl <<= A@Qi+1 1f (Rank == (numprocs - 1)) dest = 0; barrier () ;
= else dest = Rank + 1;
e MPI_Send (A, array_size, ...);
MPI_Recv (A, array_size, ...);
Q AQO <<op<< AQ1i MPI_Reduce (...) // loop for tree-reduction
= where i in WORLD // or specialized code for for (1 ...) {
Eg // tree-reduction of ‘‘op’’ Ali] = op(..);

® 8-core AMD Opteron, Gentoo Linux, OpenMPI 1.4.3
® C(Case |:No local writes

® C(Case 2:Local writes
® 2a:lock successfully acquired

e 2b:buffer copied locally before the lock could be acquired

® C(Case 3: Forced copying (overlapping live ranges)

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

- © = alltoall
... - + = pbroadcast |-
e ghift

—&— reduction

—
O—L

Speedup over MPI

100 EE EE B EEEEEEEEEEEEEERNEERN

Input size

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

T T T T
- © = alltoall
- + = proadcast
shift
101_ ..
o
2 .. ;..’.._o_._._._o..—.-.-..'!'.e.'..-. .—..-.e ~~
S S ‘_,'0’ e ik)
m ’e— —ﬂ‘ - ————
> o,” ’f’—r
O ‘I’ //‘
g— ’¢o’'.,.’_'..’. ...
S o _--1"
o | L=t
(D) ~
O ’,’
@p) T
100 _______ | o o o e e e e e e e e e ! P T
10° 10° 10’

Input size

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

... _e _a”.toa”
- + = proadcast
.................... .—.o;.;_..-._.._..e..._.._..i.e.. e O +Shift

Speedup over MPI

Input size

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

10

___ - © = alltoall

... - + _broadcast .
... Shift .

E __
=
T e S
(b)
>
@)
%10 ijj?j.‘.jfj‘.j?jfj‘.i?ifj?j?jfj‘.j?jfj'.j?jfj'.j?ifi'.jijj‘.j.‘.jfj?jfjfj*jq-.'fj'_i?f
5 2 S s\
Q L ‘__\ _______________
o [\\z\ _____
CD ..
..) W
\
__) I
\
\
\
N .
\

Input size

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Concluding Remarks

® Parallel programming with partitioned address
spaces has advantages

® Appropriate abstraction makes parallel
programming more accessible to intermediate-

level programmers

e Kanor demonstrates the effectiveness of this approach

® Advantages of shared memory can be obtained
through compiler optimizations

® our compiler algorithms and experimental evaluation
substantiate this claim

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

End

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory
@communicate {xQ@0 <<= x@1}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory

@communicate {xQ@0 <<= x@1}

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory

@communicate {xQ@0 <<= x@1}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory

@communicate {xQ@0 <<= x@1}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory

@communicate {xQ@0 <<= x@1}

Node 0 Node |

App

: _

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Optimizing for Shared Memory
@communicate {xQ@0 <<= x@1}

Node 0 Node |

App

: _

| copy

(requires compiler intervention)

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Computing all Paths from s to t

1 Algorithm: PATHS

Input: Directed graph G(V, E)
Start node s
End node ¢

Output: Set P of nodes that lie on any path from s to ¢

[\

(O8]

o

P+ ¢
for each node n in GG do
Ln.color + “white”

Q < [s]

while not ().empty do

9 |q <+ ().extract

10 |for each edge (q,v) € E do
11 | |if v.color # “red” then

12 v.color <— “red”

13 LQ.add(v)

AN W

[c <IN

14 Q < |[t]

15 while not (Q.empty do

16 |q < (.extract

17 |for each edge (v,q) € E do

18 | |if v.color # “black” then
19 if v.color = “red” then
20 | P < PU{v}

21 v.color < “black”

22 | Q.add(v)

23 return P

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

Computing Locking Sets

1 Algorithm: COMPUTE-LOCKING-SET

2 Input: CFG G(V, E) of code region over which variable x is
globalized, with level-annotated nodes;
dependence levels, [, for dependencies involving x;

dep. distances, d., for dependencies involving x;
3 Output: Locking set L

4 L =¢

5 for each node pair (w,r) with an entry in l, do

6 |if dz(w,r) = 0 then

7 | |if Iz (w,r) = 0 then

8 L < L UPATHS(G, w,T)

9 | |else

10 G'(V', E") + G without any looping back-edges at
level I, (w,r) and lower

1 L + L UPATHS(G', w,T)

12 |else if d;(w,r) =1 then

13 | | h < head node of loop at level I, (w,r)

14 | |G'(V',E") « G restricted to levels I, (w, r) and higher
15 | | L < L UPATHS(G',w, h) U PATHS(G', h,)

16 |else

17 | |G'(V', E") < G restricted to levels I, (w,) and higher
18 | | L < LUPATHS(G',w,T)

19 return L

Arun Chauhan, Zero-copy communication in partitioned address space programs on shared memory, HiPC 201 |

