Parallelism for the Masses
Performance to Productivity

Arun Chauhan

School of Informatics and Computing
Indiana University, Bloomington, USA

Auburn University
October 3,201 |

The Free Lunch is Over

10,000,000 |
Dua ore Ita
1,000,000
Intel CPU Trends
(sources: Intel Jukotun)
100,000
10,000
1,000
100
10
1 m Transistors (000)
@ Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)
0 W l

1970 1975 1980 1985 1990 1995 2000 2005 2010

Herb Sutter, The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, Dr. Dobb's Journal, 30(3), March 2005

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

|

http://www.ddj.com/
http://www.ddj.com/

Exa-scale Challenge

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Trends in Concurrency

1.E+07
1.E+06 —
mEBE
? - o : SR
o _— N
qt, 1.E+05 B EBEEBEEBEEROOCO g
§ B -//ll<><>88<>8§8 g 8
S - © 0 0 g 8888
= 1E+04] . 8888888 55,800
e _— LA
2 l<>3@gg///§/§<>0<>00©§§§§§§§§80
6808 ®S 8©§§§§ o
s oo 8E8§ o8
o o
o8 S
o o
1.E+02 ‘ ‘ ‘ ‘
1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09
¢ Top10 ®™ Top System — Top 1 Trend

Peter Kogge et al. Exascale Computing Study, Technology Challenges in Achieving Exascale Systems, 2008.
Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

|

Long History of Parallelism

® Vector processors

® Symmetric multi-processors (SMPs)

® Nodes over inter-connection networks
® |nstruction-level parallelism

® Multi-cores

e GPUs

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Deja vu all over again!?

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Deja vu all over again!?

“... today’s processors ... are nearing an impasse as technologies

approach the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Deja vu all over again!?
“... today’s processors ... are nearing an impasse as technologies
approach the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

“We are dedicating all of our future product development to
multicore designs. ... This is a sea change in computing”

Paul Otellini, President, Intel (2004)

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Deja vu all over again!?
“... today’s processors ... are nearing an impasse as technologies
approach the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

“We are dedicating all of our future product development to
multicore designs. ... This is a sea change in computing”

Paul Otellini, President, Intel (2004)

Difference is all microprocessor companies have switched to
multiprocessors (AMD, Intel, IBM)
= Procrastination penalized: 2X sequential perf./ 5 yrs

= Biggest programming challenge: | to 2 CPUs

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Parallelism

Ma|nStream Joe needs high level

Programming Models

Parallelism-Oblivious [~ designed for Domain

(J Oe) Experts
Developers
_/
_ Stephanie needs simple
_\ Parallelism—Aware Parallel Programming
(Stephanie) Developers — Models with safety nets
\ 4 —_ Focus of today’s Parallel
(Doug) } Programming Models
Concurrency
Experts

Courtesy:Vivek Sarkar, Rice University

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Parallelism

. N
’/h/f' // ?
\) 4./,,u
Y

i /,,,_
2N O
X A/e, s@%«.w,‘,
// S ‘/4’
\ AR ‘/ 2
\%«\.ﬁ,‘/_» \
5

N

E\ N K

=
o
‘b. k-4

Vi

-

X N
NVASN%,
N

N S

Y HECTHAL /N A ‘,

X7 PN

2t A {)
5K O \ ! /‘v‘
g vom,’ . \ . o
| % /4 A SN

x
N

R

) ,
WS AN
=R

e e vy,
‘\ s W
L T S
¥ /

v

\{6.\0% .
7y

I 4

A | e

Y - o
SN
i
40\\\\‘&@@0{ il
N\ Y/ | |

7,

el

7S _
\.-Am »‘ MM.. - \1‘
.\\Més./ﬂsmeox g
(AP 4

F

—
o
~
3’
)
O
o
n’
L -
S
Q
S
<<
S’
(]
(%]
(%]
s
(]
<
d
| -
=]
<
2
9
S
S
Q_
n,
S
<
S
S
=
O
<
S
L .
<<

Parallelism

i

win N ’Mli’; i

i

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Paralleling Programming on a Slide

Shared Memory

Distributed Memory

Y =X+ 2;

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Paralleling Programming on a Slide

Shared Memory

Distributed Memory

Synchronize

Y =X+ 2;

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Paralleling Programming on a Slide

Shared Memory o
Distributed Memory

X = 10;

N y=x+2; §O

S S

N S

N <

E >

= N

2
X = 20; ~

Y =X+ 2;

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Thinking of Stephanie
programmers

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

High Performance Fortran

PROGRAM SUM
REAL A(10000)
READ (9) A
SUM = 0.0
DO I =1, 10000
SUM = SUM + A(I)
ENDDQO
PRINT SUM

END

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

High Performance Fortran

PROGRAM PARALLEL_SUM
REAL A(100), BUFF(100)
IF (PID == 0) THEN
DO IP = 0, 99
READ (9) BUFF(1:100)

IF (IP == 0) A(1:100) = BUFF(1:100)
PROGRAM SUM ELSE SEND(IP, BUFF, 100) ! 100 words to Proc 1
REAL A(10000) ENDDO
ELSE
READ (9) A RECV (0, A, 100) ! 100 words from proc 0 into A
SUM = 0.0 ENDIF
_ SUM = 0.0
DO I =1, 10000 DO T =1, 100
SUM = SUM + A(I) SUM = SUM + A(I)
ENDDO
ENDDD IF (PID == 0) SEND(1, SuM, 1)
PRINT SUM IF (PID > 0)
END RECV(PID-1, T, 1)

SUM = SUM + T
IF (PID < 99) SEND(PID+1, SUM, 1)
ELSE SEND (0, SuM, 1)
ENDIF
IF (PID == 0) THEN; RECV (99, SUM, 1); PRINT SUM; ENDIF
END

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

|

High Performance Fortran

REAL A(10000)
REAL A(10000)
|HPF$ DISTRIBUTE A(BLOCK)
READ (9) A
READ (9) A
SUM = 0.0 SUM = 0.0
" L aco R
- = SUM = SUM + A(I)
ENDDO
PRINT SUM PRINT SUM
END END

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

HPF: Victim of its own Success!?

® No prior compiler technology to learn from

® |imited number of data distribution primitives

® not user expandable
® Paucity of good HPF libraries
® |ack of performance-tuning tools

® |ack of patience of user community!

Ken Kennedy, Charles Koelbel, and Hans Zima. The Rise and Fall of High Performance Fortran: An Historical Object Lesson. In
Proceedings of the third ACM SIGPLAN Conference on History of Programming Languages, pages 7-1-7-22, 2007.

|

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

HPF: Victim of its own Success!?

® No prior compiler technology to learn from

® |imited number of data distribution primitives

® not user expandable
® Paucity of good HPF libraries
® |ack of performance-tuning tools

® |ack of patience of user community!

Does not motivate users to think in parallel|

Ken Kennedy, Charles Koelbel, and Hans Zima. The Rise and Fall of High Performance Fortran: An Historical Object Lesson. In
Proceedings of the third ACM SIGPLAN Conference on History of Programming Languages, pages 7-1-7-22, 2007.

|

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Design Principles

® Users must think in parallel (creativity)

® but not be encumbered with optimizations that can be
automated, or proving synchronization correctness

® Compiler focuses on what it can do (mechanics)

® not creative tasks, such as determining data
distributions, or creating new parallel algorithms

® |ncremental deployment
® not a new programming language

® more of a coordination language (DSL)

® Formal semantics

® provable correctness

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Overview of Our Solution

® Declarative approach to parallel programming
® focus on what, not how
® partitioned address space
® (Code generation
® data movement
® GPU kernel splitting
® Compiler optimizations

® data locality

® GPU memory hierarchy (including registers)

Torsten Hoefler, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. The Case for Collective Pafttern
Specification. In Proceedings of the First Workshop on Advances in Message Passing (AMP), 2010. Held in conjunction

|

with the ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI).
Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Declarative Approach

® Originally motivated by Block-synchronous Parallel
(BSP) programs, especially for collective
communication

® alternate between computation and communication

® communication optimization breaks the structure

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Declarative Approach

® Originally motivated by Block-synchronous Parallel
(BSP) programs, especially for collective
communication

® alternate between computation and communication

® communication optimization breaks the structure

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Declarative Approach

® Originally motivated by Block-synchronous Parallel
(BSP) programs, especially for collective
communication

® alternate between computation and communication

® communication optimization breaks the structure

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Declarative Approach

® Originally motivated by Block-synchronous Parallel
(BSP) programs, especially for collective
communication

® alternate between computation and communication

® communication optimization breaks the structure

® Extend to non BSP-style applications

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }

eo@e| << op << e;@es3 where ey

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }
eo@e| << op << e;@es3 where ey

eg@e; <<= e, @e; where ey

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }
eo@e| << op << e;@es3 where ey

eg@e; <<= e, @e; where ey

A[j] @ 1 <<= B[i1] @ j where 1iinworld, jin{0...1}, 1 %2 ==20
N—— ~—— Y~ —(— ~— N — NG Ny SR =

storage receiver reduction Jaiq sender generator generator filter
location rank operator rank

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

|

Kanor for Clusters

@communicate { b@recv_rank <<= a@send_rank }
eo@e| << op << e;@es3 where ey

eg@e; <<= e, @e; where ey

A[j] @ 1 <<= B[1] @ j where 1iinworld, jin{0..1}, 1 %2 ==0

storage receiver reduction Jjgtq sender generator generator Ffilter
location rank operator rank

Source-level compiler (using ROSE)

|

standard C++ code

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL).

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

|

Distributed Memory Targets

® Generate MPI
® Recognize collectives that map to MPI collectives

® Optimize communication
® computation-communication overlap

® communication coalescing

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Software Pipelining

for (int i = 0; 1 < OCTANTS; i++) {
for (int j = 0; J < ANGLES; j++) {
// loop though the diagonals, N is the number of processors
for (int diag = 0; diag < 2 = N + 1; diag+t+) {
if ((myid.x + myid.y) == diag) { compute(); } /* wave front =*/
@Qcommunicate {temp_s@(x, y+1) <<= A[lastrow]@(x, V)
where x, y in {0...N-1} and x + y = diagj}
@communicate {temp_e@(x + 1, y) <<= A[][lastcol]@(x, V)
where x, y in {0...N-1} and x + y = diag;}

Sweep3D

©

10 }}}

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Software Pipelining

1 for (int 1 = 0; 1 < OCTANTS; i++) {
2 for (int j = 0; 7 < ANGLES; j++) {
g% 3 // loop though the diagonals, N is the number of processors
| 4 for (int diag = 0; diag < 2 * N + 1; diag++) {
g 5 if ((myid.x + myid.y) == diag) { compute(); } /x wave front x/
N | 6 @communicate {temp_s@(x, y+1) <<= A[lastrow]@(x, V)
7 where x, y in {0...N-1} and x + y = diagj}
8 @communicate {temp_e@(x + 1, y) <<= A[][lastcol]@(x, V)
9 where x, y in {0...N-1} and x + y = diag;}
10 }}}
1 for (int 1 = 0; 1 < OCTANTS; i++) {
P |2 for (imt j = 0; j < ANGLES; Jj++) {
;g 3 for (int s = 0; s < min(SIZE, s + BLOCK_SIZE),; s+=BLOCK_SIZE) {
34 4 // loop though the diagonals, N is the number of processors
B, 5 for (int diag = 0; diag < 2 = N + 1; diag++) {
A | 6 if ((myid.x + myid.y) == diag) { strip_mined_compute(); }
i& 7 @communicate {temp_ s@(x, y+1) <<= A[lastrow]@(x, V)
S| s where x, v in {0...N-1} and x + y = diag;}
5% 9 @communicate {temp_e@(x + 1, y) <<= A[][lastcol]l@(x, V)
10 where x, y in {0...N-1} and x + y = diag;}
11 }}}}

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Shared Memory Targets

® Use partitioned address space
® | everage shared memory for communication

® Eliminate buffer copying
® identify opportunities for aliasing
® insert synchronization for correctness

® optimize at run time to eliminate synchronization
overheads

Fangzhou Jiao, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. Partial Globalization of Partitioned Address Space for Zero-copy

|

Communication with Shared Memory. In Proceedings of the 18th International Conference on High Performance Computing (HiPC), 2011. To appear.

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Optimizing for Shared Memory

Rcommunicate{x@i <<= xQ0}, where i > 0

Fangzhou Jiao, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. Partial Globalization of
Partitioned Address Space for Zero-copy Communication with Shared Memory. In Proceedings of the 18th International
Conference on High Performance Computing (HiPC), 2011. To appear.

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

|

Subtleties

@communicate ... @Qcommunicate ... @Qcommunicate
v l
X = ..
for 1 ... | (evell)
Y
~— A\
l for J ... | (evel 2)
X
A\
l for k ... | (evel 3)
X = ... Ali, J+2,k] = ... |(evel 3)
v v
. = X (level 3)
Y = A[1, J,k] | devel 3)

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

|

Harlan for GPUs

cudaFree (dX);
cudaFree (dY);
cudaFree (dZ);

cudaMemcpy (dX, X,
cudaMemcpy (dY, Y,

add_kernel <<<1,

cudaMemcpy (Z, dZ,

void add_kernel(int

__global__

{
int 1 = threadldx .x;

¥

void vector_add(int size ,

{
float *xdX, *xdY, *dZ;
cudaMalloc(&dX, size
cudaMalloc(&dY, size
cudaMalloc(&dZ, size

size , float x*xX,

if(i < size) { Z[i] = X[i] + Y[i]; }

float *xX, float =xY,

sizeof (float));
sizeof (float));
sizeof (float));

size >>>(size , dX, dY, dZ);

float xY,

float xZ)

float xZ7)

size x sizeof(float), cudaMemcpyHostToDevice);
size x sizeof(float), cudaMemcpyHostToDevice);

size x sizeof (float), cudaMemcpyDeviceToHost);

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Harlan for GPUs

__global__ void add_kernel(int size, float *X, float xY, float xZ)
{

int i = threadldx .x;

if(i < size) { Z[i] = X[i] + Y[il; }
}

void vector_add(int size, float xX, float xY, float %Z)
{
float *dX, *dY, *dZ;
cudaMalloc(&dX, size * sizeof(float));
cudaMalloc(&dY, size * sizeof(float));
cudaMalloc(&dZ, size * sizeof (float));

cudaMemcpy (dX, X, size x sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy (dY, Y, size x sizeof(float), cudaMemcpyHostToDevice);

add_kernel <<<1, size>>>(size , dX, dY, dZ);
cudaMemcpy(Z, dZ, size x sizeof(float), cudaMemcpyDeviceToHost);
cudaFree (dX);

cudaFree (dY);
cudaFree (dZ);

void vector add (vector<float> X, vector <float> Y, vector<float> Z)

{
¥

kernel (x : X, v 1Y, z :2Z){z=x+1y; };

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Harlan Features

Reductions

z = +/kernel (x : X, y : Y) { x *vy };

E————

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Harlan Features

Reductions

z = +/kernel (x : X, y : Y) { x *vy };

Asynchronous kernels

handle = async kernel (x : X, ¥y : Y) { x *vy };
// other concurrent kernels of program code here
z = +/wait(handle);

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Harlan Features

Reductions

z = +/kernel (x : X, y : Y) { x *vy };

Asynchronous kernels

handle = async kernel (x : X, ¥y : Y) { x *vy };
// other concurrent kernels of program code here
z = +/wait(handle);

Nested kernels

total = +/kernel (row : Rows) { +/kernel (x : row); };

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Example |: Dot Product

// dot product of two vectors

double dotproduct(Vector X, Vector Y) {
double dot = +/kernel(x : X, ¥y : Y) { x *vy };
return dot;

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Example 2: Dense Matrix Multiply

// dense matrix-matrix multiply
Matrix matmul (Matrix A, Matrix B) {
// this block does a transpose; it could go in a library
Bt = kernel(j : [0 .. length(B[©])]) {
kernel(i : [0 .. length(B)]) {

B[J][1];

}
}s
C = kernel(row : A) {
kernel(col : Bt) {
+/kernel(a : row, b : col) {
a * b;
}
}
}

return C;

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Example 3: Sparse Mat-Vec Product

// sparse matrix-vector product (CSR)
Vector spmv(CSR_i Ai, CSR_v Av, Vector X) {
Vector Y = kernel(is : Ai, vs : Av) {
+/kernel(i : is, v : vs) { v * X[1]; }
}s

return Y,

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Combining Kanor and Harlan

kernel (x : X, v : Y, z :2Z){z=x%*y; }
@communicate {
Y[i]@r <<= Z[i]@((r+1) & NUM_NODES)
where r in world,
i in 0...length(Y)
}
kernel (x : X, v : Y, z :2Z){z=x%*y; }

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

What about Joe programmers!?

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Automatic parallelization
“The reports of my death are highly exaggerated”

® MATLAB is the lingua franca of scientists and
engineers

® Joe programmers would rather write in 10
minutes and let the program run for 24 hours, than

vice versa

® They would still like their programs to run in |0
minutes!

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Parallelism in MATLAB

® Built-in parallel-for (with the parallel
computing toolbox)

® Third party libraries to offload computations on
clusters

® Third party and MathWorks libraries to offload
computation on GPUs

® “declare” variables to be of GPU type

A = GPUdouble(a);
B = GPUdouble(b);
C = A*B;

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

MATLAB: Empirical Study

Basic Block Sizes

0 10 20 30 40 50 60

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Basic Block Counts

0

15

20

Automatic GPU Computation

® Model the computation
® cost model for CPU times
® cost model for GPU times

® cost model for CPU-GPU data transfer

® Solve a binary integer linear programming problem

—,

Minimize 'z
such that Axr < b
and AT = l;eq

Chun-Yu Shei, Pushkar Ratnalikar, and Arun Chauhan. Automating GPU Computing in MATLAB. In Proceedings of

|

the 2011 International Conference on Supercomputing (ICS), 2011.

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Experimental Results

Heated Plate N-body (3D)

—o— Greedy —e— Greedy
3L~ Heuristic A 1.8 1| —— Heuristic

— — —
ASI Yo
T T T

© o o o
N ESN (o)} oo
T T T T

0 200 400 600 800 1000 0 100 200 300 400 500
Input size Input size

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Serious Joe programmer!

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Speculative Parallelism

® Write mostly sequential code
® |nsert code to mark “possibly parallel” regions

® Speculator + verifier

® we support multiple concurrent verifiers to support
nested speculation

Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang Zhang. Software Behavior Oriented Parallelization. In
Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 223—234, 2007.

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Scalable Speculative Parallelism on Clusters

/]l safe code
// code where speculation possible (code region A)
/] safe code

// code where speculation possible (code regions B)

\

FF_init ();
// safe code

if (FF_fork() == FF_VERIFIER) {
// safe version of the code region A
} else { // FF_.SPECULATOR
// unsafe version of the code region A

}
FF_create_validation_thread ();

// safe code

if (FF_fork() == FF_VERIFIER) ({
// safe version of the code region B
} else { // FF_SPECULATOR
/!l unsafe version of the code region B

J

FF _create_validation_thread ();

Devarshi Ghoshal, Sreesudhan R Ramkumar, and Arun Chauhan. Distributed Speculative Parallelization using Checkpoint
Restart. In Proceedings of the International Conference on Computational Science (ICCS), 2011

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

gl

Intra- and Inter-Node Speculation

Core 1l . Core 2 Node 1 : Node 2
Safe Safe |
region : region

FF_fork | : |
, checkpoint | - e
L . "
. r “ \
| i . * restart
- -
Speculatof | g_ i | g_ |
Verifier : | 2 i : | E .
- Validation .E r 'E |
: threM | N |
ST | : .
Q) | |
() .
: S Verifi [S lat
. . erifier
Validation . uE’ | peculatof
— thread '® !
* — S g
...’__ |
g 5 .
c g |
L S |
& S .
g .‘-"‘—_-_,"h . .
o —— Notify |
Notify X .
3 [3

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Implementing Inter-Node Speculation

directory
server

1 0 f 2 f 3

speculator verifier verifier

g ' !
_ 0...?.9.9!.@.5;5_,, de !
RS ' ! :
& - @ e, . , Speculating
v ez Tl “P o ! ’
S 0O S Hennn 0 M 7 N
o & : P ‘ N
3 X ‘
5| @ , ® ! O;":' >)
| | 3 = k!
= 1 [_O '- 5)“'\ : q—l
— ‘ ! . = TN
. | | PR I
c ,
O . n 1 .
e . 1 ! o(‘ "
f_U . ' '
-} . i !
O . ' '
5 : | |
i : | | S o
,- . i ' k : g '. .

T O 5ues,, , , CHI e
o e ! ! ro9: : L
O F N ' ' E: @ Ll_'
g 643 e:'Xpect ! 9_ : e "' e
= QT2 § et Cl CP|fro | = < :

Q L e v L m1 " 0)7
0] y . e .. —
full . ' c Tt >) .
e S - e *;

©

L : , © |

o : ! = |
g . ‘\ I
S . ' \u
© 1 ‘\‘
>] .

o ! o[
& -
- ©
L ! O
| 5
, >

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Analysis

T = time of execution of original program

p = probability that speculation succeeds

k = number of simultaneous speculations

s = speedup of speculatively parallelized code over the original sequential code
S = overall speedup of the program

T
Running time of code, with speculation = T + pk " + (1 — p)kT

Tk+1) B k+1
T +pkt+(1-pkT k+1+pk(:-1)

Overall speedup, S =

S < k+1 (strict upper bound, as s —)

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

What next!

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

The Maze of Parallel Programming

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Concluding Remarks

® There is no silver bullet of parallel programming
(and there may never be)

® TJool (compiler developers, OS developers,
architects) need to recognize the different needs
of parallel programmers

® Parallel programming needs to become an
integrated core of computer science education

® every future programmer is a parallel programmer

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

Questions!
http://www.cs.indiana.edu/~achauhan

Arun Chauhan, Parallelism for the Masses, Auburn, Oct 3, 201 |

http://www.cs.indiana.edu/~achauhan
http://www.cs.indiana.edu/~achauhan

